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Chapter

Advanced Glycation End 
Products and Oxidative Stress in a 
Hyperglycaemic Environment
Akio Nakamura and Ritsuko Kawaharada

Abstract

Protein glycation is the random, nonenzymatic reaction of sugar and protein 
induced by diabetes and ageing; this process is quite different from glycosylation 
mediated by the enzymatic reactions catalysed by glycosyltransferases. Schiff bases 
form advanced glycation end products (AGEs) via intermediates, such as Amadori 
compounds. Although these AGEs form various molecular species, only a few of 
their structures have been determined. AGEs bind to different AGE receptors on 
the cell membrane and transmit signals to the cell. Signal transduction via the 
receptor of AGEs produces reactive oxygen species in cells, and oxidative stress is 
responsible for the onset of diabetic complications. This chapter introduces the 
molecular mechanisms of disease onset due to oxidative stress, including reactive 
oxygen species, caused by AGEs generated by protein glycation in a hyperglycaemic 
environment.

Keywords: glycation, advanced glycation end products, gestational diabetes,  
reactive oxygen species, oxidative stress

1. Introduction

Glycosylation is a post-translational modification mediated by an enzymatic 
reaction catalysed by glycosyltransferases, which add a carbohydrate molecule 
to a predetermined region of a protein. More than 300 glycosyltransferases have 
been identified in mammals [1]. In contrast, glycation is a random nonenzymatic 
reaction that occurs under conditions of hyperglycaemia and ageing. The reactive 
reducing ends of free sugars (e.g., glucose, fructose, and galactose) covalently 
attach to the amino acid residue of the protein, thereby creating glycated products.

Glycation has been previously studied. Robert Lynn from the United Kingdom 
first reported that proteins and reducing sugars react during the beer-making pro-
cess to form new compounds [2]. Subsequently, the French chemist Louis-Camille 
Maillard discovered that heating a mixed solution of amino acids and reducing 
sugars produced a brown compound [3]; this was the first report of the Maillard 
reaction or aminocarbonyl reaction, which is a nonenzymatic reaction between the 
amino group of an amino acid and carbonyl group of a reducing sugar (Figure 1).

In the early stages of the Maillard reaction, the imine produced by the nucleo-
philic reaction of the amino group and carboxyl group becomes a stable Amadori 
compound through Amadori rearrangement. The Amadori compound then under-
goes a repeated polycondensation reaction with an amino compound using ozone or 
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furfural as an intermediate to produce a brown product, melainodin, in late stages 
[4]. Structures formed in the latter stage of the nonenzymatic glycation reaction 
between reducing sugars and proteins are collectively known as advanced glycation 
end products (AGEs).

Fermented foods, such as dark beer, miso, and soy sauce, contain large amounts 
of AGEs, including 3-deoxyglucosone and melanoidin [5]. Additionally, milk, 
cheese, and butter contain carboxymethyl lysine (CML) [6]. These chemicals are 
consumed on a daily basis and some AGEs, such as carbonyl compounds and CML, 
which are closely related to disease states, are known to be glycotoxins. Many stud-
ies have evaluated the adverse health effects of ingesting glycotoxins present in such 
foods in relation to nephropathy [7–9], type 2 diabetes [10, 11], and arteriosclerosis 
[12]; however, these relationships are not completely understood. Therefore, 
research on phytochemicals that prevent adverse effects on the living body caused 
by ingestion of these glycotoxins is being conducted [13–15].

In this chapter, we first introduce the biochemical properties of AGEs and their 
reaction processes. We then discuss intracellular signal transduction systems related 
to oxidative stress caused by AGEs in a hyperglycaemic environment and describe 
the relationships between AGEs and diseases.

2. Biochemical basis of AGEs

Protein glycation can be subdivided into three major stages: early, middle, and 
late. In the initial reaction, the carbonyl group (C=O) of a reducing sugar, such as 
glucose, reacts with the amino group (NH2) of the amino acid residue in the protein 

Figure 1. 
Maillard reaction in foods and the formation of AGEs. (A) Proteins contained in foods are saccharified 
during fermentation and processing, and the Maillard reaction is accompanied by browning/denaturation. 
(B) The amino group of the amino acid of the protein and the carbonyl group of the reducing sugar react 
nonenzymatically, and AGEs are produced by repeating oxidation, dehydration, and condensation from the 
Schiff base via the Amadori compound.
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to form a Schiff base (C=N). This Schiff base is relatively unstable and eventually 
becomes an enol, causing Amadori rearrangement and finally leading to the forma-
tion of a stable Amadori compound (C-N).

Kunkel found abnormal haemoglobin levels in the blood of normal people [16], 
and increased levels of abnormal haemoglobin were observed in patients with diabetes 
[17]. Currently, haemoglobin A1c (HbA1c), which is used as a diagnostic criterion 
for diabetes, is formed via Amadori rearrangement of the amino-terminal valine of 
the haemoglobin β chain and reflects the blood glucose level for 3–4 weeks [18, 19]. 
In the intermediate stage, α-dicarbonyl compounds, which are derivatives of sugars 
such as glucosone, 3-deoxyglucosone, glyoxal, and methylglyoxal, are produced 
from Amadori compounds. After further reacting with the amino compound, these 
α-dicarbonyl compounds undergo dehydration, condensation, cyclisation, and 
intermolecular crosslinking to form stable AGEs in the advanced stage (Figure 2). 
The pathway through which AGEs are produced from these series of Schiff bases via 
Amadori compounds and α-dicarbonyl compounds is known as the Hodge pathway 
[4]. In addition, the Namiki pathway, which produces glyoxal and glycolaldehyde, 
generates free radicals from Schiff bases without producing Amadori compounds [20].

