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Chapter

The Fourier Transform
Method for Second-Order
Integro-Dynamic Equations on
Time Scales
Svetlin G. Georgiev

Abstract

In this chapter we introduce the Fourier transform on arbitrary time scales
and deduct some of its properties. In the chapter are given some applications for
second-order integro-dynamic equations on time scales.

Keywords: time scale, Fourier transform, generalized shift problem,
integro-dynamic equation

1. Introduction

Starting with the pioneering work of Hilger [1], the measure chains and in
particular, the time scales have gained a great attention in the last decades.
Especially, theoretical studies on dynamic equations on general time scales,
which can be regarded as generalization of the differential equations, achieved
big progress [2, 3].

The main aim of this chapter is to introduce the Fourier transform on arbitrary
time scales and to deduct some of its properties. We give applications for solving of
second-order integro-dynamic equations on time scales.

The chapter is organized as follows. In the next section we give some basic
definitions and facts from time scale calculus, Laplace, bilateral Laplace transform.
In Section 3 we define the Fourier transform and deduct some of its properties.
In Section 4 we give applications for second-order integro-dynamic equations on
time scales.

2. Preliminaries and auxiliary results

2.1 Time scales

Throughout this paper, we will assume that the reader is familiar with the basics
of the time scale calculus. A detailed introduction to the time scale calculus is given
in [2, 3]. Here, we collect the definitions and theorems that will be most useful in
this paper.
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Definition 2.1. A time scale, denoted by , is a nonempty, closed subset of . For
a, b∈, we let a, b½ � denote the set a, b½ �∩.

Definition 2.2. Let  be a time scale. For t∈, we define the forward jump operator
σ :  !  by σ tð Þ ¼ inf s∈ : s> tf g, and the backward jump operator ρ :  !  is
given by ρ tð Þ ¼ sup x∈ : s< tf g.

By convention, we take inf ∅ ¼ sup, sup∅ ¼ inf . For a function f :  ! ,
we will use the notation f σ tð Þ for the composition f σ tð Þð Þ.

Definition 2.3. The graininess function μ :  ! 0,∞½ Þ is defined by μ tð Þ ¼ σ tð Þ � t,
t∈.

Definition 2.4. Let t∈. If σ tð Þ ¼ t and t< sup, then t is right-dense. If σ tð Þ> t,
then t is right-scattered. Similarly, if ρ tð Þ ¼ t and t> inf , then t is left-dense. If ρ tð Þ< t,
then t is left-scattered.

Definition 2.5. If sup ¼ m such that m is left-scattered, then define κ ¼ n mf g,
otherwise, define κ ¼ .

Definition 2.6. A function f :  !  is rd-continuous provided it is continuous at
right-dense points in  and its left-sided limits exist and are finite at all left-dense points
in . A function p :  !  is regressive provided 1þ μ tð Þp tð Þ 6¼ 0, t∈

κ. The set of all
regressive and rd-continuous functions on a time scale  is denoted byR ¼ R ð Þ. We use
the notation Rþ to denote the subgroup of those p∈R for which 1þ μ tð Þp tð Þ>0 for all
t∈

κ.
Definition 2.7. The delta derivative of f :  !  at t∈

κ, is defined to be

fΔ tð Þ ¼ lim
s!t

f σ tð Þð Þ � f sð Þ

σ tð Þ � s
(1)

provided this limit exists.
Definition 2.8. For p∈R, the generalized exponential function ep : �  !  is

defined by

ep t, sð Þ ¼ exp

ðt

s
ξμ τð Þ p τð Þð ÞΔτ

� �

, (2)

for s, t∈, where the cylinder transformation, ξh zð Þ, is defined by

ξh zð Þ ¼

1

h
Log 1þ zhð Þ, h>0,

z, h ¼ 0:

8

<

:

(3)

Definition 2.9. For p, q∈R, we define the operation ⊕ and ⊖ as follows

p⊕ qð Þ tð Þ ¼ p tð Þ þ q tð Þ þ μ tð Þp tð Þq tð Þ, ⊖pð Þ tð Þ ¼ �
p tð Þ

1þ μ tð Þp tð Þ
: (4)

The proof of the next theorem is given in [2, 3].
Theorem 2.1. If p, q∈R and t, s, r∈, then

1.e0 t, sð Þ ¼ 1, ep t, tð Þ ¼ 1.

2.eσp t, sð Þ ¼ 1þ μ tð Þp tð Þð Þep t, sð Þ:

3.ep s, tð Þ ¼ 1
ep t, sð Þ ¼ e⊖p t, sð Þ:

2

Recent Developments in the Solution of Nonlinear Differential Equations



4.ep t, sð Þep s, rð Þ ¼ ep t, rð Þ:

5.ep t, sð Þeq t, sð Þ ¼ ep⊕ q t, sð Þ:

6.ep t, t0ð Þ>0 for any t0, t∈ if p∈R and 1þ μ tð Þp tð Þ>0 for any t∈
κ.

