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Chapter

Vitamin D Metabolism
Sezer Acar and Behzat Özkan

Abstract

Vitamin D plays an important role in bone metabolism. Vitamin D is a group of 
biologically inactive, fat-soluble prohormones that exist in two major forms: ergo-
calciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and 
cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in 
human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which 
is biologically inactive, needs two-step hydroxylation for activation. All of these 
steps are of crucial for Vitamin D to show its effect properly. In this section, we will 
present vitamin D synthesis and its action steps in detail.

Keywords: Vitamin D, Vitamin D characteristics

1. Introduction

Vitamin D plays an important role in calcium and phosphorus metabolism, 
which are essential for bone health and various biological functions. In vitamin D 
deficiency, clinical and biochemical rickets characterized by hypocalcemia (irrita-
bility, fatigue, muscle cramps, seizures), hypophosphatemia and skeletal manifes-
tations (delayed closure of fontanelles, craniotabes, frontal bossing, bowed legs, 
enlarged wrists, bone pain, and short stature) in children and adolescents or osteo-
malacia in adults may occur. Over the past several decades, it has been reported that 
the efficiency of vitamin D is not limited only to maintaining bone health by man-
aging the calcium homeostasis, but also seems to have anti-inflamatory, immune-
modulating and pro-apopitothic properties [1]. There are two different precursor 
molecules of vitamin D. The first is vitamin D3, or cholecalciferol, which is the main 
source of vitamin D in the body and is synthesized from the skin by exposure to 
sun. Vitamin D3 can also be obtained from dietary animal foods (fish, egg yolks) or 
medicines (vitamin supplements). The second precursor is vitamin D2, or ergocal-
ciferol, which can be used as a source of vitamin D via oral medication or through 
enriched foods. Vitamin D3 differs in molecular structure from vitamin D2 in that 
it has a double bond between the 22nd and 23rd carbon atoms and a methyl group 
on the 24th carbon atom [2]. These structural differences in vitamin D2 affect its 
catabolism. Compared to vitamin D3, vitamin D2 has a lower affinity for vitamin D- 
binding protein (VDBP), which leads to its easy removal from the circulation, a 
reduced formation of 25-hydroxy vitamin D2 (25OHD2) by the 25-hydroxylase 
enzyme, and increased inactivation by the action of 24-hydroxylase [3–5]. Although 
both vitamin D2 and D3 are used as drugs, studies have shown that a higher serum 
25OHD2 vitamin level is obtained when vitamin D3 is used in treatment compared 
to vitamin D2 [6]. In addition, it has been shown that active vitamin D obtained 
from vitamin D3 has a higher affinity for the vitamin D receptor (VDR) [4]. Despite 
these differences, vitamins D2 and D3 are both metabolized in substantially the 
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same way and are commonly referred to as vitamin D. Vitamin D is a prohormone 
and inactive, and to be activated, it must go through a series of enzymatic and non-
enzymatic steps.

2. Vitamin D synthesis

2.1  The synthesis of vitamin D3 from the skin and the factors affecting this 
synthesis

Formation of vitamin D3, which is the first step of vitamin D synthesis, takes 
place in the epidermis by a non-enzymatic process (Figure 1). Vitamin D3 is the 
most important source of vitamin D in the body. 90–95% of vitamin D3 in the 
human body is produced from the skin with the effect of sunlight. Therefore, 
sunlight is the main source of vitamin D synthesis, and if there is sufficient expo-
sure to sunlight, there is no need to take additional vitamin D. The mechanism of 
non-enzymatic photolysis of vitamin D by ultraviolet B (UVB) rays with wave-
lengths in the range of 290–315 nm involves the breaking of a bond in the B ring of 
7-dehydrocholesterol (pro-vitamin D3), resulting in pre-vitamin D3 formation in 
the epidermis. Subsequently, two different double bonds are formed between the 
broken carbon atoms in the B ring by thermo-sensitive non-enzymatic process, and 
the formation of vitamin D3 from pre-vitamin D3 is completed (Figure 2) [7].

The synthesis of vitamin D3 from pro-vitamin D3 in the skin is adjusted 
according to the needs of the organism. In a period of just fifteen minutes, pre-
vitamin D3 is synthesized from pro-vitamin D3 with the effect of ultraviolet light. 
Conversion from pre-vitamin D3 to vitamin D3 occurs by isomerization in a rather 
slow and thermo-sensitive manner. In the case of exposure to UV rays or solar 
radiation for a long period, pre-vitamin D3 converts to a number of photolyzed 
inactive by-products, such as lumisterol (irreversible) or tachysterol (which can be 
converted back to pre-vitamin D3). These by-products have no biological effects 
(Figure 2). In other words, once pre-vitamin D3 is formed in the skin, it turns into 
either vitamin D3 or inactive metabolites. This is a physiological control mecha-
nism that protects the body from vitamin D intoxication by preventing unneces-
sary vitamin D synthesis [8, 9].

Some conditions that prevent UVB rays from reaching the skin cause a 
decrease in vitamin D production. One of these reasons is the ozone (O3) layer 
surrounding the atmosphere, which reflects some of the sun’s rays, preventing 
them from reaching the Earth and their harmful carcinogenic effects on the skin. 

Figure 1. 
Vitamin D metabolism.
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The peak UVB wavelength required for optimal vitamin D synthesis from the skin 
is 297 (290–315) nm [1, 8]. In addition, air pollution, aerosols, water vapors, and 
increased nitrogens in the air also play a role in preventing sunlight reaching the 
Earth, and consequently result in a potential reduced synthesis of vitamin D [8]. 
Another factor affecting the effectiveness of UVB rays in the synthesis of vitamin 
D in the skin is the solar zenith angle, which affects how UVB rays reach the world 
quantifiably. When the sun moves in a path closer to the horizon, which occurs in 
the northern latitudes in the winter season, vitamin D synthesis is more adversely 
affected (or reduced). In the summer time in the northern latitudes, a normal 
biosynthesis is more propitious or favorable. The narrowing of this angle indicates 
that the sun rays reach the Earth more steeply and intensely. The solar zenith angle 
is closely related to sunbathing time during the day, the seasons and the geographic 
region (latitude). Sunlight reaches the Earth most intensely in the “mid-day” 
when it is summer in the northern latitudes and the weather is clear. Finally, it 
is thought that sunlight exposure is sufficient for vitamin D synthesis in all geo-
graphic regions below 35 degrees north or south latitude all year round. In regions 
beyond this latitude toward the poles, especially in winter, sunlight is not sufficient 
for vitamin D synthesis. For example, UVB rays are not sufficient for vitamin D 
synthesis between October and April in Rome, which is located on 41.9 degrees 
north latitude, and between November and February in Berlin and Amsterdam, 
which are located on 52 degrees north latitude. For the reasons mentioned above, 
it is difficult to predict how much UVB rays reach the skin and how much of this 
increases serum vitamin D levels. In experimental studies, it has been reported that 
UVB rays that will cause minimal erythema in 25% of the skin are equivalent to 
1000 units of oral vitamin D intake [2, 3, 8].

