
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter

A Hybrid Approach for Solving
Constrained Multi-Objective
Mixed-Discrete Nonlinear
Programming Engineering
Problems
Satadru Roy, William A. Crossley and Samarth Jain

Abstract

Several complex engineering design problems have multiple, conflicting objec-
tives and constraints that are nonlinear, along with mixed discrete and continuous
design variables; these problems are inherently difficult to solve. This chapter pre-
sents a novel hybrid approach to find solutions to a constrained multi-objective
mixed-discrete nonlinear programming problem that combines a two-branch
genetic algorithm as a global search tool with a gradient-based approach for the
local search. Hybridizing two algorithms can provide a search approach that out-
performs the individual algorithms; however, hybridizing the two algorithms, in
the traditional way, often does not offer advantages other than the computational
efficiency of the gradient-based algorithms and global exploring capability of the
evolutionary-based algorithms. The approach here presents a hybridization
approach combining genetic algorithm and a gradient-based approach with
improved information sharing between the two algorithms. The hybrid approach is
implemented to solve three engineering design problems of different complexities
to demonstrate the effectiveness of the approach in solving constrained multi-
objective mixed-discrete nonlinear programming problems.

Keywords: multi-objective, mixed-discrete, constrained, nonlinear,
genetic algorithm, gradient-based optimization

1. Introduction

Many engineering design problems require simultaneous optimization of multi-
ple, often competing, objectives. Unlike in single-objective optimization, a multi-
objective problem with competing objectives has no single solution. An optimum
solution with respect to only one objective may not be acceptable when measured
with respect to the other objectives. Multi-objective problems have a number of
solutions called the Pareto-optimal set, named after Vilfred Pareto [1], that repre-
sent the range of best possible compromises amongst the objectives. Traditional
gradient-based optimization algorithms are capable of addressing the multi-
objective problems by converting the problem into a single-objective formulation.
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On the other hand, evolutionary algorithms (EAs)1 are well suited for the multi-
objective problems as they can evolve to a set of designs that represent the Pareto
frontier in a single run of the algorithm [2, 3]. As a result, EAs often find application
to address multi-objective problems. Despite the popularity of these algorithms to
solve a wide range of problems, they, like all non-gradient meta-heuristic searches,
have issues with computational cost and rate of convergence to the Pareto frontier.
After some number of generations, the candidate solutions may begin to exhibit
little or no improvement. Modified versions of these algorithms exist which
improve the convergence rate [4]. However, hybridizing EAs with an efficient
gradient-based algorithm may significantly improve the convergence rate and has
demonstrated the ability to solve multi-objective problems more efficiently than the
EA alone [3]. Hybridization of an EA with a gradient-based local search algorithm
has started to gain popularity owing to its promising capabilities to address the
demerits of many optimization algorithms when used independently.

The genetic algorithm (GA) [5] is a class of EA and is a well-known population-
based global search algorithm. Apart from its ability to explore the design space, GA
is also capable of handling both discrete and continuous type design variables. This
makes the GA an ideal choice to address problems that combine both discrete and
continuous variables. However, the GA, like other EAs, does not provide any proof
of convergence, and the GA cannot directly enforce constraints. Commonly, con-
straint handling for a GA search uses a penalty approach such that the fitness
function reflects the objective function value and accounts for violated constraints.
This generally requires the use of penalty multipliers to adjust the “strength” with
which the penalty impacts the fitness function and selecting suitable penalty
multipliers is often difficult. Further, for multi-objective problems, the different
scaling or magnitude of the objectives can complicate selecting appropriate penalty
multipliers.

On the other hand, Sequential Quadratic Programming (SQP) [6], is a well-
known gradient-based search algorithm that directly handles constraints and pro-
vides proof of convergence to local optima using Karush-Kuhn-Tucker (KKT) opti-
mality criteria [7]. Because SQP uses gradient information, it is a computationally
efficient search algorithm. However, SQP cannot handle discrete design variables or
discontinuous functions and has difficulty with multi-modal functions. Therefore,
both of these (GA and SQP) well-known optimization algorithms have their own
pros and cons that limit their individual applicability to fully address constrained
multi-objective problems that combine both continuous and discrete type design
variables. Combining the GA with SQP creates a hybrid approach that improves the
overall optimization process for constrained mixed-discrete nonlinear program-
ming problems (MDNLP).

The chapter presents a combination of the two-branch tournament GA for
multi-objective problems with an SQP-based local search implementation of the
goal attainment problem formulation allowing an improved information sharing
between the two algorithms. To the best of the authors’ knowledge, there exists no
work that emphasizes the process of hybridization combining an N-branch tourna-
ment selection GA with the goal attainment formulation as the local search in a
compatible manner and then demonstrates application of the approach to solve a
hard-to-solve constrained multi-objective, mixed-discrete nonlinear optimization
problem. Later in the chapter, the hybrid approach is applied to solve a three-bar
truss problem, a ten-bar truss problem, and a greener aircraft design optimization

1 Here, the term “evolutionary algorithm” encompasses all population-based search algorithms that use

features inspired by biological evolution.
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problem – all representatives of constrained multi-objective, mixed-discrete
nonlinear programming problem. The truss problems have basis in test problems
for structural optimization, and the motivation to select a greener aircraft design
optimization problem arises from the increased concern about the environmental
impact of the growing air transportation system.