Definition 2.10. For h>0, the Hilger complex plane is defined by h ¼ n � 1
h

� �

and we take 0 ¼  and 
∞
¼ n 0f g.

Definition 2.11. For given h∈ 0,∞½ Þ, the Hilger real part of a number z∈ is given
by the formula

Re h zð Þ ¼

Re zð Þ, h ¼ 0,

∣1þ hz∣� 1

h
, 0< h<∞,

∣z∣, h ¼ ∞:

8

>

>

<

>

>

:

(5)

It is known, see [4], that for a fixed z and 0< h<∞, Re h zð Þ is a nondecreasing
function of h. This relationship extends to h ¼ ∞ because for any 0< h<∞,

Re h zð Þ ¼
∣1þ hz∣� 1

h
≤

1þ h∣z∣� 1

h
¼ ∣z∣ ¼ Re

∞
zð Þ: (6)

2.2 The Laplace transform

Here we suppose that sup ¼ ∞ and s∈.
Definition 2.12. For 0≤ h≤∞ and λ∈, we define

h λð Þ ¼ z∈h : Re h zð Þ> λf g (7)

and

�h λð Þ ¼ z∈h : 0< Re h zð Þ< λf g: (8)

Definition 2.13. Define minimal graininess as follows μ ∗ sð Þ ¼ inf t∈ s,∞½ Þμ tð Þ.

If λ is positively regressive, then for any z∈μ ∗ sð Þ λð Þ, it is known (see [4]) that

∣eλ⊖z t, sð Þ∣ ≤ eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ, t∈ ½s,∞Þ,

lim
t!∞

Re μ ∗ sð Þ zð Þ t, sð Þ ¼ 0 and lim
t!∞

eλ⊖z t, sð Þ ¼ 0:

(9)

Definition 2.14. If X ⊂ and α∈Rþ is a constant, then we say that f ∈ Crd ð Þ is of
exponential order α on X if there exists a constant K such that for all t∈X, the bound
∣f tð Þ∣ ≤Keα t, sð Þ holds.

If f ∈ Crdð½s,∞ÞÞ is of exponential order α, then for any z∈μ ∗ sð Þ αð Þ (see [4])

lim t!∞f tð Þe⊖z t, sð Þ ¼ 0.
Definition 2.15. If f :  !  and z∈ is a complex number such that for all

t∈ s,∞½ Þ we have 1þ μ tð Þz 6¼ 0, then the Laplace transform is defined by the improper
integral

L fð Þ z, sð Þ ¼

ð

∞

s
f τð Þe⊖z σ τð Þ, sð ÞΔτ, (10)

whenever the integral exists.
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Significant work has been conducted in [4, 5] and references therein to
understand the analytical properties of the Laplace transform.

2.3 The bilateral Laplace transform

Here we suppose that sup ¼ ∞, inf  ¼ �∞ and s∈. Denote μ ∗ sð Þ ¼

supt∈ �∞,sð �μ tð Þ, �μ sð Þ ¼ inf t∈ �∞,sð �μ tð Þ. For λ∈R, define

Mλ t, sð Þ ¼

ðs

t

1

1þ λμ τð Þ
Δτ: (11)

For λ∈Rþð �∞, s�ð Þ, λ∈, it is known (see [6])

1.MΔ

λ t, sð Þ<0 for all t∈ �∞, sð Þ, where the differentiation is with respect to t.

2. lim t!�∞Mλ t, sð Þ ¼ ∞:

3. ∣eλ⊖z t, sð Þ∣ ≤ eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ:

4. lim t!�∞eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ ¼ 0:

5. lim t!�∞eλ⊖z t, sð Þ ¼ 0:

Definition 2.16. Suppose that f :  !  is regulated. Then the bilateral Laplace
transform of f is defined by

Lb fð Þ z, sð Þ ¼

ð

∞

�∞

f tð Þe⊖z σ tð Þ, sð ÞΔt, (12)

for regressive z∈ where the improper integral exists.
Definition 2.17. Let α, γ ∈. We say that a function f ∈ Crd ð Þ has double expo-

nential order α, γð Þ on  if the restrictions f j �∞,sð � and f j s,∞½ Þ are of exponential order α

and γ, respectively.
If f ∈ Crd ð Þ is of double exponential order α, γð Þ, in [6], they are proved the

following properties

1.for any z∈μ ∗ sð Þ γð Þ, lim t!∞f tð Þe⊖z t, sð Þ ¼ 0.

2.for any z∈ �μ ∗ sð Þ αð Þ, lim t!�∞f tð Þe⊖z t, sð Þ ¼ 0.

