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Abstract

Over the years, researchers have been working on replacing sensitized dye for
dye sensitized solar cells (DSSC), because of its low production cost, biodegrad-
ability, and non-toxicity. However, the overall performance of natural dye-based
DSSCs is low compared to the DSSCs sensitized with Ruthenium based dyes. The
combination of natural dyes with an optimized choice of the extracting solvents and
the proper volume ratio of mixture of the dyes, enhances inherent properties, such
as absorption and adsorption of the dyes. It also allows the device to utilize photon
energy more efficiently over the entire visible wavelength. As a result, DSSC sensi-
tized with the dye mixture shows higher absorbance, and cumulative absorption
properties over the whole visible region than the DSSC fabricated with individual
dyes and showed higher photocurrent. Another effective way to improve cell effi-
ciency is by using a blocking layer. The blocking layer increases the photocurrent, is
mainly due to the improvement of the electron recombination at the transparent
conducting oxide/electrolyte interfaces. Also, the blocking layer’s compact structure
creates an effective pathway for electron transportation; thus, the device’s photo-
current increases. Additionally, a slight improvement in the open-circuit voltage
and fill factor was observed, thus cell efficiency enhances significantly. By both the
proper ratio of dye mixture and the blocking layer improves cell performance of
DSSC and opens a new pathway for future studies.

Keywords: DSSC, natural dye, natural dye based DSSC, dye combination,
blocking layer

1. Introduction

The global energy demand has been continuously increasing due to the continu-
ous growth of the world population, economic development, standard of living, and
drive of modern technologies. In the current situation, about 87% of the primary
energy needs are mostly supplied through fossil fuels (coal, oil, and gas) [1, 2].
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However, the sources of these fossil fuel reserves are depleting very fast. The
existing sources of energy are inadequate, and if the fuel consumption continued at
current usage rates, it would last only about 50 years [3]. On the other hand,
burning fossil fuels releases carbon dioxide and other greenhouse gases (e.g., water
vapor, methane, nitrous oxide, sulfur dioxide, and other ozone-depleting sub-
stance) in the atmosphere, making them the primary contributors to global
warming and climate change. Because of the depletion of fossil fuels and global
warming, in recent years, researchers are endeavoring severe attempts to find out
various ways to meet energy demand around the world. Renewable energy could be
an eco-friendly, alternative, sustainable energy resource because they are inex-
haustible and will not pollute the environment for us or those of future generations
by emitting harmful gases. Many alternative renewable energy sources have already
been available, such as solar, hydro, wind, biogas, biomass, geothermal, wave, and
tidal energy. Among all renewable resources, solar energy can be the solution to the
problem of dwindling fossil-fuel reserves [4].

Solar energy is the cleanest and most abundant renewable energy source avail-
able. The solar cell or photovoltaic (PV) device is used for converting the energy of
sunlight into useable electrical energy. The generated energy from solar does not
produce any harmful emissions, consumes no fossil fuels, has no moving parts, and
requires little maintenance. The development of PV technology is growing, and
intensive research works are undertaken worldwide to improve cell performance
and reduce the cost of the cell. With a history dating back over 60 years, since the
very first silicon bipolar solar cell, the last three decades silicon solar cell has seen
immeasurable advancement in both the performance of experimental and commer-
cial cells. First-generation silicon solar cells showed their value in the market with
the advantages, including high efficiency (26.6%), high reliability, low cost, ease of
fabrication, and environmentally friendly traits [5–8]. Second generation thin-film
(e.g., amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium
gallium selenide (CIGS)) solar cells are cheaper than the mature Si solar cells;
additionally, thin-films are easier to handle and more flexible. However, the short-
age of Tellurium and Indium makes it hard to manufacture solar cells commercially.
Also, Cadmium is extremely poisonous and medical problems with environmental
impact [9]. This significant concern opened the method of exploration of finding
other elective materials and further innovation for solar cells. Several new thinner-
films have surfaced through concentrated research with higher potential, including
dye-sensitized solar cell (DSSC), perovskite solar cell (PSC), copper zinc tin sulfide
(CZTS) solar cell, organic solar cell (OSC), and quantum dot solar cell (QDSC) [10].