UVB rays are also affected by the individual’s clothing style, use of sunscreen, 
and skin colour determined by pigmentation with melanin. In dressing style, 
especially the type of the clothing fabric used is of great importance [10]. Non-
synthetic, light-colored, and linen garments play a less preventive role in UV rays 
reaching the skin than do garments made of silk, nylon, polyester, and wools. For 
example, black-dyed cotton clothing prevents 98.6% of UVB rays from reaching 
the skin compared to white (undyed) cotton clothing, which blocks 47.7% of UVB. 
Topical sunscreens also prevent UVB rays from reaching the skin by absorbing, 
reflecting or dispersing them. Topical creams with a sun protection factor of 8 
or higher block vitamin D synthesis above 95% [11]. Melanin is a large, opaque 
polymer synthesized by melanocytes in the skin through the stimulus of exposure 
to UVB rays. Melanin competes with dehydrocholesterol 7 in the skin to absorb 
UVB photons and thus inhibits vitamin D synthesis [12]. Individuals with dark skin 

Figure 2. 
Vitamin D3 synthesis from 7-dehydrocholesterol in the epidermis.
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colour have more melanin pigment in their epidermis than light-skinned individuals 
and require higher concentrations of sunlight for the same amount of vitamin D  
synthesis [12]. In addition, the 7-dehydrocholesterol level (provitamin D) in 
the epidermis can also affect the serum vitamin D concentration. For example, 
7-dehydrocholesterol levels in scar tissue caused by the burn are reduced by 42.5% 
of normal. In these cases, progressive vitamin D deficiency develops, especially 
if supplemental dietary vitamin D is not provided. Moreover, the content of pro-
vitamin D in the skin decreases with age. Skin temperature is also important for 
vitamin D synthesis. Vitamin D from pre-vitamin D by isomerization whose rate of 
formation is temperature- dependent. The rate decreases as the skin temperature 
decreases. In a healthy person, the skin temperature is lower than the central body 
temperature and varies between 29 and 35 degrees Celcius. When the skin tem-
perature is 37 degrees Celcius, the isomerization of vitamin D from pre-vitamin D 
occurs within 2.5 hours [13, 14].

2.1.1 Biosynthesis of 25OHD3 (25-hydroxylase) in liver

Vitamin D3 synthesized in the skin is released into the systemic circulation and 
all forms are transported by binding to VDBP in serum. A portion of vitamin D, a 
fat-soluble vitamin, is stored in adipose tissue for use when necessary. The ability 
of vitamin D to be stored in adipose tissue extends its total half-life in the body up 
to approximately 2 months. When vitamin D3 is transported to the liver, it is first 
converted into 25OHD3 by the cytochrome P450 25-hydroxylase enzyme. 25OHD3 
is the main circulating form of vitamin D, and it is the parameter that provides the 
best estimation about the body’s vitamin D pool [15]. Various enzymes that show 
25-hydroxylase properties have been described in the body. Among these, the first 
one is CYP27A1 located in mitochondria, and the second is microsomally located 
CYP2R1 [1, 6, 16]. CYP27A1 also exerts 27-hydroxylase effect and is involved in 
bile acid synthesis. Although CYP27A1 is expressed in different tissues of the body, 
the tissues where it is most commonly found are liver and skeletal muscle tissues 
[1, 2]. In experimental studies, it was reported that the serum 25OHD3 levels were 
increased in mice which possess an inactivated CYP27A1 gene, and that rickets 
did not occur in these mice [17]. Interestingly, in this study, it was shown that 
CYP2R1 expression increased after CYP27A1 gene inactivation, and consequently 
25-hydroxylation activity increased [17]. In addition, individuals with a CYP27A1-
inactivating mutation develop a cerebrotendinous xanthomatosis disease with bile 
and cholesterol synthesis disorders, but without rickets manifestation [18]. Besides 
CYP27A1, different CYP-450 enzymes with 25-hydroxylase activity (CYP2D25, 
CYP2J2, CYP2J3, and CYP2C11) have been identified in humans and animals, with 
the most important one in human being CYP2R1. It is assumed that enzymes other 
than CYP2R1 have effects only on serum 25OHD3 levels [2].

Studies have suggested that CYP2R1 is the major enzyme responsible for 
25-hydroxylation in the human body. This enzyme is expressed in many tissues, 
mainly liver, skin, and testis [1, 2, 17]. The 25-hydroxylase encoded by the CYP2R1 
gene was first described by Cheng et al. [19]. It was first reported by Chen et al. [20] 
that homozygous inactivating mutations of this gene lead to clinically observed 
rickets (vitamin D-dependent rickets type IB) in Nigerian families. It has been 
reported that these cases gave suboptimal response to standard vitamin D (inactive 
vitamin D2 or D3 forms) treatment [21]. The CYP2R1 enzyme has equal affinity for 
the different forms of vitamin D precursors (D2 or D3) [19]. Studies have shown 
that 25-hydroxylase effect increased in male rats given estrogen, whereas this activ-
ity decreased in female rats given testosterone [21]. Despite experimental studies, 
the effect of sex steroids on 25-hydroxylase enzyme activity in humans is unknown. 
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It has been shown that in CYP2R1-null mice, the level of 25OHD3 decreases by 50%, 
when both CYP2R1 and CYP27A1 are inactivated, and that serum 25OHD3 levels 
decrease by 70%, and serum 25OHD3 level remains at a measurable level in both 
cases [2, 17]. This supports the view that serum vitamin D level is compensated by 
other enzymes with recruitable 25-hydroxylase enzyme activity.