For z∈, we define

��μ s, zð Þ ¼
μ ∗ sð Þ, Re �μ sð Þ zð Þ≤0,

�μ sð Þ, Re �μ sð Þ zð Þ>0:

(

(13)

Definition 2.18. Let α∈Rþð �∞, s�ð Þ and γ ∈Rþð½s,∞ÞÞ, α, γ ∈. We say that
s, α, γð Þ is an admissible triple if

s,α,γ ¼ z∈ : Re μ ∗ sð Þ zð Þ< α, Re μ ∗ sð Þ zð Þ> γ, 1þ ��μðs, zÞRe �μ sð Þ zð Þ 6¼ 0
� �

6¼ ∅:

(14)
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If s, α, γð Þ is an admissible triple and if f ∈ Crd ð Þ is of double exponential order

α, γð Þ, then in [6] it is proved that Lb �, sð Þ exists on s,α,γ, converges absolutely and
uniformly, and

lim
∣z∣!∞

Lb fð Þ z, sð Þ ¼ 0: (15)

3. The Fourier transform

Suppose that  is a time scale so that inf  ¼ �∞, sup ¼ ∞ and s∈.
Definition 3.1. Suppose that f :  !  is regulated. Then the Fourier transform of

the function f is defined by

F fð Þ x, sð Þ ¼

ð

∞

�∞

f tð Þeσ⊖ix t, sð ÞΔt (16)

for x∈ for which 1þ ixμ tð Þ 6¼ 0 for any t∈
κ and the improper integral exists.

Definition 3.2. Let α∈Rþð½s,∞ÞÞ, γ ∈Rþð �∞, s�ð Þ. We say that s, γ, αð Þ is a real
admissible triple if

Rs,γ,α ¼ x∈ : Re μ ∗ sð Þ ixð Þ< γ, Re μ ∗ sð Þ ixð Þ> α,
�

1þ ��μ sð ÞRe �μ sð Þ ixð Þ 6¼ 0
�

6¼ ∅:

(17)

If f ∈ Crd ð Þ, then the triple s, γ, αð Þ is a real admissible triple and f is of double
exponential order α, γð Þ, then F fð Þ �, sð Þ exists on Rs,γ,α and converges absolutely and
uniformly on Rs,γ,α. Below we will list some of the properties of the Fourier
transform.

Theorem 3.1. Let f , g :  ! , α, β∈. Then

F αf þ βgð Þ x, sð Þ ¼ αF fð Þ x, sð Þ þ βF gð Þ x, sð Þ (18)

for those x∈ for which 1þ xμ tð Þ 6¼ 0, t∈
κ, and the respective integrals exist.

Proof. We have

F αf þ βgð Þ x, sð Þ ¼

ð

∞

�∞

αf þ βgð Þ tð Þeσ⊖ix t, sð ÞΔt

¼ α

ð

∞

�∞

f tð Þeσ⊖ix t, sð ÞΔtþ β

ð

∞

�∞

g tð Þeσ⊖ix t, sð ÞΔt ¼ αF fð Þ x, sð Þ þ βF gð Þ x, sð Þ:

(19)

This completes the proof. □

Theorem 3.2. Let f :  !  be enough times Δ-differentiable. For any k∈,
we have

F fΔ
k

� �

x, sð Þ ¼ ixð ÞkF fð Þ x, sð Þ (20)

for those x∈ for which 1þ xμ tð Þ 6¼ 0, t∈
κ, and the respective integrals exist and

lim
t!�∞

fΔ
l

tð Þe⊖ix t, sð Þ ¼ 0, l∈ 0, … , k� 1f g: (21)

Proof. We will use the principle of mathematical induction.
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1.For k ¼ 1, we have

F fΔ
� 	

x, sð Þ ¼

ð

∞

�∞

fΔ tð Þeσ⊖ix t, sð ÞΔt ¼ lim
t!∞

f tð Þe⊖ix t, sð Þ � lim
t!�∞

f tð Þe⊖ix t, sð Þ

�

ð

∞

�∞

⊖ixð Þ tð Þf tð Þe⊖ix t, sð ÞΔt ¼ ix

ð

∞

�∞

f tð Þeσ⊖ix t, sð ÞΔt

¼ ixF fð Þ x, sð Þ:

(22)

2.Assume that

F fΔ
k

� �

x, sð Þ ¼ ixð ÞkF fð Þ x, sð Þ (23)

for some k∈.

