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Maneuvering Mitochondria 
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Therapeutic Potential of mtDNA 
Mutation
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Abstract

Heterogeneity of mitochondrial diseases in terms of genetic etiology and clinical 
management makes their diagnosis challenging. Mitochondrial genome, basic mito-
chondrial genetics, common mutations, and their correlation with human diseases 
is well-established now and advances in sequencing is accelerating the molecular 
diagnostics of mitochondrial diseases. Major research focus now is on development 
of mtDNA intervention techniques like mtDNA gene editing, transfer of exogenous 
genes (sometimes even entire mtDNA) that would compensate for mtDNA mutations 
responsible for mitochondrial dysfunction. Although these genetic manipulation 
techniques have good potential for treatment of mtDNA diseases, research on such 
mitochondrial manipulation fosters ethical issues. The present chapter starts with 
an introduction to the factors that influence the clinical features of mitochondrial 
diseases. Advancement in treatments for mitochondrial diseases are then discussed 
followed by a note on methods for preventing transmission of these diseases.

Keywords: mitochondrial diseases, mtDNA intervention techniques, mitochondrial 
donation, genomics advancements, reproductive techniques

1. Introduction

Mitochondria are synonymized with energy thanks to their ability to produce 
most of the Adenosine Triphosphate (ATP) through the process of Oxidative 
Phosphorylation. In addition to ATP production, several metabolic processes like 
tricarboxylic acid cycle (TCA), fatty acid oxidation, ketogenesis, urea cycle (partly), 
heme and phospholipid synthesis take place in mitochondria [1, 2]. Role of mitochon-
dria in cell death (apoptosis) is also well-established [3]. Recent research suggests 
new role of mitochondria in calcium homeostasis, iron and copper metabolism and 
inflammation and immunity [4]. Though oxidative phosphorylation puts aerobes at 
higher level in terms of efficiency of energy production, one unpleasant consequence 
of this important process is production of reactive oxygen species (ROS) also known 
as mitochondrial ROS (mtROS). The culprit for formation of these reactive species 
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is proton leak at the inner mitochondrial membrane. Formation of such species pose 
great threat to mitochondrial DNA (mtDNA) and may lead to mitochondrial dysfunc-
tion [5]. Once thought to be uncommon, mtDNA diseases are now known to be quite 
prevalent and their definition is no more restricted to defects in oxidative phosphory-
lation alone but also include defects in molecular processes like mitochondrial fission, 
fusion and translation [6–8].

The list of common mitochondrial diseases and syndromes is quite lengthy that 
include mitochondrial encephalopathy, lactic acidosis and stroke-like episodes 
(MELAS syndrome), Leber’s hereditary optic neuropathy (LHON), myoclinic epilepsy 
with ragged-red fibers (MERRF), Leigh syndrome and Pearson syndrome, Kearne-
Sayre syndrome (KSS), chronic progressive external ophthalmoloplegia (CPEO) 
and neuropathy, ataxia and retinitis pigmentosa (NARP) [9–17]. Mutations in the 
mitochondrially-encoded genes are the most common cause of these diseases. Several 
mutations have been reported such as m.3243A > G, m.3271 T > C, m.1642G > A, 
m.9957 T > C, m.3272 T > C, m.1642G > A, m.1277A > G, m.13045A > C, m.13513G > A 
and m.13514A > G (all reported in MELAS [18–26]), m.8344A > G, m.8356G > A, 
m.3291 T > C, m.4279A > G (reported in MERRF [27–29]), G3460A, T14484C in 
LHON [30]. Recent review describes a comprehensive approach to study mitochon-
drial disorders caused by mutations through an example of m.3243 A > G [31].

Reviews on basic mitochondrial genetics, mutations and their correlation with 
human diseases are available [32–34]. Starting with unique features of mitochondria 
that decide the clinical presentation of mitochondrial diseases, this review focusses on 
advancement in mitochondrial DNA manipulation. Methods for preventing transmis-
sion of these diseases are discussed at the end.

2. Factors that govern clinical features of mitochondrial diseases

2.1 Heteroplasmy

Presence of several thousand copies of mitochondrial genome (mtGenome) 
per cell creates two conditions; homoplasmy and heteroplasmy. When all copies of 
mtGenome are identical, the scenario is described as homoplasmy. Heteroplasmy 
is a situation in which more than one mtDNA variants exist between the cells of an 
individual or within a same cell. Often this is due to de novo mutations either in germ 
line or in somatic cells. As a result, mitochondrial dysfunction can be seen only in spe-
cific cells, tissues, or organs. The rate at which the regions in the mtGenome evolves 
is much higher than that of nuclear genes. This reduces the possibility of all mtDNA 
molecules to be identical in an individual’s cells. Considering the large copy number 
of mtGenome present, detection of mtDNA mutation is difficult until it is spread 
among enough mtDNA molecules in a given cell. Only when mutated mtDNA exceeds 
threshold levels, clinical consequences of such mutations are seen [35]. Absence of 
fixed functional threshold level makes the analysis of mtDNA results even more com-
plicated. Variations in threshold frequencies have been reported for different types of 
tissues and mtDNA mutations.