2. Literature review

The ability of the EAs to evolve to a Pareto-frontier as the generation progresses
makes them an ideal choice for several multi-objective optimization problems.
Vector Evaluated GA (VEGA), proposed by Schaffer [8] back in 1985, is one of the
earlier versions of multi-objective GA. Several multi-objective EAs are developed
since then including Multi-Objective Genetic Algorithm (MOGA) [9], Strength
Pareto Evolutionary Algorithm [10], Non-dominated Sorted Genetic Algorithm
(NSGA) [11] to mention a few popular ones.

Coello [2, 12] has conducted comprehensive literature surveys of various
evolutionary multi-objective techniques. Konak et al. [13] compared various multi-
objective optimization algorithms and provides a set of guidelines to follow while
developing a multi-objective algorithm. Their effort primarily lies in guiding
researchers with very little background in MOGA and making them familiar with
the ideas and approaches of multi-objective optimization.

One such multi-objective algorithm named Non-dominated Sorting Genetic
Algorithm (NSGA), developed by Srinivas and Dev [11] – arguably one of the most
widely used multi-objective EAs – uses the concept of non-dominated sets originally
proposed by Goldberg in his book on Genetic Algorithm and Machine Learning
[14]. The NSGA approach maintains sets of non-dominated individuals, with the
first set of individuals not dominated by any other individuals in the population.
The second set finds the new set of non-dominated individuals after excluding the
individuals from the first set. This step continues until all the individuals in the
population are categorized inside the non-dominated sets.

A majority of these multi-objective algorithms, in some form, require an assign-
ment of a scalar measure of a fitness value to the individuals in the population. As
an example, MOGA [9] and NSGA [11] assign a fitness value based on a ranking
scheme depending on the individual’s levels of domination. The two-branch tour-
nament selection genetic algorithm presented by Crossley et al. [15] uses a tourna-
ment selection scheme that chooses parents considering both the objectives directly
in the fitness functions. The individuals are evaluated based on their fitness across
both the objectives. The overall process remains the same as that of a traditional GA.
However, the only difference appears in the tournament selection operator. During
the tournament selection step, the algorithm selects 50% of the parents based on the
fitness value associated with the first objective, that is, the individuals are evaluated
solely with respect to the first objective without consideration of the other objec-
tive. These selected parents are by nature strong in objective 1, or Φ1-strong.
Similarly, the tournament selects the remaining 50% of the parents based on the
fitness value associated with the second objective. This second 50% are Φ2-strong
parents. With this parent selection approach, randomly choosing the selected par-
ents to pair off for crossover, ideally would result in the following distribution of
matches: 25% Φ1 �Φ1 type parents, 25% Φ2 �Φ2 type parents, and 50% are mixed
i.e., Φ1 �Φ2 type parents.

The hybrid approach, presented in this chapter, uses this two-branch tourna-
ment selection GA as the global search optimizer and combines with a gradient-
based approach to refine the search using a novel information sharing concept in
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the process of hybridization. The unique tournament selection strategy of the two-
branch tournament GA allows to understand the underlying trait of the parents, i.e.,
if they are Φ1 or Φ2 strong, and this information is later leveraged during the
crossover step to obtain children with certain desired traits.

Another challenge with multi-objective EAs is their ability to enforce constraints.
Unlike gradient-based methods, which use constraint gradient information to guide
the search in the feasible direction, no such constraint gradient is available for EAs.
There have been several efforts to handle the constraints for EAs; however, not all of
these methods strictly or directly enforce the problem constraints. The penalty
function approach is arguably the most widely known of the various approaches to
handle constraints in EAs. Assuming a minimization problem, this approach adds a
penalty to the objective function when constraints are violated [14].

Another simple approach includes ignoring any infeasible design solution; because
this does not differentiate between constraints that are close to the constraint bound-
aries and those that are far apart, this constraint handling method is inefficient.

Binh and Korn [16] suggested a method to assign fitness to individuals based on
combining both the objective function vector as well as the degree to which the
individual violates the constraint. Infeasible individuals are categorized into differ-
ent classes based on how close or how far they are to the constraints boundaries.

Fonseca and Fleming [17] proposed a priority-based constraint handling strategy
where search is first driven for feasibility followed by optimality by assigning high
priority to constraints and low priority to objective functions. Although there are
various techniques to “handle” constraints in EAs, “enforcing” them in a robust way
is still an open issue. This is another motivation to pursue the hybrid approach that
leverages the efficacy of gradient-based search to enforce the problem constraints.