3.We will prove that

F fΔ
kþ1

� �

x, sð Þ ¼ ixð Þkþ1F fð Þ x, sð Þ: (24)

Really, we have

F fΔ
kþ1

� �

x, sð Þ ¼ ixF fΔ
k

� �

x, sð Þ ¼ ixð Þkþ1F fð Þ x, sð Þ: (25)

This completes the proof. □

Theorem 3.3. Let f :  ! . Then

F fð Þ x, sð Þ ¼ F fð Þ �x, sð Þ (26)

for those x∈ for which 1� xμ tð Þ 6¼ 0, t∈
κ, and the respective integrals exist.

Proof. From the definition of the Fourier transform, we have

F fð Þ x; sð Þ ¼

ð

∞

�∞

e
Ð σ tð Þ

s

1
μ τð Þ

Log 1þμ τð Þ ⊖ ixð Þð Þ τð Þð ÞΔτ
f tð ÞΔt

¼

ð

∞

�∞

e
Ð σ tð Þ

s

1
μ τð Þ

Log 1þμ τð Þ ⊖ ixð Þð Þ τð Þð ÞΔτ
f tð ÞΔt

¼

ð

∞

�∞

e
Ð σ tð Þ

s

1
μ τð Þ

Log 1þμ τð Þ ⊖ i �xð Þð Þð Þ τð Þð ÞΔτ
f tð ÞΔt

¼ F fð Þ �x; sð Þ:

(27)

This completes the proof. □

Theorem 3.4. Let f :  !  be regulated and

F tð Þ ¼

ðt

a
f τð ÞΔτ, t∈, (28)

for some fixed a∈. Then

F Fð Þ x, sð Þ ¼ �
i

x
F fð Þ x, sð Þ (29)
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for those x∈, x 6¼ 0, for which

lim
t!�∞

F tð Þe⊖ix t, sð Þ ¼ 0: (30)

Proof. We have

F Fð Þ x; sð Þ ¼

ð

∞

�∞

F tð Þeσ⊖ix t; sð ÞΔt ¼

ð

∞

�∞

F tð Þ 1þ μ tð Þ ⊖ ixð Þð Þ tð Þð Þe⊖ix t; sð ÞΔt

¼

ð

∞

�∞

F tð Þ
1

1þ iμ tð Þx
e⊖ix t; sð ÞΔt ¼ �

1

ix

ð

∞

�∞

F tð Þ
�ix

1þ iμ tð Þx
e⊖ix t; sð ÞΔt

¼
i

x

ð

∞

�∞

F tð Þ ⊖ixð Þ tð Þe⊖ix t; sð ÞΔt ¼
i

x

ð

∞

�∞

F tð ÞeΔ⊖ix t; sð ÞΔt

¼
i

x
lim
t!∞

F tð Þe⊖ixðt; sÞ � lim
t!�∞

F tð Þe⊖ixðt; sÞ
� �

�
i

x

ð

∞

�∞

f tð Þeσ⊖ix t; sð ÞΔt

¼ �
i

x
F fð Þ x; sð Þ

(31)

for those x∈, x 6¼ 0, for which

lim
t!�∞

F tð Þe⊖ix t, sð Þ ¼ 0: (32)

This completes the proof. □

4. Applications to second-order integro-dynamic equations

Consider the equation

yΔ
2

þ a1y
Δ þ a2y ¼

ðt

a
f sð ÞΔs, (33)

where a1, a2 ∈, f ∈ Crd ð Þ, f :  ! . Let s∈ be fixed. Let also, x∈ be
such that

x2 � ia1x� a2 6¼ 0 (34)

and

lim
t!�∞

yΔ
l

tð Þe⊖ix t, sð Þ ¼ 0, l ¼ 0, 1, (35)

and

lim
t!�∞

F tð Þe⊖ix t, sð Þ ¼ 0, (36)

where

F tð Þ ¼

ðt

a
f sð ÞΔs, t∈: (37)
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Here a∈ is a fixed constant. Set

Y xð Þ ¼ F yð Þ x, sð Þ: (38)

Then

F yΔ
� 	

x, sð Þ ¼ ixF yð Þ x, sð Þ

¼ ixY xð Þ,

F yΔ
2

� �

x, sð Þ ¼ ixð Þ2F yð Þ x, sð Þ

¼ �x2Y xð Þ

(39)

and

F fð Þ x, sð Þ ¼ �
i

x
F x, sð Þ: (40)

Then the Eq. (33) takes the form

�x2Y xð Þ þ ia1xY xð Þ þ a2Y xð Þ ¼ �
i

x
F x, sð Þ, (41)

or

x2 � ia1x� a2
� 	

Y xð Þ ¼
i

x
F fð Þ x, sð Þ, (42)

or

Y xð Þ ¼
i

x x2 � ia1x� a2ð Þ
F fð Þ x, sð Þ: (43)

Consequently

y tð Þ ¼ F�1 i

x x2 � ia1x� a2ð Þ
F fð Þð�, sÞ

� �

tð Þ, t∈, (44)

provided that F�1 exists.
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