2.1.2  Formation of active vitamin D [1,25 (OH) 2D3] by 1-alpha hydroxylase 
(CYP27B1) in the kidney

The final step of active vitamin D formation takes place in the proximal tubules 
of the kidney, led by the enzyme 1-alpha hydroxylase. 25OHD3, which is bound to 
VDBP, is taken into tubule cells and metabolized (1-alpha hydroxylation) through 
megalin and cubilin, which are transmembrane proteins located in renal tubules 
and act as surface receptors for VDBP in tubules. 25OHD3, which then undergoes 
1-alpha hydroxylation [1, 2]. The 1-alpha hydroxylase enzyme hydroxylates the 
first carbon atom in the A ring of 25OHD3, resulting in the formation of 1,25 (OH) 
2D3 [1]. CYP27B1 is the only enzyme that has 1-alpha hydroxylase activity. This 
enzyme, which belongs to the cytochrome P-450 enzyme system, is located in the 
inner mitochondrial membrane and carries out electron transport to NADPH via 
ferrodoxin-ferrodoxin reductase [1, 2]. The gene for the enzyme consists of nine 
exons and is located 12q14.1 chromosomal region. Four different groups reported 
the cloning and sequencing of the gene from rats, mice and humans [22–26]. In 
biallelic inactivating mutations of this enzyme, which is highly homologous to 
some mitochondria located cytochrome P-450 enzymes (CYP27A1 and CYP24A1), 
25OHD3 cannot be converted to 1.25 (OH) 2D3, which is the active vitamin D 
form. In this case, the clinical picture of vitamin D-dependent rickets type 1A (also 
called pseudo-vitamin D deficiency rickets) occurs [23]. This disease is typically 
characterized by rickets, with clinically observed very low 1.25 (OH) 2D3, low 
serum calcium/phosphorus, and high parathyroid hormone (PTH) levels. CYP27B1 
is expressed mainly in the renal proximal tubules and in the placenta during 
pregnancy [27]. While the expression of the gene encoding this enzyme increases 
with the effect of PTH, it decreases with FGF23 (fibroblast growth factor 23) and 
1.25 (OH) 2D3. CYP27B1 gene is also expressed in lung, brain, breast and intestinal 
system epithelial cells, immune system cells (macrophage, T/B lymphocytes and 
dendritic cells), osteoblasts, chondrocytes, and some tumor cell types [1, 2]. The 
regulation of the extra-renal localized 1-alpha hydroxylase enzyme differs. In 
some granulomatous diseases where monocyte/macrophage cells play an impor-
tant role (sarcoidosis, tuberculosis, Chron’s disease, etc.), with the effect of IL-1, 
TNF-α, IFN-γ, 1-alpha hydroxylase enzyme activity increases and 1,25 (OH) 2D3 
is synthesized in greater quantities than normal, and consequently, hypercalcemia 
and hypercalciuria emerge [28–30]. Additionally, since cells in these tissues do not 
have PTH receptors, it is not yet understood how PTH exerts its enhancing effect 
on the 1-alpha hydroxylase enzyme activity in these cells. In one study, it has been 
suggested that this enhancing effect of PTH may have occurred through post-
transcriptional effects [31]. Moreover, 1-alpha hydroxylase enzyme in these cells is 
not inhibited by 1,25 (OH) 2D3 or hypercalcemia, unlike the renal tubules.

2.1.3 Inactivation of vitamin D by 24-hydroxylase (CYP24A1)

The 24-hydroxylase enzyme is located in the mitochondrial inner membrane 
of the cells located in the proximal kidney and, like CYP27B1, uses the electron 
transport system that enables electron transport to NADPH via ferrodoxine-
ferrodoxin reductase. It is known that CYP24A1, which is the only enzyme showing 
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24-hydroxylase enzyme activity in humans, can also exhibit 23-hydroxylase enzyme 
activity [2]. Which enzyme will be more prominent varies according to the species 
[32]. The 23-hydroxylase, another enzyme that degrades vitamin D, is the first step 
activity in the conversion of 1,25 (OH) 2D3 to 1,25 (OH) 2D3-23,26-lactone.

The CYP24A1 enzyme, encoded in 20q13 chromosomal region and having 
24-hydroxylase enzyme activity, initiates catabolic processes that lead to the 
inactivation of vitamin D by hydroxylating the 24th carbon atom. This enzyme 
can use both 25OHD3 and 1.25 (OH) 2D3 as substrates, but has a higher affinity 
for 1.25 (OH) 2D3. As a result of a series of enzymatic reactions, calcitroic acid is 
formed, which becomes biologically inactive. On the other hand, it has been sug-
gested that the 1,25 (OH) 2D3-23,26-lactone, which is formed in the 23-hydroxy-
lase pathway, lowers serum calcium level, inhibits bone resorption induced by 
1.25 (OH) 2D3, and stimulates the formation of collagen tissue in bone tissue [33]. 
In addition, it has been suggested that 24,25 (OH) 2D3 is not only a degradation 
product, but has an important role in bone metabolism, especially in endochon-
dral bone formation [34].

There are two vitamin D response elements (VDRE) in the promoter region of 
the CYP24A1 gene [35]. When active vitamin D is bound to the these one of VDRE 
after heterodimerization with various molecules, thus initiates the inactivation 
process of vitamin D. In addition, it has been shown that CYP24A1 gene expression 
decreases with the effect of PTH, whereas it increases with increased FGF23 con-
centrations [1, 32, 36, 37]. Inactivating mutations in CYP24A1 lead to an idiopathic 
infantile hypercalcemia clinic characterized by hypercalcemia, hypercalciuria, 
nephrocalcinosis, low PTH, low 24.25 (OH) 2D3 and high 1.25 (OH) 2D3 levels 
[37]. As a result, CYP24A1 is a critical enzyme that protects the body from excessive 
accumulation and possible intoxication of vitamin D.