Further, these population-based searches have issues with computational cost
and rate of convergence to the Pareto frontier. After some number of generations,
the candidate solutions may begin to exhibit little or no improvement. Modified
versions of the algorithms work to improve the convergence rate [4, 18]; however,
hybridizing EAs or GAs with an efficient gradient-based algorithm can significantly
improve the convergence rate, thereby reducing the computational cost. Hybridi-
zation of an EA or GA with a gradient-based local search algorithm is not new.
There are numerous references demonstrating how hybridization may improve the
quality of the search for both single objective and multi-objective problem formu-
lations; these include, but are not limited to, those appearing in [3, 19–32]. The local
search can be considered as the local learning that takes place in an individual
throughout its lifespan. Some of the approaches apply the local search to the final
non-dominated set, while some techniques apply local search to all or many
individuals of the population as the generation progresses.

The effort here extends the previous effort by Lehner and Crossley [27] to
include a multi-objective formulation and combine the advantage of the hybrid
approach with an novel information sharing technique between the global and the
local search. The two-branch tournament selection GA algorithm globally explores
the design space handling both discrete and continuous type variables, while the
gradient-based approach sees only the continuous variables in a goal attainment
formulation and seeks to efficiently refine the population based on the information
passed on by the top-level GA while enforcing all the problem constraints.

3. Methodology and approach

The hybrid approach presented in this chapter combines the two-branch tour-
nament GA (see Figure 1) for the global search [15] and the goal attainment SQP

4

Engineering Problems - Uncertainties, Constraints and Optimization Techniques



algorithm provided in the function fgoalattain available from the MATLAB Optimi-
zation Toolbox [33] as the local search. For solution via hybrid approach, the
problem statement contains two levels, as appears below.

3.1 Level I: Two-branch tournament genetic algorithm

The top level of the problem, which the GA sees as its optimization problem, is a
bound constrained (i.e., only side constraints on the continuous design variables)
multi-objective minimization problem that uses the two-branch tournament selec-
tion technique with some modification to include the local search. This level
includes both discrete and continuous design variables of the original problem. The
continuous variables in this level, x0c , are the initial values (starting point) for the
local search problem. This way, the GA acts like a guide for a sequential multi-start
approach as it searches the combined discrete and continuous design space. The top
level formulation appears below:

Maximize :

xd, x0c

f 1 xd, x
0
c

� �

f 2 xd, x
0
c

� �

8

<

:

9

=

;

Subject to :

xcð ÞLi ≤ xcð Þi ≤ xcð ÞUi

xdð Þi ∈A, B, C,D, … discrete variablesð Þ

(1)

In the original two-branch tournament selection GA, the tournament step selects
50% of the parents based on the fitness value associated with the first objective.

Figure 1.
Original two branch tournament selection GA for two objective problems. Adapted from reference [15].
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These parents are by nature strong in objective 1 or Φ1-strong. Similarly, the
tournament selects the remaining 50% of the parents based on the fitness value
associated with the second objective. This second 50% are Φ2-strong parents. With
this parent selection approach, randomly choosing the selected parents to pair off
for crossover would result, on average, in the following distribution of matches:
25% Φ1-Φ1 type parents, 25% Φ2-Φ2 type parents, and 50% are mixed i.e., Φ1-Φ2

type parents. This has the effect of generating many compromise solutions near the
middle of the Pareto frontier, potentially limiting the spread and quality of the
Pareto-front. The approach described in this chapter improves the spread and
quality of the Pareto front by pairing off the parents in a more prescribed manner.
A flowchart depicting how the modified two-branch tournament GA interacts with
the gradient-based (SQP) for local search appears in Figure 2.

With a given goal fGi , a starting point for the continuous variables x
0
c and a set of

discrete values xd, the goal attainment problem formulation, for each individual in
the GA-level population, seeks to find the optimal design x ∗

c . The goal attainment
problem formulation also assigns the fitness value to the individuals, thereby waiving
off the need of fitness evaluation at the GA-level (level I). Using the fitness informa-
tion of these populations, a new set of goals are generated for the next iteration
following the tournament selection, crossover and mutation steps of the two-branch
tournament GA algorithm. The resulting design x ∗

c need not conform to the binary
Gray coding scheme implemented to represent the chromosome of each individual in
the population. The effort here employs a Lamarckian strategy [20], that updates the
chromosomes of the individual to conform to the gray-coding scheme of the GA.

Figure 3 demonstrates the parent selection process of the new two-branch
tournament selection GA and the goal assignment technique with a simple example.
The approach starts with a population size of 8n, where n is any positive integer
(Figure 3 assumes a population size of 8; i.e., n ¼ 1). After the two-branch tourna-
ment selection process, 4n parents are Φ1-strong and the other 4n parents are Φ2-
strong. These parent groups remain in two separate parent pools. An additional
step after the two branch selection process further categorizes these parents into

Figure 2.
Modified two branch tournament selection GA and SQP interaction.
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sub-pools to ensure a prescribed mix of Φ1-strong and Φ2- strong parents for
crossover. To begin, half of the parents from pool 1 (which contains Φ1-strong
parents) are randomly moved to sub-pool 1. This sub-pool contains Φ1-Φ1 type
parents paired for crossover and leads to offspring that will likely be Φ1-strong.
Similarly, half of the parents from pool 2 are randomly moved to sub-pool 2 to form
Φ2-Φ2 type paired parents. Sub-pool 3 pairs parents so that a Φ1-strong parent and a
Φ2-strong parent form children via the crossover operation. These would create
children that have features from both Φ1 and Φ2 strong parents. This modification
to the original two-branch tournament selection approach leads to a more pre-
scribed, yet diversified, set of parents in each pool for the crossover, somewhat
analogous to the idea of breeding for plant hybridization.