Because the Schiff base is in a state in which it easily undergoes a secondary reac-
tion with sugars and amino acids, dehydration, isomerisation, cleavage, cyclisation, 
and polymerisation can be repeated; the final products produced through these 
intermediates are extremely diverse. Therefore, the structures of many compounds 
are complicated, and most have not been identified. The structures of typical 
AGEs, such as CML, pyrarin, argpyrimidine, and pentosidine, have been reported 
(Figure 2).

Figure 2. 
The main chemical structures of AGEs. Abbreviations used: CML, Nε-carboxymethyl-lysine; CEL, Nε-(1-
carboxyethyl)lysine; CML, Nω-(Carboxymethyl)-L-arginine; G-H1, Nδ-(5-hydro-4-imidazolon- 2-yl)
ornithine; MG-H1, Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine; 3DG-H1, Nδ-[5-(2,3,4-
trihydroxybutyl)-5-hydro-4-imidazolon-2-yl] ornithine; GA- pyridine, Glycolaldehyde-pyridine; FTP, Formyl 
Threosyl Pyrrole; GLAP, glyceraldehyde-derived pyridinium-type advanced glycation end product; GOLD, 
glyoxal-derived lysine dimer; MOLD, methylglyoxal-derived lysine dimer; DOLD, 3-deoxyglucosone-derived 
lysine dimer
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3. In vivo AGE generation pathways

To date, AGEs have been widely studied because of the close involvement in 
diabetic complications. HbA1c is currently used as a diagnostic criterion and 
indicator of mean blood glucose levels over a period of 1–2 months in patients 
with diabetes. Albumin, another representative protein in the blood, is also 
related to diabetic complications. In patients with diabetes, albumin has been 
shown to glycate four lysine residues (K199, K281, K439, and K525) in the  
molecule [21]. In addition, albumin is more easily saccharified than haemoglo-
bin, and its reaction is rapid; thus, blood GA levels fluctuate more than HbA1c 
levels. Accordingly, gluco-albumin, which has a short half-life, was recently 
reported as an index of the average blood glucose level over a period of approxi-
mately 2 weeks [22].

At the experimental level, bovine serum albumin (BSA) has been used to 
evaluate the functions of AGEs in vivo. Various specific antibodies have been 
produced by immunisation with glycated AGE-BSA as antigens. Many commer-
cially available AGEs are produced in vitro by incubating BSA and d-glucose at 
37°C for 8 weeks in 0.2 M phosphate buffer (pH 7.4) and 5 mM DTPA. Farboud 
et al. reacted BSA with glycolaldehyde to produce pentosidine-BSA and obtained 
antibodies that recognise CML and pentosidine from this antigen [23]. Takeuchi 
named these six types of AGEs as glucose-derived AGE-1 (Glc-AGE), glyceral-
dehyde-derived AGE-2 (Glycer-AGE), glycol aldehyde-derived AGE-3 (Glycol-
AGE), methylglyoxal-derived AGE-4 (MGO-AGE), glyoxal AGE-5 (GO-AGE), 
and 3-deoxyglucosone-derived AGE-6 (3DG-AGE); they then produced specific 
antibodies against each of the six types [24–26] (Figure 3). Using these antibod-
ies, Takeuchi et al. clarified that AGE-2 derived from glyceraldehyde and AGE-3 
derived from glycolaldehyde, produced by Schiff bases and Amadori compounds, 
were closely related to the onset and progression of diabetic retinopathy and 
nephropathy compared with AGE-1 [27–30]. The authors also demonstrated that 
these highly toxic AGE-2 and AGE-3 act via receptors for AGEs (RAGE) and there-
fore named these molecules toxic AGEs (TAGEs) [31], and identified nontoxic 
AGEs, including AGEs such as CML, pentocidin, and pyrrolin that are generated 
from glucose and by active trapping and detoxification of highly chemically reac-
tive aldehyde/carbonyl compounds occurring in the body. TAGEs derived from 
glyceraldehyde, glycolaldehyde, and acetaldehyde are critical to the development 
and progression of various diseases and should be considered separately from 
other AGEs [32].

During the production of TAGEs, unique glucose metabolism pathways have 
been identified in the hyperglycaemic environment associated with diabetes. 
For example, in the hyperglycaemic environment observed in patients with type 
2 diabetes, intracellular glucose levels are abnormally elevated in cells that take 
up insulin-independent glucose, such as the liver, brain, and placenta. The liver 
expresses the glucose transporter (GLUT) named as GLUT2, which has a low affin-
ity for and takes up a large amount of glucose. GLUT3, which has a high affinity 
for glucose, also functions in glucose transport [33]. In such cells, the extra glucose 
is shunted into the polyol pathway by saturation of the normal glycolytic pathway 
[34, 35]. The polyol pathway is a side pathway that is activated when glycolysis is 
stagnant. First, excess glucose, which is not metabolised by glycolysis, is converted 
to sorbitol (polyol) by aldose reductase, after which sorbitol is metabolised to 
fructose by sorbitol dehydrogenase. When aldose reductase is enhanced, excessive 
consumption of its coenzyme NADPH causes a decrease in reduced glutathione and 
abnormalities in the active oxygen scavenging system. Such an increase in aldose 
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reductase in type 2 diabetes is thought to worsen haemodynamics and lead to dia-
betic neuropathy (DN) [36]. Therefore, in patients with diabetes, the concentration 
of fructose produced from glucose is increased intracellularly because of enhance-
ment of the polyol pathway [37, 38].