2.1.4 3-epimerization of Vitamin D

3-epimerase activity was first demonstrated in 2001, with the detection of the 
3-epi form of 1,25 (OH) 2D3 in keratinocytes [38]. In the following years, epimer 
forms of 25OHD3 and other vitamin D metabolites were discovered. However, the 
enzyme or enzymes involved in epimerization has not yet been identifiedpurified 
or cloned. This enzyme changes the hydroxyl group in the 3rd carbon of the A ring 
from the alpha orientation to the beta orientation, causing the three-dimensional 
structure to change and consequently alter the activity of CYP27B1 and CYP24A1 
enzymes on vitamin D metabolism. These epimers can be detected by special 
liquid chromatography-mass spectroscopy (LC-MC) measurement methods [2]. 
C-3 epimer forms of 25OHD3 and 1,25 (OH) 2D3 have been shown to have lower 
affinity for VDR and VDBP compared to non-epimer forms [38]. The C-3 epimer 
form of 1,25 (OH) 2D3 has been shown to cause PTH suppression similar to the 
non-epimer form, but its effects on bone tissue are not clear. In addition, epimer 
forms have also been shown to have non-calcium effects (anti-proliferative effect, 
surfactant synthesis) [39]. It has been shown that the serum levels of vitamin C-3 
epimer forms are found to be 60% higher in the period between the neonatal period 
and one year old, and decrease after one year of age and decrease to very low levels 
in adulthood [2, 38]. The reason why epimer forms with limited biological activity 
are important is that they cause interference and false high results in serum 25OHD3 
and 25OHD2 measurement. Therefore, it is important to prefer the method (espe-
cially LC–MS / MS) that can exclude this effect of epimer forms that cause serum 
vitamin D measurement interference. However, the use of LC–MS/MS method in 
the measurement of vitamin D has not become widespread in the world, and the use 
of this method is only recommended in selected cases.
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2.1.5 Transport of Vitamin D

The largest part of the circulating vitamin D is in the form of 25OHD3, and 
its serum concentration is in equilibrium with the level of vitamin D stored 
in muscle and adipose tissues. The parameter that gives the best information 
about the whole vitamin D pool in the body is 25OHD3 and its known half-life 
of 15–20 days. Most of all forms of vitamin D in circulation (85–88%) are trans-
ported by binding to VDBP and the remaining part (12–15%) to albumin [2, 40]. 
The serum concentration of VDBP is 4–8 nM and only 2% of it is bound with 
vitamin D metabolites [2]. Moreover, the affinity of VDBP to 25OHD3 is 20 times 
higher than 1.25 (OH) 2D3 [3]. 0.03% of 25OHD3 and 0.4% of 1.25 (OH) 2D3 
are in free form [2]. In chronic liver disease or nephrotic syndrome, VDBP and 
albumin levels and thus total serum 25OHD3 and 1.25 (OH) 2D3 levels decrease, 
but the levels of free forms are not affected [41]. Likewise, since the VDBP level 
may decrease during the acute disease period, evaluating the body’s vitamin D 
pool by measuring the serum 25OHD3 level with standard immunoassays may 
lead to misinterpretations [42]. In conclusion, while the total levels of vitamin D 
forms are affected by the VDBP level, there is no relationship between VDBP and 
free vitamin D forms, which are essential for biological activity. It was shown 
that both 25OHD3 and 1.25 (OH) 2D3 levels in VDBP-null mice were lower than 
wild type mice, but serum PTH and calcium levels were similarly normal in both 
groups [43]. This supports the view that serum vitamin D level measured by the 
standard method may not be an indicator of biologically active vitamin D pool. 
In addition, the predisposition of VDBP-null mice to the development of osteo-
malacia after a vitamin D-restricted diet suggests that VDBP may play a role in 
maintaining the existing vitamin D pool [44]. In addition, some single nucleotide 
polymorphisms (GC1F, GC1S, GC2) in the VDBP gene have been shown to impact 
the affinity of VDBP on vitamin D metabolites [1, 45, 46].

3. The mechanism of Vitamin D actions

Vitamin D provides its biological effect in two different ways. The first is by 
directly affecting gene transcription (genomic effect) as other steroid hormones. 
This effect is relatively slow and usually occurs within hours or days. The second 
is the non-genomic pathway whose biological effect is relatively faster (within 
minutes). Vitamin D exerts its non-genomic effect by directly altering the trans-
membrane passage of some ions (Ca, Cl) or by affecting intracellular signaling 
pathway activities (cAMP, PKA, PLC, PI-3 kinase and MAP kinase) [1, 2]. 
Genetic studies on vitamin D support that active vitamin D directly or indirectly 
regulates 0.8–5% of the total genome, suggesting the role of active vitamin D in 
many actions such as regulation of cellular growth, DNA repair, differentiation, 
apoptosis, membrane transport, cellular metabolism, adhesion and oxidative 
stress [1–3, 47].

3.1 Genomic effect of Vitamin D

The active form of vitamin D displays this effect through the vitamin D recep-
tor (VDR). VDR is a member of the nuclear hormone receptor superfamily, which 
includes steroid, thyroid hormone, and retinoic acid receptors [48]. The VDR gene 
located on chromosome 12 consists of 427 amino acids encoded by. The structure of 
the VDR consists of a relatively short N-terminal domain compared to other nuclear 
receptors, two zinc-fingers that allow the receptor to bind to DNA, and a highly 
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variable C-terminal region, and the hinge region connecting binding these domains 
(Figure 3) [2]. The DNA-binding region of the receptor is rich in cysteine, and 
the sequence of this region is largely conserved between species. The zinc-finger 
structure close to the C-terminal part of VDR determines the specificity for the 
VDRE (vitamin D response element), which is the binding site on the DNA. The 
other zinc-finger structure is involved in the heterodimerization of VDR with RXR 
(retinoid X receptor) [1, 2]. The ligand-binding part of the receptor consists of 12 
α-helix structures (H1-12; the H12 part is also called AF2) and 3 β-sheet structures 
(S1-3) [49]. The AF-2 region located at the end of the C-terminal is the binding site 
of co-activator complex structures such as SRC (steroid receptor coactivator) and 
DRIP (vitamin D receptor interacting protein). Transcription is initiated by binding 
co-activators to this region [50]. Apart from these functional domains, there are 
NLS (nuclear localization signal) regions within the DNA binding region of VDR, 
which are necessary for maintaining transcriptional activity [2]. In addition, there 
is a hinge region between the ligand-binding and DNA-binding domains of the VDR 
that ensures molecule stabilization.