The DSSC belongs to the group of thin-films, functions on a semiconductor
generated into an electrolyte and a light-sensitive anode [11]. In 1988, Brian
O’Regan and Michael Grätzel at UC Berkeley, USA initially co-invented the modern
version of DSSC and later they further developed this work at the ÉcolePolytechni-
queFédérale de Lausanne, Switzerland [12]. Brian O’Regan and Michael Grätzel
reported the first modern version of DSSC in 1991 with an efficiency of 7.1–7.9%
[13, 14]. DSSC can convert the solar energy to electrical energy by using photosen-
sitive dye. DSSC is fabricated by using conventional roll-printing systems. The
semi- transparency and semi-flexibility of DSSC offer a diversity of usages not
appropriate for glass-based construction and most of the materials used are low-
cost. However, practical elimination of several expensive elements has proven to be
difficult, notably Pt and ruthenium (Ru). The energy conversion efficiency of the
most recent laboratory-developed module is approximately 14.7% [15]. This chapter
is focused on the improvement of efficiency of DSSC by the combination of natural
dyes and the blocking layer. In this work, structure and operation principle of the
third generation dye-sensitized solar cell (DSSC) has been discussed in the second
section. Section 3 explains the combination of natural dyes with an optimized
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choice of the extracting solvents and the dye mixture’s at proper volume ratio,
enhancing the dye sensitizer’s inherent properties, such as absorption and adsorp-
tion, thus improving the cell efficiency. Section 4 explains the comprehensive study
of the blocking layer and its effect on the cell efficiency, and finally in section five,
overall conclusions and accomplishments of this study have been mentioned.

2. Basics of DSSC

As shown in Figure 1, a typical DSSC consists of five different parts, such as, (1)
transparent conducting oxide (TCO), glass substrate, (2) anode (wide band-gap
semiconductor material layer on TCO), (3) photosensitizer, (4) electrolyte and (5)
cathode (platinum/carbon layer on TCO). The components of a DSSC are: two
transparent conductive oxide [indium tin oxide (ITO), fluorine-doped tin oxide
(FTO), Indium Zinc Oxide (IZO) and Aluminum Zinc Oxide (AZO)] glass elec-
trodes. One of the electrodes is the anode, the working anode, which is printed with
semiconductor material [TiO2, ZnO, SnO2, SrTiO3, Zn2SnO4, Nb2O5, etc.]
nanoparticles (particle size around 20–50 nm). The semiconductor oxides are sen-
sitized with a photosensitizer (metal complex sensitizer, metal-free organic sensi-
tizer or natural dye sensitizer), which absorbs the photons. The other electrode is
the counter electrode [platinum or carbon coated TCO] and in between the two
working electrodes is the electrolyte containing the redox couple [I�/I3

�, Br�/Br3
�,

SCN�/ (SCN)3
� and SeCN�/ (SeCN)3

�, etc.].
Figure 2 illustrates the schematic diagram of the basic working principle of a

typical TiO2 based DSSC. All other semiconductor-based DSSC such as ZnO, SnO2,

etc. works under the same principle. Under illumination, a photo-excited electron is
injected from the excited state of the dye (D*) from the highest occupied molecule
orbital (HOMO) to lowest un-occupied molecular orbital (LUMO) (Eq. (1)). The
excited electron is injected to the conduction band of the semiconductor material.
The injected electron percolates through the semiconductor material by a driving
chemical diffusion gradient and is collected at the TCO glass substrate (Eq. (2)).
After passing through an external circuit, and reaches the counter electrode, thus,

Figure 1.
Schematic diagram of basic structure of DSSC.
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dye regeneration takes place due to the acceptance of electrons from I� ion redox
mediator, and I� gets oxidized to I3

� (Eq. (3)). To complete the circle, by electron
donation, I� ions regenerated by the reduction of I3

� ions at the cathode (Eq. (4)).
However, some undesirable reactions are simultaneously taking place, such as non-
radiation relaxation (Eqs. (5) and (6) no. red arrow in Figure 2), recombination of
injected electrons with the oxidized dye (Eqs. (6) and (7 no. red arrow in Figure 2)
and recombination of injected electrons with I3

� (Eqs. (7) and (8) no. red arrow in
Figure 2). In brief, the sequence of events in a DSSC is as follows [16]:

TiO2∣Dþ hν ! TiO2∣D ∗ Excitation of dye upon illumination (1)

TiO2∣D ∗
! TiO2∣Dþ

þ e� Oxidation of dye due to injection of electrons in TiO2 photoanode

(2)

TiO2∣Dþ
þ
3
2
I� ! TiO2∣Dþ

1
2
I3� Oxidation of electrolyte (3)

1
2
I3� þ 2e�∣CE !

3
2
I� Restoration of electrolyte at the counter electrode (4)

TiO2∣D ∗
! TiO2∣D Recombination of dye (5)

TiO2∣Dþ
þ e� ! TiO2∣D Dye recover to ground state (6)

I3� þ 2e�∣TiO2 ! 3I� Recombination of electrolyte (7)

D: Dye sensitizer; D*: Excited dye upon illumination; D+: Oxidized dye.
Nemours researchers are working on to improve cell performance by different

means, such as modifying the TCO/semiconductor material interface by blocking
layer; modifying semiconductor material by doping, annealing time, radiation,

Figure 2.
Operation principal of typical DSSC.
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carbon nanotubes, etc.; modifying the absorption properties of the dyes by Ru dye,
organic dye, dye mixture, etc. to enhance cell efficiency [17–22].