3.2 Level II: sequential quadratic programming

The lower-level problem presented to the SQP algorithm refines the population
of the GA by searching the continuous variable space and helps the hybrid algorithm
converge to the Pareto frontier at a faster rate. The fgoalattain algorithm, available in
MATLAB, converts the multi-objective algorithm into a single-objective optimiza-
tion problem by converting all the objectives into a set of inequality constraints and
minimizes a slack variable γ (also called the attainment factor) as the objective.

Given : x0c , xd, f
G
i

Minimize : γ

Subject to : f i xcð Þ � αiγ ≤ fGi
g j xcð Þ≤0

hk xcð Þ ¼ 0

xcð ÞLi ≤ xcð Þi ≤ xcð ÞUi

(2)

Figure 3.
Selective parent mixing strategy.
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This goal attainment formulation seeks to attain values for the objectives close to a

set of predefined goal values, fGi , without violating any of the problem constraints
gi xð Þ≤0 and hk xð Þ ¼ 0. The weight values, αi, are set as the absolute of the

corresponding goal values, fGi , based on the guidance in [34]. This prevents scaling
issues with objectives of various dimensions and magnitudes. The solution to this
problem describes the set of continuous variables x ∗

c that minimizes γ and satisfies all

constraints; the values of f i x
∗

c

� �

–the fitness value of the individual in the population–

are returned to the GA-level for the use in the two-branch tournament selection.
The fgoalattain formulation needs a defined goal point in the objective space,

and the algorithm tries to find a design as close as possible to these goal values.
Figure 4 illustrates the goal point assignment task for each newly created individual
in the sub-pools following the example presented in Figure 3. In Figure 4, the
points indicate the child “designs” from a set of parents; e.g., C1 1�4ð Þ is the first child

from the crossover of parent 1 and parent 4. The color of the symbol indicates the
parent sub-pool from which the child designs were generated. Therefore, in this
example, there are two children generated from parents 1 and 4 in sub-pool 1,
which are indicated with the light blue color to match Figure 3. There are four
children generated from sub-pool 2 and two children from sub-pool 3.

To assign the goal point values, the hybrid approach first identifies the local ideal
point in each generation. This ideal point is the combination of the lowest f 1 and f 2
values in the current population. For this effort, the utopia point (which includes
some tolerance to give the utopia smaller–or better– f 1 and f 2 values than the ideal
point with the intent of encouraging under achievement in the goal attainment
problem) is set as 0.95 times the local ideal point. In subsequent generations, any
new objective value smaller than the corresponding value in the current utopia
point replaces that current value in the utopia point. This makes the utopia point
dynamic with each generation. For two-objective problems, two perpendicular lines
originate from the utopia point and extend infinitely into the objective space. These
straight lines appear as dashed lines in Figure 4.

To assign a goal point to an individual, the approach defines a vector that origi-
nates from an individual and ends to where the vector intersects with either of the
dotted lines. The point of intersection becomes the goal point for that individual.
Children of parents from sub-pool 1, the Φ1-strong sub-pool, receive a goal vector
with slope of zero in the objective space. These are the horizontal arrows in Figure 4.

Figure 4.
Goal assignment technique.
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These goal points would seek the most improvement along the direction of objective
1. Similarly, children of parents from sub-pool 2 receive a goal vector with 90 degree
slope in the objective space. This ensures improvement along the direction of objec-
tive 2. Lastly, the children from sub-pool 3 parents receive goal vectors relative to
their spatial location in the objective space. An individual closer towards objective 1
will have a vector inclined more towards improvement in objective 1 and vice versa.

Referring back to Figure 3, parents 1 and 4 from sub-pool 1 create children
C1 1�4ð Þ and C2 1�4ð Þ. This indicates the first child of parent 1 and 4 and the second

child of parent 1 and 4 respectively. During the SQP search, these children have goal
points that will minimize along the direction of f 1 without increasing their current
values of f 2. C1 5�7ð Þ and C2 5�7ð Þ result from sub-pool 2, and the local search will seek

to improve f 2 without increasing f 1. C1 3�6ð Þ, C2 3�6ð Þ, C1 2�8ð Þ and C2 2�8ð Þ all result

from sub-pool 3, and they will have different goal points for their local searches to
improve both f 1 and f 2. This modified parent selection and goal assignment
strategy, via the hybrid formulation, seeks to exploit the tournament selection
process of the two-branch tournament GA and tailor the local search for children,
depending on traits of their parents.