Fructose produced by this polyol pathway is thought to have a stronger protein 
glycation ability than glucose [39]. Therefore, increases in intracellular fructose 
promote AGE formation [40]. In our research, we attempted to suppress protein 
saccharification by inhibiting aldose reductase. Administration of the aldose reduc-
tase inhibitor Solvinyl to streptozotocin-induced diabetic rats reduced AGEs in 
skin collagen [41]. Moreover, the pentosidine-like fluorescence (335/385 nm) of the 
crystalline lens of galactosaemic rats was suppressed by treatment with the aldose 
reductase inhibitor sorbinin [42]. Administration of an aldose reductase inhibitor to 
patients with diabetes reduces the amount of N-epsilon-(carboxymethyl)-lysine in 
erythrocytes [43]. Following the development of many aldose reductase inhibitors, 
epalrestat was used clinically [44].

Fructose generated from such a polyol pathway is converted to fructose-
1-phosphate by fructokinase, and fructose-1-phosphate further produces glyceral-
dehyde by aldolase. AGEs formed from this glyceraldehyde are highly toxic TAGEs. 
Increases in intracellular fructose, which trigger glyceraldehyde production, are 
caused not only by the polyol pathway but also by excessive intake of high-fructose 
syrup, such as high-fructose corn syrup.

Fructose is a natural ketose that is abundant in fruits and honey. However, 
in recent years, many soft drinks have been produced using high-fructose corn 
syrup, which is an isomerised sugar, and a relationship between excessive intake of 
fructose and metabolic syndrome has been reported [45]. Fructose ingested from 
soft drinks is taken up into cells by passive transport via GLUT5 in the epithelium of 

Figure 3. 
AGE generation process in vivo. In the living body, AGEs are produced via dicarbonyl compounds generated 
during glucose metabolism of reducing sugars, such as glucose. In a hyperglycaemic environment, when glycolysis 
is stopped, the polyol circuit is enhanced, and glyceraldehyde-AGEs are produced. GO-AGEs, glyoxal (GO)-
derived AGEs; glycol-AGEs, glycolaldehyde-derived AGEs; Glc-AGEs, glucose-derived AGEs; 3-DG-AGEs, 
3-deoxyglucosone (3-DG)-derived AGEs; MGO-AGEs, methylglyoxal (MGO)-derived AGEs; glycer-AGEs, 
glyceraldehyde-derived AGEs; CML, Nε-(carboxymethyl) lysine. This figure has been modified based on the 
reference [25, 26].
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the small intestine. In contrast, glucose and lactose-derived galactose are taken up 
into cells by active transport via sodium-glucose cotransporter 1. Excessive fructose 
is transported from small intestinal epithelial cells through the portal vein to the 
liver and the whole body, thereby increasing glyceraldehyde-derived TAGEs. As 
discussed later, glyceraldehyde-derived TAGEs generated from fructose can cause 
liver diseases.

4. AGE receptors

Accumulation of AGEs in vivo causes a decrease in physiological function, 
leading to the onset and progression of various diseases. Recent studies revealed 
the existence of receptors involved in degrading and removing AGEs accumulated 
by glycation of such proteins and the intracellular signal transduction system via 
receptors [46]. AGEs are categorised into two groups based on their receptors; 
the first group includes the receptors AGE-R1, AGE-R3, scavenger receptor class 
A (SR-A) I, SR-AII, scavenger receptor-BI (SR-BI), cluster of differentiation 36 
(CD36), FEEL1, FEEL2, and ezrin/radixin/moesin (ERM), which exert scavenger 
functions to removes AGE, and the second group includes RAGE, which is related 
to the enhancement of inflammation and oxidative stress (Figure 4).

AGE-R1 and AGE-R2 were identified as oligosaccharyltransferase-48 (OST-48) 
and 80-kDa protein kinase C (PKC) substrate (80 K-H), respectively, in rat livers 
[47]. Subsequently, AGE-R3 was identified as a protein that binds to AGE-1 and 
AGE-2 [48] to form a complex. AGE-R1 is also known as OST-48, belongs to the sin-
gle transmembrane lectin family, and has a molecular weight of 48 kDa. AGE-R1 is 
expressed in endothelial cells, mesangial cells, macrophages, and mononuclear cells 
and functions by removing AGEs via endocytosis. AGE-R1, which enhances AGE 
removal, may also be a distinct receptor, as it suppresses AGE-mediated mesangial 
cell inflammatory injury by protecting against injury to the kidneys and other 
tissues due to diabetes [49]. Recent studies reported that AGE-R1 may be involved 
in lifespan extension [50, 51]. AGE-R2, also known as 80 K-H, is a tyrosine phos-
phorylated protein with a molecular weight of 80 kDa that was initially identified 
as a substrate for PKC and is expressed in the cytoplasm [47]. AGE-R2 is expressed 