3. Effect of combination of natural dyes

The dye in DSSCs has a vital role in harnessing solar energy from the sun
and converts it into useable electrical energy. The primary charges in the dyes
separate through photo-excitation, and photo-excited dyes inject electrons into the
conduction band of semiconductor material. A dye should fulfill some pre-
requisites to be considered efficient dye: (1) binding firmly with the semiconductor
material; (2) higher molar absorption capabilities for maximum absorption from
visible to IR-region; (3) fast electron transfer; (4) LUMO of the dye should be
higher than the conduction band of semiconductor for efficient electron injection
into the semiconductor material; (5) HOMO of the dye should be lower than the
redox couple for efficient regeneration of oxidized dye; and (6) slow degradation
(or do not degrade at all) [16, 23–25]. The dyes used in DSSC are divided into
three types: metal complexes dye sensitizer, metal-free organic dye sensitizer,
and natural dye sensitizer. Metal complexes dye sensitizers, such as polypyridyl
complexes of Ruthenium (Ru), Osmium (Os), metal porphyrin, phthalocyanine are
the most efficient and durable dye for DSSC application. However, these dyes have
a complex synthesis process, release chemicals as a by-product, and require rear-
earth material for the synthesis process. As a result, the overall fabrication process
highly depended on the rear earth material that is neither sustainable nor
economical. On the other hand, metal-free organic dye sensitizer has advantages
over metal complex dye sensitizer, reducing the use of rear-earth material, higher
molar absorption co-efficient, and preprocessing color. However, these advantages
are offset by their instability, tedious manufacturing process, tendency to undergo
degradation, and toxicity. These significant limitations influenced scientists to
work on possible replacements for metal complexes or metal-free organic dye
sensitizers [16].

Over the years, significant research has been done to determine the possibility of
replacing sensitized dye. Natural dye has several advantages over sensitized dyes.
These include low production cost, high availability, easy access, simple fabrication
technique, biodegradable, environment friendly, purity grade, non-toxic, and
reducing the use of rear-earth material. Natural dye-based DSSCs have attracted
considerable attraction as an alternative way to produce low-cost dyes to a large
extent by extracting dyes from natural resources. In nature, some vegetables, fruits,
flowers, leaves, seeds, roots, stems, bacteria, and algae exhibit various colors due to
plant pigmentation [16]. The natural dyes are four major families which are chlo-
rophyll, anthocyanin, carotenoids, and flavonoids [26, 27].

Chlorophyll, which is the most widespread pigment occurring naturally in
plants, fungi, bryophytes and algae. The molecular structure of a chlorophyll con-
sists of a Magnesium-containing tetrapyrrolic ring, encircled by other side chains.
The chlorophylls are classed mainly as chlorophyll-a, chlorophyll-b, chlorophyll-c1,
chlorophyll-c2, chlorophyll-d, and chlorophyll-f. They absorb light from red, blue,
and violet in the visible wavelengths with an absorptionmaximumof �670 nm while
reflecting green wavelengths. Chlorophyll dye molecule create an electronic cou-
pling with the conduction band of semiconductor material through the carboxylic
groups, which helps to anchor the dye molecules and transfer injected electron
efficiently from the dye sensitizer to the conduction band of semiconductor mate-
rial [16, 28]. Figure 3 shows the basic molecular structure of chlorophyll and the
binding chlorophyll and semiconductor material (e.g., TiO2).
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Anthocyanins are also an abundant and widespread group of water-soluble
pigments in plants. They absorb light at the longest wavelengths. Depending on the
pH value, anthocyanins are responsible for the existence of attractive colors, such as
red, orange, magenta, pink, blue, blue-black and purple floral [16, 30]. Generally,
the carbonyl and hydroxyl functional groups in the anthocyanin dye sensitizers
create an electronic coupling with the semiconductor material’s conduction band,
which helps transfer the excited electron efficiently to the conduction band of

Figure 3.
Chlorophyll-semiconductor material (i.e.,TiO2) interaction [29].

Figure 4.
Basic structure of anthocyanin and anthocyanin-semiconductor material (TiO2) intaraction [31].
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semiconductor material [16]. Figure 4 shows the basic interaction between antho-
cyanin and semiconductor material (e.g., TiO2).

Carotenoids occur in many plants and algae, as well as several bacteria, and
fungi. It contributes to yellow, orange, and red colors and allows them to absorb
short-wave visible light [32]. Carotenoids can be divided into two major types:
xanthophylls (with oxygen) and carotenes (purely hydrocarbons and without oxy-
gen) [16, 33]. Figure 5 illustrates the interaction between carotenoids- semicon-
ductor material (i.e., TiO2).

Flavonoids are essential floral pigments. The development of a specific color
depends on the accumulation of flavonoid chromophores and other intrinsic and
extrinsic factors. Chemically, the flavonoids have a C6- C3- C6 carbon frameworkwith
two connected two phenyl rings (A and B) and a heterocyclic ring (C). Depending on
the oxidation potential of the C-ring, the particular flavonoids absorb light in the visible
wavelength. Till now, over 5000 flavonoids have been identified from different plants.
Most of the flavonoid pigment has loosely or unbound electrons. Thus less energy is
required for excitation of such electrons is lower compared to the others. As a result,
those pigment molecules can be energized by the light within the visible range [16].