After active vitamin D crosses the target cell membrane, it interacts with the 
ligand-binding domain of its own receptor (VDR) in the cytoplasm of the cell. 
Vitamin D is embedded in the ligand-binding domain, and subsequently, in the 
H12 alpha-helix H12 (AF-2) region, which is located at the end of the ligand 
binding part [51]. This critical conformational change of AF-2 facilitates the 
binding of co-activators in later stages [52]. In the next step, vitamin D-bound 
VDR binds to RXRα to form a VDR/RXR heterodimer structure that binds to 
cognate VDR elements (VDRE) in the promoter region in the target genes with 
a high affinity to initiate gene activation or inhibition. There are many gene-
specific VDREs associated with bone metabolism, xenobiotic detoxification, 
drug resistance, cell growth and differentiation, angiogenesis, mammalian hair 
growth cycle, lipid synthesis regulation, apoptosis, and immune functions, sug-
gesting that vitamin D has numerous regulatory roles in various organs or tissues 
in the body [53].

After active vitamin D-VDR-RXR-VDRE interaction, the progression of 
transcription is controlled by co-activator and co-repressors. The best known 
co-activators are the p160 co-activator family (eg CBP/p300 and p/CAF) and 
SRC 1,2,3. Both bind to the AF-2 part and have histone acetyl transferase (HAT) 
activity, which enables the opening of the histone structure and thus facilitates 
gene expression [54]. The SRC complex has three NR regions that facilitate 
binding and contain LxxLL (L, leucine; x, any amino acid) motifs. Likewise, the 
DRIP complex (Mediator) also has NR regions with LxxLL motifs consisting of 15 
or more amino acids [55]. Unlike SRC, DRIP complex does not have HAT activity. 
This suggests the fact that both protein complexes play a complementary role in 
the initiation of transcription. The mediator multi-protein complex DRIP205/
MED1 (also known as MED1) accumulates around RNA polymerase 2of the initia-
tion complex. This complex then interacts with the TATA region in the promoter 

Figure 3. 
The structure of the Vitamin D receptor (VDR).
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region and enables transcription to be initiated [56]. Co-repressors (eg SMRT and 
NCoR) have histone de-acetylase activity and inhibit transcription by preventing 
unfolding of the histone core.

3.2 Non-genomic effects of vitamin D

Some of the hormones that act on the nuclear hormone receptor can also exert 
their biological effects on the membrane receptor without the need for additional 
gene regulation [2]. The non-genomic effect occurs through messenger-mediated 
pathways. Estrogen, progesterone, testosterone, corticosteroids and thyroid 
hormones have been reported to exert their effects by using both genomic and non-
genomic pathways [2]. Vitamin D has been shown to directly regulate the activation 
or distribution of various ion-transport channel proteins (for calcium and chloride) 
and of enzymes (protein kinase C and phospholipase C) through the membrane 
receptor in osteoblast, liver, muscle, and intestinal cells (Figure 4) [57–62]. In 
order to demonstrate the non-genomic effect of vitamin D, many studies have 
been conducted on intestinal calcium absorption. Rapid vesicular calcium absorp-
tion (also called transcaltachia) has been shown in the chick intestinal tract [63]. 
Further experimental studies have shown that intestinal calcium transport cannot 
be blocked by the administration of actinomycin D (which inhibits the genomic 
effect) [64], whereas calcium absorption can be blocked by inhibition of voltage-
gated L-type calcium channel proteins [65] or by protein kinase C [66].

Apart from the intestinal system, it has been suggested that the non-genomic 
effect also occurs in chondrocytes in the growth plate and keratinocytes in the 
skin [67, 68]. Vitamin D is believed to exert its non-genomic effects through VDR 
analog and MARRS (also known as ERp57/GRp58/ERp60) receptors located on the 
cell membrane [69, 70]. These membrane receptors are located within the caveolar 
lipid layer [71]. In addition, research findings indicate that VDR is also necessary 
for the expression of membrane receptors that involve in the emergence of non-
genomic effect [1, 2]. In studies evaluating the effects of vitamin D analogs (6-s-cis 
or 6-s-trans conformations), the 6-s-cis form can activate intestinal rapid calcium 
entry even though the VDR affinity is very low, whereas the 6-s-trans form has been 
shown to be ineffective in calcium metabolism [67].

Figure 4. 
Representation of the signal transduction pathways where Vitamin D has its non-genomic effect (2). After 
vitamin D binds to the membrane receptor, GDP in the G protein α-subunit turns into GTP and activation 
occurs. The α-subunit of the G protein is separated from other subunits and binds to phospholipase C (PLC). 
The PLC is then activated to convert phosphoinositol bisphosphate (PIP2) to inositol triphosphate (IP3) and 
diacylglycerol (DAG). Calcium release from the endoplasmic reticulum via the IP3 receptor (IP3R); DAG 
activates PKC. PKC, on the other hand, provides calcium entry into the cell via the L-type calcium channel in 
the membrane.
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4. Effects of Vitamin D on calcium and phosphorus

4.1 Intestinal calcium absorption

One of the most important functions of vitamin D is to increase calcium absorp-
tion from the intestines. Calcium absorption from the intestinal tract occurs trans-
cellular and para-cellular processes mediated through genomic and non-genomic 
effects. Among these, the trans-cellular pathway largely utilized by the intestinal 
system, which is regulated by vitamin D [2]. The absorption effect of vitamin D 
with non-genomic effect of calcium occurs directly on the membrane (transcalta-
chia). The channel-mediated calcium absorption effect of vitamin D occurs more 
slowly [2].

Calcium enters the epithelian cell by the effect of an electrical and chemical gra-
dient via calcium channel protein TRPV6 (which has significant sequence homol-
ogy to TRPV5 in the kidney), the transmembrane protein at the lumenal brush 
border edge of the intestinal epithelial cell. The expression of TRPV6 is activated 
by vitamin D [72]. Reduced intestinal calcium transport is observed in TRPV6 null 
mice [73]. Calcium entering the cell binds to calmodulin (CaM), which is bound 
with myosin 1A (also known as brush border myosin I). This formed complex 
allows calcium to be transported across the microvilli. Subsequently, the transport 
of calcium up to the basolateral membrane occurs inside the vesicle via calbindin-
D9k (CaBP). The affinity of calcium for calbindinin is greater than for calmodulin, 
and better facilitates calcium transport inside the cell [74]. The calcium reaching 
the basolateral membrane is pumped out of the cell to systemic circulation via the 
Ca-ATPase (PMCA1b) pump located on the membrane [1, 2]. In addition, although 
it is less important, NCX (sodium/calcium exchanger), located in the basolateral 
region, also plays a role in excretion of calcium [2, 75]. Vitamin D shows its increas-
ing effect on intestinal calcium absorption by inducing expression of TRPV6, CaBP 
and PMCAb and increasing the binding affinity of CaM to myosin 1A [1, 2].