Figure 4. 
The receptors for AGEs. A schematic diagram of AGE receptors is shown [46]. The receptor of AGEs (RAGE) 
includes full-length RAGE (F-RAGE), N-terminally truncated RAGE (N-RAGE), and soluble RAGE 
(sRAGE), which are cleaved from the cell surface membrane by matrix metalloproteinases. The AGE receptor 
(AGE-R complex) contains AGE-R1 (OST-48), AGE-R2 (80K-H), and AGE-R3 (Galectin-3). Scavenger 
receptor class A (SR-A), cluster of differentiation 36 (CD36), fasciclin EGF-like, laminin-type EGF-like, and 
link domain-containing scavenger receptor 1 and its homolog 2 (FEEL1 and − 2) are indicated as scavenger 
receptors.
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in mononuclear cells and in the kidneys, vascular endothelium, brain, and nerves. 
Importantly, AGE-R2 is involved in activating intracellular signals via receptors, 
such as fibroblast growth factor receptor [52, 53]. AGE-R3, also called galectin-3, 
is a receptor that belongs to the lectin family and has a molecular weight of 32 kDa 
[48]. AGE-R3 binds directly to AGEs via the carbohydrate recognition domain 
in cells and is expressed in macrophages, eosinophils, and mast cells as well as in 
the nerves and kidneys. AGE-R3 has been reported to suppress adhesion between 
cells and the matrix laminin [54], activate mast cells [55], and degrade AGEs via 
endocytosis [48]. In addition, when diabetes develops in AGE-R3-knockout mice, 
the expression of macrophage scavenger receptor A and AGE-R1, which is involved 
in degrading AGEs, is decreased, and the expression of AGE receptors related to 
cell damage, such as RAGE and AGE-R2, is increased [56]. Because the expression 
of AGE-R3 is enhanced in ageing and diabetes, this receptor may have protective 
effects against ageing [57].

SR-A has been identified as a macrophage scavenger receptor [58, 59] and has 
a wide range of functions, such as removal of acetylated or oxidised low-density 
lipoprotein (LDL), removal of apoptotic cells, biological defence from bacteria, 
and cell adhesion [60]. SR-A is highly expressed in peritoneal macrophages derived 
from humans and from diabetic mice after culture in high-glucose medium [61]. 
Furthermore, SR-A promotes macrophage infiltration and foaming by incorporat-
ing AGEs into cells from the cell surface of macrophages [62, 63]. SR-BI is expressed 
in macrophages and in the liver adrenal glands and ovaries, functioning to promote 
the uptake of the cholesterol ester of high-density lipoprotein (HDL) and subse-
quent return of HDL to the liver [64, 65]. CD36, also known as scavenger receptor-
BII, is a highly expressed receptor for single-stranded glycoprotein of 88 kDa in 
macrophages, vascular endothelial cells, and adipocytes [66]. CD36 binds to fatty 
acids, collagen, and oxidised LDL and is responsible for the uptake of oxidised 
LDL into macrophages and transport of fatty acids to adipocytes. Because CD36 is 
involved in removing AGEs, this protein may play protective roles in atherosclerotic 
diseases [67, 68]. The fasciclin, EFG-like, laminin-type EGF-like, and link domain-
containing scavenger receptor-1 (FEEL-1) is expressed in the liver, vascular endo-
thelial cells, and monocyte lineage cells, whereas FEEL-2 (a homologue of FEEL-1) 
is expressed in the spleen and lymph nodes. Despite the different tissue specificity, 
FEEL-1 and -2 are believed to be involved in the degradation of AGEs [69]. Megalin 
was identified as a 600-kDa glycoprotein (gp330) antigen expressed in glomerular 
epithelial cells (podocytes) of Heymann nephritis, a rat model of membranous 
nephropathy [70]. In recent studies, megalin was shown to bind to AGEs; AGEs 
that have passed through glomeruli are trapped and taken up by lysosomes to be 
decomposed [71]. AGEs bind to the N-terminus of the ERM protein family, which 
is a linker protein that crosslinks actin filaments and cell membrane proteins [72]. 
AGEs have been shown to promote angiogenesis through the hyperpermeability of 
human umbilical vein endothelial cells by inducing the phosphorylation of moesin 
via the RhoA/ROCK pathway [73].