The overall cell efficiency of natural dye-based DSSCs is comparably low com-
pared to DSSCs sensitized with sensitized dyes. Due to the inadequate interaction
between dyes and semiconductor surface, a significant reduction of the cell’s short-
circuit current. The pigment’s long structure obstructs the dye molecules to form a
bond with the oxide surface of the semiconductor materials effectively. Those are the
field of works that are yet to be developed in natural dye DSSCs to achieve high-
efficiency devices and device stability. To further raise the efficiency of the DSSC
combination of dyes has been explored and reported DSSC or to broaden the absorp-
tion spectrum [35–39]. A combination of natural dyes with an optimized choice of the
extracting solvent enhances the absorption of solar light and allowed utilization of the
photon energy more efficiently. As a result, DSSC sensitized with the dye mixture
shows higher absorbance, and cumulative absorption properties over the entire visi-
ble region than the DSSC fabricated with single individual dyes [35, 36].

Kabir et al. studied the effect of chlorophyll and anthocyanin dye mixture on the
cell performance of natural dye-based DSSC. They also mixed the dyes at five
different volume ratios to find the optimized dye mixture. The cell conversion
efficiency of DSSC fabricated with individual chlorophyll, and anthocyanin dyes

Figure 5.
Carotenoids -semiconductor material (i.e.,TiO2) interaction [34].
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were 0.466% and 0.531%, respectively. DSSC co-sensitized with the optimized dye
mixture (20% chlorophyll +80% anthocyanin) showed cell conversion efficiency of
0.847%, which is almost 1.82 and 1.6 times higher than the cell efficiency of the
individual chlorophyll and anthocyanin dye-sensitized DSSC’s (shown in Figure 6).
The chemical characteristics study of the dye showed that no new bond except has
formed; however, few shifts in the adsorption peak was observed (Shown in
Figure 7 and Table 1). Similar characteristics were seen when dyes were adsorbed
the TiO2 semiconductor material (shown in Figure 8. and Table 2, [36].

Figure 9 illustrates the UV–visible absorption spectra of natural chlorophyll
(green), anthocyanin (red), and the optimum combination of dyes (green + red)
diluted in ethanol. The dye mixture has demonstrated the cumulative absorption
properties of both individual green and red dye.

Kabir et al. also studied the effect of betalain and curcumin dye combination on
the cell performance of natural dye-based DSSC. They also mixed the dyes at three
different volume ratios to find the optimized dye combination. The optimized dye
mixture demonstrated the cumulative absorption properties of both individual
betalain and curcumin dye (shown in Figure 10). The DSSC fabricate with the
combination of betalain and curcumin dye also showed superior cell performance
than DSSC manufactured with individual betalain and curcumin dye (shown in
Figure 11 and Table 3) [35].

Figure 6.
I-V characteristics of DSSC fabricated with chlorophyll, anthocyanin and different combinations [36].

Figure 7.
FT-IR adsorption spectra of natural chlorophyll (green), anthocyanin (red), and combination (20% green
+80% red) of dyes (without TiO2) [36].
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Nonetheless, to the best of our knowledge, combination of dyes have a positive
impact on the cell performance of natural based DSSC.

4. Effect of blocking layer in DSSC

In DSSCs, a porous layer of nanostructuredsemiconductor materials such as TiO2

[40–45], ZnO [46–48], SnO2 [49, 50], SrTiO3 [51, 52] Zn2SnO4 [53, 54] and Nb2O5

[55] called a photo anode, covered with photosynthetic dye. The photo anode of

Functional

group

Absorption

range

(in cm�1)

Type of

vibration

Intensity Absorption

peak of

green dye

(in cm�1)

Absorption

peak of

combination

of dyes

(in cm�1)

Absorption

peak of red

dye

(in cm�1)

Alkyl Halide
(CdCl)

600–800 Stretch Strong 616 610 606

Alkene
(═CdH)

675–1000 Bending Strong 944 950 —

Ether (CdO) 1000–1300 Stretch Strong 1017 1026 —

Amine (CdN) 1080–1360 Stretch Weak 1338 1354 —

Aromatic
(C═C)

1400–1600 Stretch Medium
weak

1422 1404 —

Alkene (C═C) 1620–1680 Stretch Variable 1652 1619 1635

Alkane (CdH) 2820–2850 Stretch
(symmetric)

Strong 2837 — —

Alkane (CdH) 2850–3000 Stretch
(asymmetric)

Strong 2975 — —

Alcohol
(OdH)

3200–3600 Stretch Broad
and

strong

3346 3320 3329

Table 1.
IR absorption of organic functional groups of natural green, red, and combination of dyes (20% green +80%
red) without TiO2 [36].