Although the approach seems robust in enforcing constraints via goal attainment
formulation, there may be instances when no feasible solution exists to the goal attain-
ment formulation for a given set of discrete variables. In such cases, the local searchwill
not be able to return a feasible solution and the fitness function receives a severe penalty
in the GA-level in an effort to discard such discrete design choices from the population.
This severe penalty has some resemblance to the approach of ignoring infeasible designs
that was criticised above; however, because the situation where no locally-feasible
design exists results from a specific combination of discrete variables, there is no analog
to having a “nearly feasible” design with a slightly violated constraint. Severely penal-
izing such infeasible designs for certain combinations of discrete variable choices, in this
context, is appropriate.

4. Application to engineering design problems

To demonstrate the efficacy of the hybrid approach in solving constrained
multi-objective MDNLP problems, we solve three different engineering test prob-
lems with varying difficulties - a three-bar truss, a ten-bar truss, and greener
aircraft design problem.

4.1 Three-bar truss problem

For the three-bar truss problem (see Figure 5), the problem formulation
includes the objectives of minimizing the weight of the truss and minimizing the
deflection of the free node. The deflection of a node is calculated as the resultant of
the deflections in both the x and y directions. The problem consists of six design
variables, of which three are continuous and three are discrete. The continuous
variables describe the cross-sectional area of the three bars while the discrete vari-
ables describe the material selection properties of these bars. The details of the
continuous design variables and their design bounds appear in Table 1. For this
problem, four discrete material selection choices are available for each element and
include aluminum, titanium, steel, and nickel options. The yield stress for every bar
acts as a constraint for the problem (total three constraints), not allowing the stress
in the bar to go beyond that upper limit. References [35, 36] provide more details
about the three-bar truss problem. For the hybrid approach, the GA population is
limited to 8 individuals while setting the upper limit for the number of generations
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to 50. The probability of crossover is set to 0.5 and the mutation rate is fixed at
0.005. The continuous and discrete variables uses 8 and 2 bits respectively in the
Gray-coded binary scheme.

The resulting Pareto frontier for the three-bar truss problem appears in Figure 6(a).
The plot shows the Pareto frontier has a good spread, leading to a total of 248 non-
dominated points as solutions to the optimization problem. The visible trend in the
non-dominated design set indicates that as the weight of the three bar truss system
increases, they are accompanied by similar increases in the cross-sectional area of
the bars with the material selection choice gradually shifting to steel for all the three
bars. Aluminum or nickel never appeared as the material selection choice in the first
two bars. The designs visible in the top left corner of the Pareto front in Figure 6(a)
correspond to high displacement and low weight designs. The separated cluster of
points (six designs) visible at the bottom right corner of the Pareto frontier corre-
sponds to low displacement and high weight designs, with the maximum weight
design having a material combination of all steel bars.

For the three-bar truss problem, only 64 possible combinations of discrete
design variables exist. Hence, it is possible to perform a complete enumeration of
the discrete design space and get a sense of the shape of the true Pareto front and
help assess the performance of the hybrid approach. This led the authors to compare
the hybrid approach (and the original two-branch tournament selection GA2) with
a gradient-based weighted sum approach for this three-bar truss problem. The
weighted sum approach converts the multi-objective problem formulation into a
single objective problem by assigning weights to both the objectives and solves the
single objective problem with the gradient-based approach using MATLAB’s
fmincon solver [33].

First, the objectives are normalized using the utopia point. Next, objective 1 is
assigned a weight w that varies from 0 to 1 in a step increment of 0.05. The weight
for the second objective is set to 1�w. For each possible combination of discrete

Figure 5.
Three bar truss problem.

Design variables Lower bound Upper bound

Cross-sectional area of bar 1 [cm2] 0 5

Cross-sectional area of bar 2 [cm2] 0 5

Cross-sectional area of bar 3 [cm2] 0 5

Table 1.
Continuous variables for three-bar truss problem.

2 The original two-branch tournament selection GA was proposed for unconstrained problems. In this

example, the problem constraints in the original two-branch tournament selection GA (used for

comparison) are handled using an exterior penalty approach.
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variable choice and a given weight pair, the approach leads to a single point in the
objective space. The weighted sum approach then conducts gradient-based search
for all 21 different weight pairs corresponding to each of the 64 possible discrete
combination choices. The resulting Pareto frontier using the weighted sum
approach is compared with the hybrid approach and the original two-branch tour-
nament GA approach in Figure 6(b). The original two-branch tournament GA
finds an inferior set of solutions, possibly due to the lack of local search feature, and
the set of solutions also has a reduced spread across the Pareto frontier. On the other
hand, the weighted sum approach with complete enumeration on the material
selection choices has a slightly better spread compared to the hybrid approach but
with fewer non-dominated points.

Figure 7 compares how the Pareto frontier evolved with generations using the
original two-branch tournament GA and the proposed hybrid approach. As
expected, without the local search feature, the original two-branch tournament
selection GA shows distinct improvement in both the quality and the spread of the
Pareto front as the generation progresses. That is, the black diamonds (non-
dominated set after second generation) are replaced with better non-dominated
designs as the generation progresses. However, in the hybrid case, we start to see
the shape of the final Pareto front immediately after the second generation. As the
generation progresses further, more points get added to the list of non-dominated
designs. This is due to the multi-start approach where the top-level GA populates
various possible combinations of the discrete material selection choices and the local
gradient-based search then improves these designs by varying the continuous
design variables. The hybrid approach is able to rapidly get to the final Pareto front

Figure 6.
Pareto front for the three-bar truss problem and its comparison with the other approaches. (a) Pareto front for
the three-bar truss problem using the hybrid approach. (b) Comparison of Pareto frontier obtained using the
hybrid approach, a weighted sum approach and the original two-branch tournament GA approach.