RAGE is a single-pass 45-kDa transmembrane protein belonging to the immu-
noglobulin superfamily and was first isolated and identified from bovine lungs as 
a cell surface receptor that binds to AGEs [74]. RAGE is expressed in monocytes, 
macrophages, nerves, renal tubule cells, and mesangial cells [75]. In addition to 
AGEs, RAGE also binds to amyloid β protein, S100/calgranulins, and high-mobility 
group box 1 as ligands and is involved in the enhancement of inflammation and 
oxidative stress [76, 77]. RAGE is composed of a total of five domains: the extracel-
lular domain of one V domain and two C domains, transmembrane domain, and 
intracellular domain [78]. When AGEs bind to this full-length RAGE, NADPH 
oxidase is activated, and the production of intracellular reactive oxygen species 
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(ROS) is promoted [79, 80]. ROS upregulate various inflammatory cytokines, 
growth factors, and adhesion molecules by activating nuclear factor-kappa B 
(NF-κB) signalling. In addition, c-Jun N-terminal kinase (JNK), a major subfam-
ily of ROS-activated mitogen-activated protein kinase pathways, has been shown 
to cause cell apoptosis and dysfunction (Figure 5) [81]. In addition to full-length 
RAGE on the cell surface, RAGE can be expressed as two splice variants, i.e., the 
intracellular domain-deficient type (C-terminally truncated RAGE) and extracel-
lular V domain-deficient type (N-terminally truncated RAGE) [82]. Of these, the 
intracellular domain-deficient RAGE is called soluble RAGE (sRAGE). sRAGE can 
further be divided into endogenous secretory RAGE (esRAGE) and soluble RAGE, 
which are cleaved by proteases such as matrix metalloproteinases [83]. sRAGE has 
a binding site for AGEs and is thought to function as a decoy receptor that captures 
extracellular AGEs and inhibits binding to RAGE on the cell surface, thereby block-
ing intracellular signals [84]. Blood esRAGE levels are significantly lower in patients 
with type 2 diabetes than in patients without diabetes, suggesting that this target is 
involved in the development of type 2 diabetes [85]. Moreover, blood esRAGE levels 
in patients with type 2 diabetes are inversely correlated with the severity of carotid 
atherosclerosis and coronary artery disease as complications [86, 87].

5. AGEs and oxidative stress

Intracellular signal transduction of AGEs via RAGE increases intracellular ROS. 
ROS are oxygen-containing molecular derivatives that are in a more activated 
state than triplet oxygen, which is a ground-state oxygen molecule necessary for 

Figure 5. 
AGE/RAGE signalling. NADPH oxidase is activated by the binding of AGE to RAGE, and intracellular ROS 
levels are elevated. Intracellular ROS activates the IκB kinase (IKK) complex and inhibitor of NF-κB (IκB), 
stimulating the translocation of the NF-κB subunits p65 and p50 and activating transcription. In addition, 
activation of PKCβ stimulates transcription via activator protein-1 (AP1) in the nucleus by phosphorylation of 
c-Jun N-terminal kinase (JNK). Enhancement of these inflammatory signals releases inflammatory cytokines, 
such as TNFα and IL-6, as well as VEGF, which is involved in angiogenesis, and B-cell lymphoma 2 (Bcl-2) 
and Bcl-2 associated X protein (Bax), which are involved in apoptosis. TNFα, an inflammatory cytokine, 
is released extracellularly and binds to the TNFα receptor, and activation of TGFβ activated kinase (TAK) 
reactivates JNK.
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normal biological activities and is highly reactive, resulting in oxidative damage to 
various biological components. The main active oxygen species are singlet oxygen, 
superoxide, hydrogen peroxide, and hydroxyl radicals [88]; these molecules react 
with biopolymers, such as DNA, lipids, proteins, and enzymes, resulting in lipid 
peroxidation, DNA mutations, protein denaturation, and enzyme inactivation. 
Many amino acids are carbonylated and modified by ROS for detection of protein 
carbonylation using mass spectrometers [89]. Moreover, carbonylation of this pro-
tein is caused by addition reaction of aldehydes because of the peroxidation reaction 
of lipids and saccharification reaction of proteins described above [90, 91]. Highly 
reactive α-dicarbonyl compounds, such as 3-deoxyglucosone (3-DG), glyceralde-
hyde, and methylglyoxal, are produced from the Amadori compound generated by 
saccharification [91]. These AGEs then recombine with RAGE, creating a vicious 
cycle in which more ROS are generated. Such ROS are considered to have nega-
tive effects because overproduction of ROS is closely associated with ageing due 
to oxidative stress, cancer, and the development of lifestyle-related diseases [91]. 
However, ROS (e.g., superoxide and hydrogen peroxide) produced by white blood 
cells play important roles in biological defence and immune function [92]. ROS are 
also used in a wide range of tissues and cells as bioactive substances for intracellular 
signal transduction, fertilisation, cell differentiation, and apoptosis [93].

Because glucose is metabolised to obtain energy, the carboxyl group of glucose 
reacts with the amino group of the protein during the metabolic process to form 
AGEs in the body nonenzymatically via the Amadori compound. With ageing, these 
AGEs accumulate in various organs in the body, resulting in oxidative stress, ROS 
generation, and progression of organ stress. Thus, ageing is related to oxidative 
stress induced by AGEs. Additionally, AGEs-ised HbA1c levels in the blood have 
been used as an index for controlling blood glucose levels in clinical practice for 
patients with diabetes. Kusunoki et al. showed that fasting serum 3-DG levels in 
patients with diabetes were significantly higher than those in controls. Additionally, 
serum 3-DG levels tended to be higher in patients with diabetes showing low nerve 
conduction velocity [94]. In patients with diabetes, AGEs generated from excess 
glucose circulate throughout the body via the blood and increase oxidative stress in 
various organs. Therefore, in the hyperglycaemic environment associated with dia-
betes, oxidative stress due to excess glucose is thought to be significantly involved in 
the development of diabetic complications.