Figure 8.
FT-IR adsorption spectra of natural chlorophyll (green), anthocyanin (red), and combination
(20% green +80% red) of dyes (with TiO2) [36].
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DSSC influences the photo generated current. Highly porous structures and large
surface areas of the nanostructured semiconductor materials increase the dye
absorption and move the photo-induced electron towards the load [56]. Intensive
research has been undertaken by the DSSC research community to increase photo-
induced current and understand the mechanisms responsible for losses in the cell.
Radiation less relaxation of energized dye, electron recombination with the oxidized
dye; and electron recombination with the tri-iodide in the electrolyte are the main
reasons for limiting the photocurrent in the cell. Generally, the first two have a
negligible impact, while the last one shows a significant impact [56, 57].

Electron recombination occurs when electron transfer to I3
� in the electrolytes via

semiconductor material and the TCO. Electron recombination through both routes
needs to be reduced to prevent loss. In I�/I3

� redox couple, the electron transfer via
the TCO is negligible due to small exchange current density between I3

�-I�. Gener-
ally, the losses via the FTO under short-circuit condition is insignificant, because the
Fermi level of the TCO (i.e., FTO) is close to the redox Fermi level. However, under
illumination, the quasi-Fermi level of the semiconductor material (i.e., TiO2) rises
rapidly with distance from the TCO (as shown in Figure 12a). As a result, a higher
driving force is observed when electron transfer from the semiconductor material to
I3
�, which is much higher than in the bulk of the sensitized layer that is close to the

TCO glass substrate. Thus, I3
� electrons are anticipated to recombine with the semi-

conductor material at short-circuit conditions [57].
However, under illumination, the open-circuit condition is entirely different

(shown in Figure 12b). Due to the rise (�0.7 eV) of the Fermi level of TCO glass
substrate, a much higher driving force is observed when electron transfer from the
TCO glass substrate to I3

�. Thus, the electron recombination with I3
� via the TCO

glass substrate and the back reaction by these two routes causes a photo stationary
state in the cell [57].

Functional

group

Absorption

range

(in cm�1)

Type of

vibration

Intensity Absorption

peak of

green dye

by TiO2

film

(in cm�1)

Absorption

peak of

combination

of dyes by

TiO2 film

(in cm�1)

Absorption

peak of red

dye by TiO2

film

(in cm�1)

TidOdTi 400–800 Stretch Strong 438 440 515

Alkene
(═CdH)

675–1000 Bending Strong 817 782 780

Ether (CdO) 1000–1300 Stretch Strong 1042 1039 1040

Amine (CdN) 1080–1360 Stretch Weak 1324 1323 1315

Aromatic
(C═C)

1400–1600 Stretch Medium
weak

1546 1544 1538

Alkene (C═C) 1620–1680 Stretch Variable 1639 1643 1636

Alkane (CdH) 2820–2850 Stretch
(symmetric)

Strong 2848 2852 2856

Alkane (CdH) 2850–3000 Stretch
(asymmetric)

Strong 2924 2923 2924

Alcohol
(OdH)

3200–3600 Stretch Broad
and

strong

3384 3286 3281

Table 2.
IR absorption of organic functional groups of natural green, red, and combination of dyes (20% green +80%
red) with TiO2 [36].
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The blocking layer works as a barrier layer at the TCO/semiconductor material
interface to improve cell performance. Studies had shown that a significant
improvement in photo induced current observed when the blocking layer was
introduced in the cell. Park and colleagues found that due to the blocking layer’s

Figure 10.
Absorption properties of betalain, curcumin, and combination of dyes [35].

Figure 9.
(a) Absorption spectra of diluted natural chlorophyll (green), anthocyanin (red), and the optimum
combination of dyes without TiO2, and (b) absorption spectra of diluted natural chlorophyll (green),
anthocyanin (red), and the optimum combination of dyes withTiO2 [36].
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presence, total transfer resistance at the blocking layer/electrolyte interface
increased that increased cell performances by preventing electron recombination
near the TCO glass substrate [58, 59]. Fabregat and co-workers found that BL

Figure 11.
I-V characteristics of DSSC fabricated with betalain, curcumin, and combination of dyes [35].

Dye/

Combination of

dyes

Dye

ratio

Voc (mV) Isc (mA) FF η% Dye

loading

(mol mm�3

X 107)

Red 371.6 � 09.5 1.218 � 0.039 0.487 � 0.008 0.220 � 0.016 1.05

Yellow 507.2 � 10.5 1.857 � 0.026 0.503 � 0.004 0.473 � 0.020 1.09

Red + Yellow 1:1 495.5 � 09.4 2.319 � 0.015 0.508 � 0.003 0.583 � 0.018 1.09

Red + Yellow 1:2 502.7 � 11.5 2.494 � 0.022 0.518 � 0.002 0.649 � 0.020 1.08

Red + Yellow 2:1 497.1 � 14.3 2.041 � 0.025 0.508 � 0.003 0.515 � 0.024 1.09

Table 3.
Photovoltaic performance of DSSC fabricated with FTO/TiO2 [35].