Intestinal calcium absorption, serum calcium level and bone mineral content in 
Kalbindin D9k null mice (regardless of dietary calcium level) have been shown to be 
similar to normal mice [76]. Intestinal calcium absorption was found to be normal 
in calbindin D9k and TRPV6 null mice when a diet containing the daily requirement 
for calcium was given [77]. These findings indicate there is a mechanism other 
than the genomic effect through which vitamin D exerts its action (a non-genomic 
effect) in calcium absorption in the intestines when the amount of calcium in the 
diet is sufficient.

While trans-cellular calcium absorption is effective in compensating for a low-
calcium diet, para-cellular calcium transport becomes important with the increase 
in calcium content in the diet [1]. Paracellular transport occurs through the extracel-
lular space between the layer of the epithelial cells in the intestine. Although it was 
previously thought that vitamin D does not affect para-cellular calcium absorption, 
studies conducted in recent years indicate otherwise, with vitamin D still affecting 
calcium absorption by increasing levels of various transmembrane and adhesion 
proteins that control the extracellular space between cells [78, 79]. However, it is not 
clear at what stage of the paracellular pathway these proteins are involved.

Phosphate, another important molecule for bone mineralization, is actively 
absorbed mostly in the jejunum, with absorption influenced by vitamin D [2]. 
This absorption is provided by sodium-phosphate co-transporter IIb (NaPi IIb). 
In experimental studies, it has been shown that phosphate absorption is blocked 
when cycloheximide, which inhibits protein synthesis, is given [80]. This situation 
supports that phosphate absorption occurs by genomic effect. Vitamin D increases 
NaPi-IIb expression and thus phosphate absorption [2].
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4.2 The effect of vitamin D on the kidneys

Most of the calcium that reaches the kidney tubules is absorbed from the 
proximal and distal tubules and approximately 1–2% of it is excreted through urine. 
Approximately 65% of calcium absorption in the kidney is passively absorbed para-
cellularly from the proximal tubules with the sodium gradient and independent of 
vitamin D direct action [1]. The rest of the calcium is absorbed from the ascending 
limb of the loop of Henle (20%), the distal tubules (15–20%), and the collecting 
ducts (5%) [81]. Vitamin D plays an important role in calcium absorption in the 
distal tubules and provides active calcium absorption via the trans-cellular pathway 
with the help of an electrochemical gradient [1]. Calcium is taken into the cell by 
TRPV5 channel on the surface of the tubular cell and is transported inside the cell 
by calbindin-D9k and D28k. Transported to the basolateral part of the cell, calcium 
is released into the systemic circulation by NCX1 (sodium/calcium exchanger) 
and PMCA1b. This mechanism is similar to that in the intestinal tract. Vitamin D 
increases the expression of TRPV5, calbindin, NCX and PMCA1b.

Phosphate is reabsorbed by sodium-dependent phosphate carrier proteins 
(NaPi-IIa and NaPi-IIc) in proximal tubular cells under vitamin D control. In 
addition, for phosphate reabsorption, a Na/K-ATPase channel located in the 
basolateral membrane is also needed [1, 2]. The impact of vitamin D on transport 
channels is not clearly known. While PTH increases the lysosomal degradation of 
phosphate transport channels, FGF23 causes a decrease in the expression of these 
 channels [1, 2, 82].

4.3 The effect of vitamin D on bone tissue

Calcium, phosphorus and vitamin D are important molecules for bone metabo-
lism and health. Calcium is one of the most abundant minerals in the body and is 
obtained entirely from dietary sources. In addition to its various biological effects 
in the body, it is also essential for bone metabolism [83]. More than 99% of the total 
body calcium is found in the bone tissue as a calcium-phosphate mineral complex, 
while the remaining <1% is distributed between the intracellular and extracellular 
compartments [83]. While 40% of calcium outside bone tissue is bound to protein, 
9% forms ionic complexes, and the remaining 51% is found as free ions [84, 85]. 
Ionized calcium balances the calcium pool in the intracellular-extracellular area 
and plays an important role in bone metabolism. This balance is provided by the 
cooperation of various hormones (PTH, vitamin D) and the organs they affect 
(kidney, bone and intestinal system) [83–85]. Where there is vitamin D deficiency 
(nutritional or genetic) or VDR-inactivating mutations, serum levels of calcium 
and phosphate, which play an important role in bone development and growth, are 
reduced and thus rickets/osteomalacia emerge. Rickets is a disease characterized by 
excessive osteoid tissue accumulation and defective mineralization of the epiphy-
seal plate, which occurs as a result of insufficient mineralization in the epiphyseal 
plates of growing bones [1, 2]. Osteomalacia is a disease characterized by a dete-
rioration in the mineralization of the newly formed osteoid and a decrease in bone 
turnover.

There is a continuous remodeling cycle consisting bone tissue resorption and 
mineralization. When calcium, phosphorus, and vitamin D are sufficient, this cycle 
continues in a balanced manner. In the case of negative calcium balance caused by 
insufficient calcium intake with diet or increased renal calcium loss, vitamin D 
increases bone resorption in osteoblasts through VDR signaling, resulting in 
calcium passage from bone to blood, which leads to impaired bone mineraliza-
tion. Vitamin D increases the expression of RANKL (receptor activator of NF-κB 
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ligand), which is an osteoclastogenic factor from osteoblasts [86, 89]. RANKL 
stimulates osteoclastogenesis and increases osteoclast formation by binding to its 
related receptor, RANK [87]. In conclusion, in the case of negative calcium balance, 
vitamin D tries to keep the serum calcium level in a certain balance by increasing 
resorption and decreasing mineralization [1].