6. AGEs and diabetic complications

Hyperglycaemia in diabetes mellitus affects many organ systems, including the 
eyes, kidneys, heart, and peripheral and autonomic nervous systems. They can 
be broadly divided into microangiopathy, which occurs mainly in the capillaries, 
and macroangiopathy, which occurs in relatively large blood vessels. Three major 
complications, i.e., diabetic retinopathy, diabetic nephropathy, and DN, are micro-
angiopathies that occur in patients with diabetes [95]. In contrast, arteriosclerotic 
diseases, which cause vascular diseases, such as myocardial infarction and cerebral 
infarction, are considered as macroangiopathies. AGEs are the leading causes of 
complications caused by microangiopathy and macroangiopathy [96–98].

Diabetic retinopathy causes bleeding and ischaemia in capillaries due to the 
hyperglycaemic environment, and progression results in bleeding or retinal 
detachment inside the vitreous body. AGEs are associated with the presence and 
progression of diabetic retinopathy [99]. Diabetic keratopathy, in which the corneal 
epithelium is exfoliated due to aggregation of AGEs-ised proteins, is thought to be 
related to AGE formation via laminin, which is found in the basement membrane 
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of the corneal epithelium [100]. In human RAGE transgenic mice induced by 
streptozotocin as an experimental model of diabetes, the blood-retinal barrier was 
disrupted, and leukostasis was increased [101]. However, systemic administration 
of sRAGE intraperitoneally suppressed collapse of the blood-retinal barrier and 
leukostasis [101]. Administration of soluble RAGE, which comprises the extracel-
lular domain of RAGE, enhances AGEs in the blood and blocks the interaction with 
cell membrane RAGE. As a result, pathological conditions related to diabetic reti-
nopathy, such as increased retinal vascular permeability and adhesion of leukocytes 
to retinal blood vessels, can be suppressed [101, 102]. Thus, AGE/RAGE signalling 
plays important roles in the development of diabetic retinopathy.

The kidney is an organ that filters waste products in the blood to produce urine 
and is formed by the renal glomerulus, which is similar to a mass of capillaries. In 
patients with diabetes, renal dysfunction can also occur. Chronic kidney disease 
occurs in approximately 20–40% of patients with diabetes [103]. If renal failure 
occurs, artificial haemodialysis is required. Diabetic nephropathy is the most 
common cause of dialysis. In diabetic nephropathy, accumulation of AGEs has been 
reported in various cells, such as the glomerular basement membrane, mesangium, 
podocytes, tubular cells, and endothelial cells [104]. In addition, several stud-
ies have suggested that RAGE expression is increased in patients with diabetic 
nephropathy [104, 105]. Administration of AGEs to nondiabetic rats induces 
proteinuria and degenerative changes in the renal tissue, highlighting the important 
roles of AGEs in the development of diabetic nephropathy [106]. CML in patients 
with type 1 diabetes was found to correlate with the severity of nephropathy [107]. 
Moreover, the levels of CML- and hydroimidazolone-AGEs in the serum of patients 
with type 2 diabetes are significantly increased [108]. CML-human serum protein 
levels are higher in patients with proteinuria, and increased levels of circulating 
AGE peptides are correlated with the severity of renal dysfunction [109]. Studies in 
RAGE transgenic mice revealed the development of advanced diabetic nephropathy 
features, such as renal hypertrophy, glomerular hypertrophy, mesangial enlarge-
ment, glomerulosclerosis, and proteinuria [110]. In OVE26 mice, a diabetic mouse 
model that exhibits progressive glomerular sclerosis and decreased renal function, 
RAGE deficiency alleviates histological and morphological changes and albumin-
uria associated with diabetic nephropathy and does not result in decreased renal 
function [111]. Thus, these findings support that RAGE is involved in the develop-
ment of diabetic nephropathy and as a target molecule in for treating this disease.

DN is a peripheral nerve disorder caused by prolonged hyperglycaemia in 
diabetes, resulting in numbness, pain, and hypoesthesia of the limbs. In the nervous 
tissue, hyperglycaemia increases non-insulin-dependent glucose uptake. Excess 
glucose is thought to cause sorbitol accumulation via the polyol pathway and 
microangiopathy, which nourishes the nerves. Accumulation of AGEs is observed 
in perineurial cells, nerve axons, and Schwann cells in the peripheral nerves of 
patients with diabetes [112]. In Schwann cells, neurofilaments and tubulin, which 
are important for axonal transport, are converted to AGEs [113]. Overexpression 
of AGEs and RAGE in the nerves of patients with diabetes activates NF-κB; these 
changes correlate with hypoesthesia [114]. Therefore, antiglycation agents, such as 
aminoguanidine, have been promoted as treatments for DN [115]. However, amino-
guanidine was shown to have various side effects in a clinical trial of patients with 
DN, and thus its development was discontinued. Recently, the anti-inflammatory 
cytokine interleukin-10 has attracted attention because of ability to suppress AGE-
induced apoptosis in Schwann cells by reducing oxidative stress through inhibition 
of NF-κB activation [116]. Thus, the potential use of interleukin-10 for treating DN 
is also being discussed.
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7. AGEs and arteriosclerosis