Figure 12.
Schematic of DSSC in the absence of a blocking layer. (a) under short circuit conditions, the Fermi level in the
FTO is close to the redox Fermi level results in rapid electron-transfer kinetics to I3 -. (b) under open-circuit
conditions, the Fermi level in the FTO moves up as the electron quasi-Fermi level rises and results in a photo
stationary state [57].
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improved physical contact between the TCO and semiconductor material that pro-
duce higher photo conversion efficiency. However, the advantage obtained by
utilizing blocking layer is lost if the layer is too thick, and, generally, generates a
series of resistance and an electron barrier that reduces the charge collection effi-
ciency [59, 60].

A significant amount of photo-induced electron recombined and results in lower
photocurrent. Recombination of the electron at the interfaces reduces the photo-
current and affects the fill factor; thus, cell performance decreases [60]. The com-
plete photo anode is constructed layer-by-layer stack of suitably designed structures
to maximize different cell functionalities. The recombination losses in DSSCs
occurred primarily at the interface between the glass substrate of TCO and the
electrolyte. The compact blocking layer acts as a physical barrier and physically
separates and reduces the contact surface area between the TCO glass substrate
from the electrolyte [59]. By employing the blocking layer with suitable thickness,
the recombination can be reduced; and photo induced current and fill factor
increase, leading to the DSSC efficiency improvement. Studies also showed that the
blocking layer also improved the open-circuit-photo voltage of the cell [61]. The
schematic on the effect of blocking layer is shown in Figure 13.

There are many kinds of preparation methods for blocking layers in DSSCs,
including spin coating, deep coating, spray coating, sol–gel, sputtering, hydrother-
mal technique, etc. Spin-coating is a simple method for preparing uniform thin
films onto flat substrates. Generally, the spin coating method includes deposition,
spinup, spinoff, and evaporation [62]. Usually, a small amount of coating material is
applied to the center of the substrate then rotated at speed up to 10,000 rpm to
spread the coating material by centrifugal force. Rotation is continued while the
fluid spins off the substrate’s edges until the desired thickness of the film is

Figure 13.
Schematic diagram of the DSSC including a blocking layer for preventing recombination.

13

Effect of Combination of Natural Dyes and the Blocking Layer on the Performance of DSSC
DOI: http://dx.doi.org/10.5772/intechopen.94760



achieved. The film’s thickness also depends on the solvent and solvents
concentration [63].

Yeol et al. prepared a ZnO precursor on FTO substrates for the blocking layer.
For ZnO precursor, a homogeneous mixture of 2.195 g zinc acetate dehydrate,
20 mL isopropanol, and 0.605 mL monoethanolamine (MEA) was prepared. The
concentration was 0.5 M, with MEA: zinc acetate molar ratio of 1: 1. The prepared
solution was stirred for 2 hrs at 200 rpm at 60°C, then stirred at the same rpm at
ambient temperature for 22 hrs. For the spin-coated film, rotation speed and dura-
tion were held at 3000 rpm and 20 s, respectively. They annealed the spin-coated
films at 500° C for 1 h to form a blocking layer of ZnO (55 nm to 310 nm). The ZnO
blocking layer thickness is a function of the number of deposition cycles in the spin-
coating process. ZnO blocking layer thickness increased linearly with the number of
deposition cycles, a typical feature of the spin-coating technique [64]. Figure 14a
illustrates the morphology of FTO. Figure 14b and c show that ZnO nanoparticles
are distributed uniformly across the FTO substrate’s surface to form a compact
layer. Comparing both Figure 14a and c, when the thickness of the ZnO blocking
layer increased, the size of the ZnO nanoparticles also slightly increased.

Yeol et al. showed that the effect of ZnO blocking layer and increasing its
thickness on the cell performance of TiO2 based DSSC. Table 4 lists photovoltaic
performance and Figure 15 illustrates the J–V characteristics of the cell, including
ZnO blocking layers of different thicknesses. The value of open-circuit voltage
(Voc) and fill factor (FF) of the DSSC improves, though the short-circuit current
decreased. The increase of open-circuit voltage is due to the blocking of electron
injection from the TiO2 conduction band to the FTO [64, 65]. Due to the increased
electron density in the TiO2, the Fermi level rises. However, further an increase in
the thickness of the ZnO blocking layer, the value of short circuit current decreased

Figure 14.
FESEM images of (a) bare FTO, (b) FTO/ ZnO blocking layer (120 nm), (c) FTO/ ZnO blocking layer
(310 nm) [64].