Figure 7.
Evolution of the non-dominated sets as the generation progresses. (a) Original two-branch tournament selection
GA. (b) Proposed hybrid approach.
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at the expense of increased number of function evaluations needed by the gradient-
based local search.

4.2 Ten-bar truss problem

Next, the hybrid approach solves a more difficult and challenging version of the
three-bar truss problem – a ten-bar truss. Similar to the three-bar truss problem, the
ten-bar truss has the competing objectives that include minimizing the weight of
the ten-bar truss system and minimizing the resultant displacement of any of the
free nodes. The displacement is taken as the absolute of the maximum calculated
displacement among all the bar elements. This problem consists of twenty design
variables – ten continuous type and ten discrete type. The continuous variables
describe the cross-sectional diameters of the ten bars, ranging from 0.1 cm2 to
40 cm2, while the discrete variables specify the material selection properties of
these bars. Like the three-bar problem, the four discrete material choices available
for each bar include aluminum, titanium, steel, and nickel. However, this problem

has over one million possible combinations of the discrete choices (410 ¼ 1, 048, 576)
making complete enumeration of the discrete design space computationally prohibi-
tive, unlike the three-bar truss. References [35, 36] provide more details about the
ten-bar truss problem considered in this study.

Figure 8(a) compares the Pareto front obtained using the hybrid approach after
20 GA generations with the Pareto frontier obtained using the two-branch tourna-
ment selection GA after 100 generations. The figure shows both the approaches
performed well for this problem with the two-branch tournament selection GA
resulting a better spread in the low weight/high displacement region of the objective
space, whereas the hybrid GA has a better spread in the low displacement/high
weight region. Figure 8(b) shows how the non-dominated set evolved as the gen-
eration progresses using the hybrid approach. We see a similar trend as that of the
three-bar truss problem. That is, there is not much significant change in the final
shape of the Pareto front other than the increase in the number of non-dominated
designs as the generation progresses. However, this time there is slight improve-
ment in the quality of the Pareto front (the red non-dominated set obtained after
generation 20 is slightly better than the blue or the black non-dominated designs
obtained at generation 5 and 2 respectively).

For the three-bar example, a majority of the improvements across the objective
space are due to the gradient-based local search’s ability to obtain designs with
better cross-sectional area. With only 64 possible material selection combinations,

Figure 8.
Ten bar truss problem results. (a) Comparison between the original two-branch tournament GA (after 100 GA
generation) and the hybrid approach (after 20 GA generations) for the 10 bar truss problem. (b) Evolution of
non-dominated set as the generation progresses for the 10 bar truss problem using the hybrid approach.
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there are not many discrete material selection options to explore. On the other
hand, for the ten-bar truss problem, a vast majority of the improvement is due to
the ability of the GA to find a better material selection combination rather than
fine-tuning the cross sectional variables. It is not possible to seek further improve-
ment in the Pareto front just by varying the continuous variables, so the local search
saturates as appear in the case of black (diamonds) and blue (squares) non-domi-
nated designs. After few more GA iterations, the algorithm is able to find better
combinations of material selection that lead to further improvement in the Pareto
front (red dots).

4.3 Greener aircraft design problem

The third application problem solved using the hybrid approach is the greener
aircraft design problem. Here, a “greener” aircraft design problem provides an
example to demonstrate the efficacy of the hybrid algorithm and its ability to solve
such MDNLP problems. The intent is to find aircraft designs that represent the best
possible trade-offs among performance, economics, and environmental metrics
which essentially makes this a multi-objective problem. Further, with the inclusion
of discrete technologies, the problem becomes MDNLP in nature.

The aircraft design optimization problem employs the NASA sizing code FLOPS
[37] to evaluate discrete design configurations and perform the sizing and perfor-
mance calculations of the candidate aircraft designs. The sizing code accepts both
continuous and discrete design variables as input and returns the aircraft gross
weight along with environmental metrics (fuel weight, which corresponds to CO2

emissions, and NOX emissions) and total operating cost. Simple models simulating
the potential “greener technologies” are modeled in MATLAB [33] and then inte-
grated with FLOPS for the performance calculations. The goal of the aircraft sizing
problem is to develop an aircraft with 2940 nmi design range with a seat capacity of
162 seats in two classes. A brief description of the greener aircraft design optimiza-
tion problem appears below. For more details about the aircraft design problem, we
encourage the readers to see Ref. [38].

4.3.1 Description of the continuous variables

The problem includes ten continuous variables that define the wing and the
engine parameters of the aircraft. The details of these continuous design variables
and their design bounds appear in Table 2.