In addition to the three major complications of diabetes (i.e., diabetic retinopa-
thy, diabetic nephropathy, and DN), if hyperglycaemia continues for a long time, 
ischaemic heart disease, cerebral infarction, and macroangiopathy (peripheral 
arterial disease progression) can occur due to arteriosclerosis in large blood vessels, 
such as the heart and brain. Inflammation in the blood vessel wall is critical for the 
onset and progression of arteriosclerosis. AGEs produced in a hyperglycaemic envi-
ronment bind to RAGE in vascular endothelial cells and activate AGE/RAGE signal-
ling. As a result, the expression of inflammatory cytokine genes is enhanced by 
NF-κB signalling and the phosphorylation of JNK because of the production of ROS 
by NADPH oxidase, causing inflammation of the blood vessel wall [117]. Recent 
studies showed that vascular endothelial growth factor is involved in increases in 
atheroma in atherosclerotic lesions [118]. Moreover, AGEs induce angiogenesis by 
promoting the production of vascular endothelial growth factor autocrine signal-
ling in endothelial cells, enhancing inflammation in blood vessels, and increasing 
atheroma [117]. Excess sRAGE has been reported to inhibit AGE/RAGE signalling 
and suppress the onset and progression of arteriosclerosis [119–121]. Furthermore, 
AGEs have been detected in cultures of mouse or human aortic endothelial cells in 
a hypoxic state, suggesting that RAGE signalling is activated by hypoxia in aortic 
endothelial cells [122]. Early growth response-1 expression under hypoxic condi-
tions, PKC translocation, and JNK phosphorylation are inhibited by sRAGE or 
anti-AGE antibodies, and RAGE is downregulated by aminoguanidine and siRNA.

8. AGEs and intrauterine hyperglycaemia

In pregnant women or those with gestational diabetes during pregnancy, 
hyperglycaemia can create a hyperglycaemic environment in the uterus through 
the placenta. However, few studies have evaluated the molecular mechanisms by 
which the intrauterine hyperglycaemic environment affects foetal development 
and future illnesses in offspring. One study evaluated the hearts of infants born 
from diabetic pregnancy model rats with hyperglycaemia during pregnancy [123]. 
Additionally, a gestational diabetes rat model was created by administration of 
streptozotocin via the tail vein immediately after pregnancy. Akt-related insulin 
signalling was abnormal in the hearts of offspring born to mothers of these ges-
tational diabetes model rats [124]. We investigated the expression of the insulin 
signalling system, ROS, AGEs, and related genes in the hearts of infants and in 
primary myocardial cultured cells (cardiomyocytes) isolated from the heart [125]. 
In primary cardiomyocytes isolated from the hearts of infants born to mothers with 
diabetes, insulin stimulation inhibited the translocation of GLUT4 to the cell mem-
brane, indicating that insulin resistance was induced. Moreover, various proteins 
were excessively AGE-ised in the hearts and cardiomyocytes of offspring born from 
diabetic mother rats [125]. Intracellular ROS levels and NF-κB, tumour necrosis 
factor (TNFα), and IL-6 gene expression levels in isolated cardiomyocytes were 
significantly increased compared with those in offspring of normal mother rats 
[125]. Thus, in offspring who spent the foetal period in an intrauterine hypergly-
caemic environment, maternal hyperglycaemia may have caused abnormal insulin 
signalling due to the chronic inflammation induced by intracellular ROS and exces-
sive AGE formation, thereby leading to cardiac hypertrophy [125]. Interestingly, 
daily oral administration of the n-3 unsaturated fatty acid eicosapentaenoic acid by 
gastric sonde to mother rats ameliorated this abnormal signal transduction in the 
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heart. Based on these findings, the intrauterine hyperglycaemic environment of 
pregnant women may have major effects on various organs other than the heart in 
children through oxidative stress caused by excessive AGEs, including AGE/RAGE 
signalling. In addition, the intrauterine hyperglycaemic environment may affect 
offspring through epigenetics [125, 126].

The concept that malnutrition in the womb may affect the future development 
of lifestyle-related diseases in children was first proposed by David Barker of 
Southampton University in the 1980s [127]. Barker and colleagues used birth weight 
as an indicator of foetal nutrition and examined its association with various causes 
of death; their results showed that children born with a low birth weight were at 
high risk of dying from heart disease in the future [128]. Birth cohort studies have 
reported a series of epidemiological studies supporting the theory of adult disease 
foetal onset, including the fact that foetuses exposed to malnutrition may develop 
lifestyle-related diseases in adulthood [129] by inducing an adaptive response 
that predicts the future environment by regulating gene expression [130]. Peter 
Gluckman, Mark Hanson, and others further developed this theory of adult disease 
foetal onset into a generalised theory on the developmental origins of health and 
disease [131]. However, in modern society, eating habits have changed dramati-
cally, and overnutrition, including obesity and diabetes, has become a challenge. 
Importantly, oxidative stress caused by exposure to the maternal hyperglycaemic 
environment may also have major effects on the future onset of illness in offspring 
(Figure 6).

9. Development of therapeutic agents targeting the AGEs-RAGE system

As described above, in a hyperglycaemic environment, oxidative stress induced 
by AGEs and RAGE can induce the onset and progression of various diabetic 
complications; hence targeting the AGEs-RAGE system, using AGEs formation 
inhibitors, AGEs degrading agents, AGEs-RAGE inhibitors and signal transduction 
inhibitors, may be an effective treatment strategy.