In the case of a positive calcium balance, the osteoblastogenic activity of vitamin D  
is prominent. In this situation where anti-resorbtive effect is in the predominant, 
bone mineral density increases. The occurrence of this effect has been associated 
with a decrease in the RANKL/OPG (osteoproteogerin) ratio and an increase in 
LRP-5 (LDL receptor related protein 5) expression [1]. LRP-5 is controlled by the 
VDR and is a necessary co-receptor for the anabolic effect of osteoblasts [88]. In 
addition, vitamin D plays a role in the proliferation of chondrocytes in the growth 
plate through genomic action.

5. Regulation of vitamin D metabolism

Pro-vitamin-D3, pre-vitamin D3 and then vitamin D3 (cholecalciferol) conver-
sion in the skin is under the control of UV radiation. Serum vitamin D concentra-
tion reaches its highest level 24–48 hours after exposure to UV radiation and then 
shows a gradual decrease. The half-life of serum vitamin D is 36–72 hours. Vitamin 
D, which is a fat-soluble vitamin, is stored in adipose tissue for later use. The ability 
of vitamin D to be stored in adipose tissue extends its total half-life in the body up to 
approximately 2 months.

5.1 Regulation of 25-hydroxylase

There is little information on how this enzyme is regulated because of the few 
studies performed. What is known is that serum vitamin D level is inversely related 
to the rate of 25-hydroxylation in the liver, and the synthesis of 25OHD3 from 
vitamin D (cholecalciferol) is regulated by the 25-hydroxylase enzyme. This activity 
of the enzyme is directly inhibited by 25OHD3. Consequently, serum 25OHD3 levels 
can be kept at a physiological window ranging from 75 to 220 nmol/L (30–88 ng/
mL). However, when an overdose of vitamin D is taken orally, this inhibitory 
mechanism in 25OHD3 synthesis cannot prevent vitamin D intoxication [2].

5.2 Regulation of renal 1-alpha hydroxylation

Serum active vitamin D levels in healthy adults vary within extremely narrow 
ranges, so that even in cases of vitamin D intoxication, serum levels may remain 
normal. 1-alpha hydroxylation activity in the kidney is controlled by PTH, calcium 
and phosphorus. Hypocalcemia, increased PTH, and hypophosphatemia will 
stimulate increases in active vitamin D production through renal 1-alpha hydroxy-
lase enzyme activation, while hypercalcemia, FGF-23 secreted from osteoblasts, 
and active vitamin D itself have an inhibitory effect on active vitamin D synthesis 
through the renal 1-alpha hydroxylase enzyme. Active vitamin D increases FGF23 
synthesis from osteoblasts. FGF23 suppresses the 1-alpha hydroxylase enzyme and 
increases the activity of 24 hydroxylase enzymes. In addition, hypercalcemia sup-
pressing PTH and hyperphosphatemia by increasing FGF23 levels results in 1-alpha 
hydroxylase enzyme activity inhbition [1–3]. It is also suggested that calcium and 
phosphate have a direct regulatory effect on 1-alpha hydroxylase enzyme [89].

Calcitonin is known to reduce serum calcium levels through osteoclast inhibi-
tion. In addition, this hormone has been shown to increase the expression of 
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CYP27B1, the gene encoding the 1-alpha hydroxylase enzyme, in normocalcemic 
pregnant women due to the increase in calcium need. In this way, active vitamin D 
synthesis and consequently intestinal calcium absorption is increased [1, 90]. Apart 
from calcitonin, it has been suggested that prolactin also increases CYP27B1 expres-
sion, especially during lactation, and thus contributes to the increased calcium 
demand of the body [1, 91].

CYP3A4 enzyme in the liver and intestinal system has also been shown to be 
effective in the inactivation of 25OHD3 and reduction of active vitamin D [92]. 
Long-term use of drugs such as phenytoin, rifampicin, and carbamazepine may 
lead to up-regulation of the CYP3A4 enzyme and thus to a decrease in serum 
25OHD3 and active vitamin D levels.

5.3 Regulation of 24-alpha hydroxylase

When serum calcium, phosphate and PTH levels are within normal levels, 
25OHD3 and 1–25 (OH) 2 D3 are metabolized into biologically inactive forms by 
activation of 24-alpha hydroxylase enzyme in the kidneys (24–25 dihydroxy vitamin 
D3 and 1,24, 25 trihydroxy vitamin D3). This enzyme preferably binds to 1–25 (OH) 
2 D3, thus limiting the effect of active vitamin D in tissues through inactivation [2]. 
The low level of 24-hydroxylase enzyme activity leads to high levels of 1–25 (OH) 
2D3 and thus hypercalcemia. In addition, it has been suggested that a decrease in this 
enzyme activity may lead to impairment in intra-membranous bone mineralization 
[1, 2]. On the other hand, when 1–25 (OH) 2 D3 synthesis decreases, 1-alpha hydrox-
ylase enzyme activity increases and 24-hydroxylase enzyme activity decreases. It is 
also known that FGF23 increases the activity of 24 hydroxylase enzymes [1, 2].

5.4 Regulation of active vitamin D synthesis in extra-renal tissues

Numerous studies have shown active vitamin D synthesis by 1-alpha hydroxylase 
enzyme is not only a renal feature [2, 93]. The gene encoding the 1-alpha hydroxy-
lase enzyme and the vitamin D receptor gene can be expressed in many cells or 
tissues such as skin, placenta, prostate, parathyroid, bone tissue, colon, lung, breast 
tissue, monocytes and macrophages, as well as renal cells. It has been reported that 
active vitamin D synthesized in the aforementioned tissues functions mostly as an 
intracrine or paracrine factor in the tissues where they are located, and does not 
contribute to the active vitamin D levels in the circulation, except for some special 
cases [1, 2]. Since PTH and FGF-23 receptors are not found in these tissues, they 
are not directly involved in controlling active vitamin D synthesis. However, it is 
propable that PTH increases the effect of vitamin D through posttranscriptional 
modification [31]. Unlike in other tissues, in activated macrophages, there is also 
no negative feedback of active vitamin D on 1-alpha hydroxylase enzyme [91]. 
Moreover, although the 24-hydroxylase enzyme is expressed in these cells, its 
function is not fully understood. Cytokines such as IL-1, TNF-α, IFN-γ induce the 
synthesis of active vitamin D in keratinocytes. Unlike macrophages, keratinocytes 
have a fully functional 24-hydroxylase enzyme activity and is induced by active 
vitamin D. In this way, active vitamin D limits its own synthesis in the epidermis 
through alternative catabolism [1, 2, 93].