Sample Voc(mV) Jsc (mA/cm2) Efficiency (%ɳ) Fill Factor (FF)

FTO 695 8.48 3.86 0.66

FTO/ZnO (55 nm) 708 8.30 3.96 0.67

FTO/ZnO (120 nm) 728 8.18 4.34 0.73

FTO/ZnO (220 nm) 744 6.64 3.63 0.73

FTO/ZnO (275 nm) 745 4.83 2.69 0.75

FTO/ZnO (310 nm) 781 3.05 1.66 0.70

Table 4.
Photovoltaic properties of TiO2 based DSSCs including ZnO blocking layer of different thicknesses
(for N3 dye) [64].
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rapidly. As a result, cell performance decrease despite the slight improvement in the
Voc and FF values because the excessively thick ZnO layer blocks the electron
injection from the conduction band of TiO2 to the FTO substrate [64].

Lee et al. introduced an additional spin-coated TiO2 thin film between the FTO
and TiO2 (semiconductor material) as a blocking layer for the electron injected from
the exited photosensitizer. A homogeneous mixture of 29.0 mg titanium tetraiso-
propoxide [Ti (OC3H7)4], and 100 ml isopropanol [(CH3)2CHOH] was prepared.
Then the solution of 7.5 ml HCl in 100 ml of isopropanol was added drop by drop to
the [Ti (OC3H7)4]-[(CH3)2CHOH] solution at 0°C under continuous stirring, and
afterward the solution was allowed to stand for less than 1 h at the same tempera-
ture. The solution was smeared on FTO substrates and rotated at 500, 1000, and
2000 rpm for 40 s to ensure uniformity. The samples were heated for 1 h at 100°C;
they were sintered for 30 min at 450°C [66].

Lee et al. prepared several TiO2 gel films with the spin coating method with
different thicknesses. The thickness and roughness of the TiO2 layers are among the
most critical factors in the cell performance of DSSC [66]. Table 5 lists the thickness
and root-mean-square roughness of TiO2 thin films. SEM images of 10 μm thin films
(surface and cross-sections) are shown in Figure 16. Table 6 lists photovoltaic
performance and Figure 17 illustrates the J–V characteristics of the cell, including
ZnO blocking layers of different thicknesses.

TiO2 layers also enhance the contact property between the FTO and TiO2 elec-
trode. Figure 16c and d illustrate the photovoltaic performance and the J-V charac-
teristics curve of DSSC with different blocking layer thicknesses. The thickness of
the TiO2 blocking layer affects the efficiency of DSSC. As thin films’ rpm increased,
the thickness and roughness of the TiO2 blocking layer also decreased, and the film
becomes smooth and uniform. This increase in the smoothness and uniformity of

Figure 15.
J–V characteristics of DSSCs including ZnO blocking layer of different thicknesses [64].

Revolution per minute (rpm) Thickness (nm) Rughness (nm)

0 0 21.14

2000 10–30 10.91

1000 40–60 11.68

500 120–150 14.05

Table 5.
Thickness and root-mean-square roughness of TiO2 thin films [66].

15

Effect of Combination of Natural Dyes and the Blocking Layer on the Performance of DSSC
DOI: http://dx.doi.org/10.5772/intechopen.94760



the TiO2 blocking layer results in improved cell performance. The increased number
of efficiently transferred photo generated electrons to the TiO2 electrode results in
an improvement in short-circuit current [67]. By suppressing the recombination of
electrons injected from excited photosensitizers in the TiO2 and electrolyte inter-
face, a higher value of open-circuit voltage was obtained [57]. Their study also
showed that when the resistance at the FTO/TiO2 layer interface was decreased, the
electron lifetime in DSSCs was increased [66].

Figure 16.
Cross-sectional SEM images of the main-TiO2/FTO (a), main- TiO2/TiO2 thin film/FTO applied to a DSSC
(b) [66].

Thickness

(nm)

Open-

circuit

voltage,

Voc (V)

Short-

circuit

current

density,

Jsc
(mA/cm2)

Fill

factor,

FF

(%)

Efficiency,

ɳ (%)

Electron

lifetime,

Te (ms)

Resistance

at Pt.

counter

electrode,

RCt1 (Ω)

Charge transfer

resistances at

the TiO2/dye/

electrolyte

interface

RCt2 (Ω)

0 0.65 11.09 62 4.43 14.1 5.3 28.8

10–30 0.74 11.92 64 5.62 20.1 4.3 19.1

40–60 0.72 11.58 65 5.39 18.2 4.7 19.7

120–150 0.70 11.21 60 4.68 16.6 7.6 21.9

Table 6.
The cell performance of DSSCs based on TiO2 layers (10.5 μm) compressed at different thickness of thin films
during the preparation for ruthenium 535 (Solaronix Co. N3) dye [66].
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Yoo et al. showed the impact of precursor concentration in the cell conversation
efficiency of DSSC. For the blocking layer, a 1-butanol solution contained titanium
(IV) bis(ethylacetoacetato) di-isopropoxide precursor was spin-coated on an FTO
glass, followed by annealing at 500°C in air for 30 min. The concentration of the
solution was varied from 0.05 M to 1.2 M [58]. Figure 18 illustrates the SEM of bare
FTO and blocking layer-deposited FTO glasses (surface and cross-sections). Table 7
lists the photovoltaic property of DSSC with a blocking layer, where short-circuit
current density increases with increasing the precursor concentration (and
increased blocking layer thickness).