The first reported AGEs formation inhibitors are aminoguanidine and OPB-9195 
(2-isopropylidenehydrazono-4-oxo-thiazolidine-5-ylacetanilide) which can capture 

Figure 6. 
The risk of future illness in children born to diabetic mothers. In diabetic mothers, maternal hyperglycaemia 
creates a hyperglycaemic environment in the womb through the placenta. During this time, the foetus is exposed 
to hyperglycaemia, and excessive hyperglycaemia activates AGE/RAGE signalling. This can cause the foetus 
to be exposed to an inflammatory cytokine storm. In addition, many proteins and enzymes are denatured by 
oxidative stress, which can also affect foetal development, and these effects may lead to the onset of disease after 
birth. Therefore, glycaemic control during pregnancy is critical.
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reactive carbonyl compounds such as methylglyoxal and 3-DG and inactivate metal 
ions that catalyse radical formation such as chelating agents [132–134]. OPB-9195 
has a stronger AGEs formation inhibitory activity than aminoguanidine [135], how-
ever, these compounds are associated with side effects such as vitamin B6 deficiency 
due to the capture of pyridoxal phosphate, anaemia, and liver damage, therefore, 
their clinical application has been discontinued. LR-90 (methylene bis [4,4-(2 
chlorophenylureido phenoxyisobutyric acid)]) and ALT946 (N-(2-acetamidoethyl) 
hydrozinecarboximidamide hydrochlolide) are more potent AGEs inhibitors than 
aminoguanidine and OPB-9195 [136, 137], and are associated with fewer side 
effects; in particular, ALT946 has no NO synthase inhibitory activity, which is a side 
effect of aminoguanidine [137].

Pyridoxamine, a vitamin B6, has been reported to have renal damage-suppressing 
effects as well as carbonyl compound capturing and antioxidant effects [138–140]. 
Benfophothiamine, a vitamin B1 derivative, has various effects such as inhibiting 
AGEs formation, suppressing PKC activity and oxidative stress, activating trans-
ketolase, and inhibiting the polyol pathway [141]. Furthermore, sorbinin inhibits 
AGEs formation by blocking the polyol pathway [41, 42]. The renal protective effect 
of the renin-angiotensin system targeting drugs is attributed to the inhibition of 
pentosidine production [142]. The oral hypoglycaemic agent metformin inhibits 
AGEs formation via carbonyl compound capturing, metal chelate formation, and 
antioxidant activity [143].

N-phenacylthiazolium bromide (PTB) can cleave protein cross-linked by AGEs 
[144]. PTB water solubility increases when it is in the form of 3-phenacyl-4,5-di-
methylthiazorium chloride (ALT-711). ALT-711 has been reported to suppress the 
accumulation of AGEs and improve vascular hardening and systolic blood pressure 
[145]. PTB and ALT-711 are therefore referred to as AGEs breaker agents. Certain 
plant extracts have been reported to exhibit this anti-AGEs effect. For example, 
terpinen-4-ol of citron (Citrus junos) has also been reported to decompose AGEs 
[146]. In addition, RAGE antagonists that block the interaction between AGEs and 
RAGE have been extensively studied [147].

Drugs targeting the AGEs-RAGE system primarily include AGEs formation 
inhibitors, AGEs breakers, and AGEs-RAGE signal inhibitors, which are investi-
gated in non-clinical studies. Presently, the agents used for targeting AGEs-RAGE 
system in clinical settings include aldose reductase inhibitors, renin-angiotensin-
based active drugs, and metformin. The reason behind using such diverse drugs 
and difficulty in discovering a specific drug is attributed to the structural diversity 
of AGEs, the multi-ligand receptor characteristics of RAGE, and the limited 
underdamping of the condition in which oxidative stress is generated in cells. 
However, oxidative stress induced by AGEs in a hyperglycaemic environment sig-
nificantly influences the onset and progression of several lifestyle-related diseases. 
Therefore, advance translational research is essential to tackle challenges that basic 
research cannot.

10. Conclusions

As discussed in this chapter, glycation is a random, nonenzymatic reaction that 
differs significantly from enzymatically catalysed glycosylation. AGEs formed by 
saccharification consist of a wide variety of molecular species, many of which have 
not been structurally characterised, and these species vary from harmful to harm-
less. Oxidative stress, including ROS, is induced by AGEs during normal metabo-
lism but is mitigated physiologically by antioxidant enzymes in the body. However, 
in a hyperglycaemic environment, as is typically observed in patients with diabetes, 
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oxidative stress that cannot be removed via the antioxidant system of the body 
causes various diabetic complications such as organ stress. As the population of 
patients with diabetes continues to increase, the number of pregnant women with 
diabetes is also increasing due to late marriage and an older age of primigravida. 
Research results have strongly supported that the maternal hyperglycaemic state 
creates an intrauterine hyperglycaemic environment through the placenta that is 
involved in the development of various diseases in the offspring. Further studies are 
needed to clarify the molecular mechanism involved in oxidative stress and disease 
caused by glycation and to link these mechanisms with the diagnosis and preven-
tion of lifestyle-related diseases.
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