4.3.2 Simulating the discrete technologies

This aircraft design optimization study models three types of discrete technolo-
gies. Table 3 lists the set of discrete technologies considered in this study. To model
composite material selection choice on various aircraft components, the approach
here uses a binary variable for each of the aircraft components that includes wing,
fuselage, tail, and nacelle. A value of one represents composites being present while
a value of zero represents no composite materials in that structure. The second
discrete variable includes the eight possible combinations of the location and the
number of engines. Lastly, eight combinations of laminar flow technologies are
included for this problem, depending on whether it is natural laminar flow (NLF) or
hybrid laminar flow control (HLFC) technology and the number of components on
which it is applied (as listed in Table 3). References [38–40] describe the various
discrete technologies used in this study in further detail.
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The problem also has four constraints that appear in Table 4. The constraints
ensure that the design solution meets the desired field length criteria, has sufficient
ground clearance, and sets a maximum limit on the amount of allowable fuel
carrying space in the fuselage.

The aircraft design optimization problem considers two different pairs of com-
peting objectives. The first pair involves simultaneous minimization of the aircraft
fuel weight (index of CO2 emissions) and the total operating cost of the aircraft, and
the second pair involves minimizing the NOX emissions and the total operating cost
of the aircraft. The GA population has been limited to 48 individuals while setting
the upper limit for the number of generations to 50 as before. The maximum

Design variables Lower bound Upper bound

Aspect Ratio 8 12

Taper Ratio 0.3 0.5

Thickness to Chord Ratio 0.09 0.17

Wing Area [ft2] 1,000 1,500

Wing Sweep at 25 percent [deg] 0 40

Thrust per engine [lbs] 20,000 30,000

By-Pass Ratio 5 10

Turbine Inlet Temperature [R] 3010 3510

Overall Pressure Ratio 35 55

Fan Pressure Ratio 1.6 1.7

Table 2.
Continuous variables for aircraft design problem.

Laminar Flow Technologies Engine Position Composite Material Choices

Wing Fuselage Nacelle Tail

NLF-Wing 2 wing Yes Yes Yes Yes

HLFC-Wing 2 fuselage No No No No

HLFC-Wing + Nacelle 2 wing +1 fuselage

HLFC-Wing + Tail 3 fuselage

HLFC-Wing + Tail + Nacelle 4 wing

NLF-Wing + HLFC-Tail 2 wing +2 fuselage

NLF-Wing + HLFC-Nacelle 1 fuselage

NLF-Wing + HLFC-Tail + HLFC-Nacelle 4 wing +1 fuselage

Table 3.
Discrete technologies for aircraft design problem.

Take-off field length [ft] ≤ 8,000

Landing field length [ft] ≤ 7,500

Landing gear length [in] ≤ 150

Fuselage fuel capacity [lbs] ≤ 28,800

Table 4.
Problem constraints.
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number of function evaluations for the SQP minimization (using MATLAB’s
fmincon) have been limited to the default value of 100 times the total number of
continuous variables for this study. For certain combinations of discrete technology
selection choices, the gradient-based approach may not find a feasible solution. In
such cases, as mentioned in the methodology section, those designs are assigned
high penalty for elimination in the subsequent generations.

4.3.3 Results for aircraft design problem

4.3.3.1 Objective pair - fuel weight vs. total operating cost.

Figure 9 shows the set of 24 non-dominated designs for the competing objective
pair – aircraft fuel weight and total operating cost. The aircraft fuel weight,
analogous to fuel burn, is directly related to the amount of CO2 produced during the
trip. The Pareto frontier consists of designs employing combinations of composite
structures, eight different engine position(s), and eight different laminar flow
technologies, modeled as a part of the greener technology approaches described in
the previous section.

The design point ND1 (for Non-Dominated design number 1) in Figure 9 cor-
responds to highest total operating cost (also lowest fuel weight) and makes use of
NLF technology on the wing and HLFC technology on the nacelles and tail, along
with two wing-mounted engines. This design also features composite wings, fuse-
lage, and nacelles. The use of composite structures leads to a decrease in the fuel
consumption (due to the reduction in aircraft empty weight) at the expense of
increased total operating cost (due to increase in the manufacturing and mainte-
nance costs associated with composite materials). The design with the lowest total
operating cost (ND24) makes use of NLF technology on the wing and HLFC tech-
nology on the nacelles and tail, along with two wing-mounted engines as well. But,
this design has no composite components and, hence, has the lowest total operating
cost according to the models used in this study.

Figure 9.
The non-dominated set for objective pair – aircraft fuel weight (index for CO2 production) and the total
operating cost.
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All the non-dominated designs employ NLF technology on the wings and HLFC
technology on both the nacelle and tail, along with two wing-mounted engine
configuration. The laminar flow technologies tend to reduce the skin friction drag of
the aircraft, making the design more aerodynamically efficient, and reducing its
fuel consumption for a given mission range. All the non-dominated designs employ
these technologies in various forms (NLF or HLFC) to reduce fuel burn, depicting
the importance of employing these technologies in near future “greener” aircraft
design.