Zou et al. studied the effect of the TiCl4 blocking layer (or pre-treatment) in
ZnO based DSSC. Figure 19 shows the fabricated ZnO films, with and without
TiCl4 pre-treatment on the FTO glass substrate. From Figure 19a-d, it can be seen
that fabricated ZnO films have porous flakes, both with and without blocking

Figure 17.
I–V curves for DSSCs with TiO2 blocking layers at different thickness [66].

Figure 18.
Surface (A–H) and cross-section (a–h) SEM micrographs for the bare FTO, blocking layer-deposited FTO
substrates from the Ti precursor solutions with the concentration of 0.05, 0.1, 0.15, 0.2, 0.4, 0.8, and 1.2 M,
respectively [58].
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Ti precursor

concentration (M)

Short-circuit current,

Jsc (mA/cm2)

Open-circuit

voltage,

Voc (V)

Fill

factor,

FF

Efficiency,

ɳ (%)

Area

(cm2)

Without blocking layer 0.01 0.588 0.356 0.002 0.99

0.05 0.05 0.861 0.475 0.020 0.99

0.10 0.08 0.865 0.482 0.033 1.02

0.15 0.10 0.869 0.530 0.046 1.02

0.20 0.14 0.871 0.564 0.069 1.02

0.40 0.21 0.881 0.618 0.114 1.02

0.80 0.38 0.884 0.648 0.218 1.02

1.20 0.56 0.883 0.615 0.304 1.02

Table 7.
Photocurrent-voltage characteristics of DSSC comprising only blocking layers for N719 dye [58].

Figure 19.
SEM images of (a) FTO/ZnO with TiCl4 pretreatment. (b) FTO/ZnO without TiCl4 pretreatment. (c) and
(d) the amplification figure of (a) and (b), respectively [68].
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layers. However, TiCl4 treated ZnO anode has a larger flake, which can offer a large
surface area to absorb much more dyes. Table 8 lists the photovoltaic property of
DSSC with TiCl4 blocking layer [68].

Kabir et al. studied the effect of post-treatment of TiCl4 in TiO2 based DSSC.
Post TiCl4 treatment not only increases the overall cell conversion efficiency of
DSSC but also enhances cell stability. TiCl4 treated TiO2 anode based DSSC’s degra-
dation rate is much lower than the TiCl4 untreated TiO2 anode based DSSC. Studies
showed that TiCl4 treated TiO2 anode based DSSC’s cell stability of the increase
around 38–44.5%. Figure 20 shows the effect of post TiCl4 treatment in the cell
conversion efficiency of TiO2 based DSSC [69].

Cameron et al. [57], Heo et al. [70], Yu et al. [71] used spray coating method to
prepare TiO2 blocking layer. Introducing the blocking layer into the device
decreases charge carrier trapping and recombination. Subsequently, short-circuit
current increases significantly. Additionally, a slight improvement in the open-
circuit voltage and fill factor is observed, thus cell efficiency enhances significantly.

5. Summary

In conclusion, natural dye is a promising alternative to replace the metal com-
plexes or organic dyes in the DSSC application. They are low-cost, abundant, eco-
friendly, simple extraction procedures, and non-toxic. The combination of natural
dyes with an optimized choice of the mixture of the volume ratio of the extracting
dye extracting solvent accounts for many possible interactions that promise to
provide more charge injection upon sensitization and allowed utilization of the
photon energy more efficiently. DSSC co-sensitized with the dye mixture shows
higher absorbance, and cumulative absorption properties over the entire visible
region than the DSSC fabricated with individual dyes.

Samples Open-circuit voltage,

Voc (V)

Short-circuit current,

Jsc (mA/cm2)

Fill factor, FF Efficiency,

ɳ (%)

Without TiCl4 0.3977 1.07 0.2829 0.12

TiCl4 0.4759 2.86 0.3967 0.54

Table 8.
Photovoltaic performance of ZnO based DSSCs with TiCl4 pretreatment and without TiCl4 pretreatment [68].

Figure 20.
Effect of post TiCl4 treatment in the cell performance of TiO2 based DSSC [69].
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A blocking layer in DSSC provides good adhesion between the transparent
conducting oxide (e.g., ITO, FTO, etc.) and an active semiconductor layer, TCO
(e.g., TiO2, ZnO, etc.). It also represses the electron back transport between elec-
trolyte and TCO by blocking direct contact. Also, it offers a more uniform layer
than bare TCO glass substrate. The conventional blocking suppresses electron leak-
age, recombination, and trapping; thus, the photovoltaic performance of the DSSC
improves. Introducing a blocking layer in the DSSCs show lower dark current and
operates efficiently under high-intensity sunlight and ambient light conditions.
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