6. Vitamin D measurement methods

Measurement of serum levels of vitamin D, which plays an important role in cal-
cium and phosphorus metabolism and bone mineralization, is routinely performed 
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worldwide. For this, it is preferred to measure the 25OHD level, which has a longer 
half-life (24–36 hours), can be taken exogenously, and can be synthesized endog-
enously. The half-life of the 1–25 (OH) 2D3 form is short (4–6 hours), and its serum 
levels are 1000 times lower than 25OHD. For these reasons, the active form is not 
preferred for routine measurement. In this section, the measurement methods of 
25OHD vitamin are discussed.

To date, many methods have been developed for measuring serum vitamin D 
levels. These methods are basically divided into two groups. One methodology 
is the use of competitive binding and immunoassays: radioimmunoassay (RIA), 
enzyme immunoassay (EIA/ELISA), chemiluminescent immunoassay (CLIA), 
electrochemiluminescence assay (ECLIA), and competitive protein binding assay. 
The other methodology involves chemical methods. Chemical methods are based 
on the non-immunological direct detection methods typically after preparative 
chromatographic separation. Chemical methods include high performance liquid 
chromatography (HPLC) and LC/MS (liquid chromatography-mass spectrometer).

The first method used in the measurement of vitamin D is the competitive bind-
ing method in which VDBP binds. This method was first reported in 1971 and iden-
tifies 25OHD2 and 25OHD3 forms equally [94]. Limitations of this method include 
the incubation period of 10 days and its inability to separate some polar vitamin D 
metabolites [24,25(OH)2D, 25,26 (OH)2D ve 25,26 (OH)2D-26,23--lactone] [94]. In 
the late 1970s, the HPLC method was developed that can exclude the effect of polar 
vitamin D metabolites causing interference to the chromatographic method [95]. 
The advantages of this method, which uses a UV absorption technique, include the 
absence of lipid and polar vitamin D metabolite interference, the ability to measure 
25OHD2 and 25OHD3 separated at high resolution, and a high specificity and reli-
ability. Its disadvantages include the use of excess sample amounts, equipment cost, 
a need for preparative chromatography, and interference by other UV-absorbing 
compounds, and that the method is somewhat complex and not easily practical. It 
would not be considered a routine diagnostic test, as it is used in only about 2% of 
laboratories in the world) [94, 95]. With the later development of the RIA method, 
the value of quantifying vitamin levels improved. The advantages of this method 
type are that sample amount can be small and not pre-analytical preparative purifi-
cation process is required. The assay is economical and easily applicable, and results 
reliable. As to the disadvantages, chemical and radioactive (with the RIA) waste are 
issues, and there is cross-reactivity with polar vitamin D metabolites as in the ear-
lier competitive binding type assays. The RIA also is 100% specific for 25OHD3 and 
75% specific for 25OHD2, so the final calculation requires an adjustment [94, 96]. 
Nonetheless automated immunoassay methods are widely used in our country and 
all over the world (approximately 76% of laboratories in the world) [97]. Requiring 
less sample volume, not requiring sample preparation, easy equipment supply, easy 
application, fast results, no cross-reactivity with C3-epimer forms, and low user 
error are among the reasons why this method is used more widely in the world  
[97, 98]. Despite its widespread use, this method has some significant disadvantages. 
In this method, 25OHD2 and 25OHD3 cannot be distinguished and both are mea-
sured as total of 25OHD. This may lead to misinterpretation in countries that use 
ergocalciferol in treatment (eg America) [97]. In addition, automated immunoassay 
results can be affected by pregnancy, whether sampled from intensive care patients, 
the presence of chronic disease and liver diseases, all of which affect the amount 
of VDBP synthesized from the liver [99, 100]. In addition, it has been reported 
that there is a high probability of interferences involving automated immunoassay 
measurement methods [97, 101].

Due to the low reliability of immunoassay measurements, this method has 
begun to be replaced by LC–MS/MS, which is considered to be the “gold standard” 



15

Vitamin D Metabolism
DOI: http://dx.doi.org/10.5772/intechopen.97180

Author details

Sezer Acar and Behzat Özkan*
Division of Pediatric Endocrinology, University of Health Science, Dr. Behçet Uz 
Child Disease and Pediatric Surgery Training and Research, Izmir, Turkey

*Address all correspondence to: ozkan.behzat@gmail.com

method. This method is used in approximately 18% of laboratories around the 
world, and it is estimated that its prevalence will increase due to its more accu-
rate and precise results [97]. This method provides distinguishing quantitative 
measurements of both 25OHD2 and 25OHD3 forms in both serum and plasma 
[102]. Hence, 25OHD2 can be easily monitored in countries where ergocalciferol is 
widely used. In addition, with this method, C-3 epimer forms of vitamin D, which 
are present in high levels in serum in the first year, can be separated from other 
forms, and these metabolites are prevented from causing vitamin D measurement 
 interference [97, 102].

In recent years, instead of measuring the level of vitamin D bound to VDBP, 
there is a strong belief in the need to measure free vitamin D levels as that is the 
form that accounts for the principal bioactivity. Routine methods measure the 
level of 25OHD vitamin bound to VDBP and provide information about the total 
body pool. In parallel with this, if the total body pool is sufficient, free vitamin D 
level is estimated to be sufficient. However, the situation is somewhat complex in 
obese patients, where a negative correlation between the amount of adipose tissue 
and serum vitamin D levels has been reported. In these cases, it has been reported 
that serum 25OHD level is lower than those with normal body weight, since large 
adipose tissue creates a larger pool for vitamin D sequestration [101–105]. In other 
words, serum 25OHD level in obese patients may not provide information about 
the body pool of vitamin D. It is thought that it would be more valuable to measure 
vitamin D levels that are not bound to binding protein in these cases. However, 
there is a serious standardization problem in the measurement of free 25OHD [103]. 
Also, Bikle et al. [106] proposed a method by which free 25OHD vitamin can be 
calculated. However, studies have shown that the results obtained with this method 
are not reliable [107]. Finally, direct measurement or indirect calculations of free 
forms of vitamin D are not yet suitable for routine use.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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