An interesting region in the Pareto frontier from an airline’s standpoint would be
near the points ND1 and ND3 (or ND2), where a substantial decrease in total
operating cost is possible for a marginal increase in the aircraft fuel weight (index of
CO2 production per trip). Considering non-dominated designs ND1 and ND3, a
nearly 1% reduction in total operating cost is possible to achieve for only a 0.6%
increase in the total fuel weight needed for the mission, as one move from ND1 to
ND3. Similar trends for the objective pair in consideration are also observed for
designs ND9, ND10, and ND11.

4.3.3.2 Objective pair - NOX emissions and total operating cost

The Pareto front corresponding to the NOX emissions and the total operating
cost objective pair appears in Figure 10 and has 24 non-dominated designs. The
non-dominated designs have different geometric design variable values that best
match the different discrete greener aircraft technologies to arrive at the trade-off
between the NOX emissions and the total operating cost.

The design with minimum NOX emissions and maximum total operating cost
(ND1) employs a three-engine configuration with one fuselage-mounted and two
wing-mounted engines, along with a composite wing. The laminar flow technolo-
gies on this design include NLF technology on wings and HLFC technology on the
nacelles and tail. The maximum NOX emitting design with minimum total operat-
ing cost (ND24) employs a two-engine configuration with wing-mounted engines,
along with NLF technology on the wings and HLFC technology on the tail, and a
composite nacelle. All the non-dominated designs, except the one with maximum
NOX emissions, employ NLF technology on the wings and HLFC technology on
both the nacelle and tail. As we move from left to right along the Pareto frontier in

Figure 10.
The non-dominated set for objective pair – NOX emissions versus total operating cost.
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Figure 10, the aircraft engines change from a three-engine configuration (two
wing-mounted and one fuselage-mounted) to a two-engine (wing-mounted)
configuration, thereby reducing the total operating cost.

An interesting region from the airline’s point of view is the near the points ND2,
ND3, ND4 and ND5, where a nearly vertical portion is visible in the top left portion
of the Pareto frontier (refer to Figure 10). Moving from left to right in this region, a
substantial decrease in total operating cost is possible for a marginal increase in the
NOX emissions of the aircraft. A plausible design from an airline’s perspective–
among the obtained non-dominated designs–would be the ND10 design. The reason
for this observation is that a substantial increase in total operating cost will be
incurred if further reduction in NOX emissions are desired, while any effort to
further reduce the total operating cost will lead to very high NOX emissions, which
is not desired from an environment standpoint.

Given there is some degree of randomness associated with the genetic operations
in the GA, subsequent runs of the hybrid GA for the two objective pairs find a
slightly different number of non-dominated designs points. However, the basic trait
of the Pareto frontier, in terms of the discrete choices, did not alter; only the density
of points in the Pareto frontier varied with different runs.

5. Conclusions

This chapter describes a hybrid multi-objective algorithm that makes use of an
efficient gradient-based SQP algorithm for fitness evaluation inside a GA in a
learning approach. The combination allows the GA to evolve a population of designs
in the direction of the Pareto frontier while the SQP algorithm enforces constraints,
eliminating the need for penalty multipliers or other special constraint handling
methods and refines the values of the continuous design variables. The selective
parent mixing and unique sets of goal point assignment to the individual lead to a
distinct improvement in convergence and the quality of the Pareto frontier from a
previous variation of this approach. When applied to various constrained MDNLP
engineering design problems, the hybrid algorithm shows the ability to identify
promising designs.

Although the ability of the hybrid approach to solve difficult constrained
MDNLP problems is demonstrated in this chapter, the methodology relies heavily
on the constraint enforcing ability and efficient searching of the continuous design
space via the local gradient-based SQP algorithm that requires some estimates
(either numerically or analytically) of the gradients of the objectives and the con-
straints with respect to the continuous design variables. A major advantage of a
gradient-based approach besides being able to enforce the problem constraints
(hence, the motivation to hybridize) is that the computational cost needed to
compute the gradients is nearly independent of the number of design variables [41]
when using adjoint-based methods to estimate the derivatives. This allows the
gradient-based approach to efficiently solve problems with a very large number of
design variables. However, if the objectives are encapsulated in a black-box func-
tion and are computationally very expensive to evaluate, then it may not be possible
to directly implement a gradient-based search and may require a surrogate-based
design optimization approach [40, 42, 43].

Nomenclature

αi Weight vector for the relative under/over-attainment of objective
fi(x) Value of the objective
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fGi Goal value for objective

gi(x) Nonlinear inequality constraints
γ Attainment factor
hi(x) Nonlinear equality constraints
n Population size
xc Continuous design variable
xd Discrete design variable
xL Design variable lower bound
xU Design variable upper bound

Abbreviations

EA Evolutionary algorithm
GA Generic algorithm
HLFC Hybrid laminar flow control
MDNLP Mixed-discrete nonlinear programming
ND Non-dominated design
NLF Natural laminar flow
NSGA Non-dominated Sorted Genetic Algorithm
SPEA Strength Pareto Evolutionary Algorithm
SQP Sequential Quadratic Programming
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