2.2 Mitochondrial DNA bottleneck

Mitochondrial genome, unlike its nuclear counterpart, shows uniparental trans-
mission. Considering a single-parent origin, theoretically, mitochondrial DNA of a 
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mother and her progeny should not show any variations. But, in reality, extensive 
variations have been reported in humans [36, 37]. Accumulation and enrichment of 
mutant mitochondria thus suggests presence of mitochondrial bottleneck; a concept 
that describes why mtDNA of an embryo may differ significantly from that of its 
mother [38].

3. Manipulation of mitochondrial DNA

Diagnosis and monitoring clinical progression of mtDNA diseases is difficult 
due to multi-copy nature of mtGenome. Fortunately, many harmful mtDNA muta-
tions are heteroplasmic and this paves the way for curing these disorders. If mutated 
copies of mtDNAmolecules can be removed selectively from the pool of wild type 
molecules, heteroplasmy can be reduced and cellular biochemical defects can be 
cured. However, manipulating heteroplasmy has been challenging due to several 
barriers. Some of these barriers and attempts to overcome them are discussed in this 
section.

3.1 First barrier: difficulty in mitochondrial transfection

Mitochondria have two lipid bilayers that includes outer and inner membranes. 
While outer membrane allows easy transport of small molecules like ATP, proteins 
less than 10 KDaand ions, the inner mebrane brings selectivity barrier. Hydrophilic 
molecules cannot cross this barrier due to presence of cardiolipin; a hallmark mito-
chondrial lipid with four alkyl tails. It is this impermeability of inner membrane to 
the hydrophilic molecules that makes the passage of DNA through mitochondrial 
membranes difficult.

3.2 Strategies to overcome mitochondrial membrane barrier

One of the effective ways to treat mitochondrial diseases is to introduce wild type 
genes into the mitochondria. The approaches for introducing genes can be broadly 
classified into three categories namely physical, chemical, and biological methods. 
Physical methods are relatively simple and straightforward. Methods like microin-
jection, particle bombardment, electroporation and sonication have been used for 
delivering exogenous genes into the mitochondria [39, 40]. Separate carrier molecules 
are not required in these methods which eliminates the toxicity problems of such mol-
ecules. However, drawbacks of these methods include random distribution of DNA 
in mitochondrial matrix and the risk of damage of target cell during cell membrane 
penetration [40].

Many chemical-based methods have been reported for mitochondrial gene deliv-
ery. Considering hydrophobicity and presence of negative charges on mitochondrial 
membrane, cationic and amphiphilic carrier molecules have been used to enclose 
the negatively charged DNA [41]. Plasmid DNA was introduced to mitochondria 
using rhodamine-pDNA-nanoparticle complex [42] where the dye facilitated move-
ment of nanoparticles across the plasma membrane and mitochondrial membrane. 
Mitochondria-specific liposomes were used for successful release of plasmid DNA 
in mitochondrial matrix [43], however, certain limitations like cytotoxicity and low 
transfection efficiency were noted. Improved version of liposome-based nanocarrier 
came in the form of MITO-Porter [44, 45]. Current research focuses on improving 
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the mitochondrial targeting and reducing the toxicity to target cells. New ligands are 
being explored and linked to chemically synthesized carrier molecules that target the 
mitochondrial receptors.

Understanding of mitochondrial targeting signal peptide (MTS)-mediated 
translocation has provided a new biological approach for specific mitochondrial gene 
delivery. Carrier molecules having DNA-binding ability were conjugated to MTS. 
DNA oligomer peptide nucleic acid (PNA) that has polyamide bond rather than 
usual sugar-phosphate backbone, was conjugated to MTS and this MTS-mediated 
PNA could successfully enter the mitochondrial matrix through the translocase of 
outer membrane (TOM) and that of inner membrane (TIM) [46, 47]. Though this 
approach has some shortcomings like low mitochondrial targeting (as PNA tends to 
be localized in nucleus) and the restricted size of genes-to be-transferred, this is a 
clear indication that MTS can be successfully applied in mitogene delivery in near 
future. Use of viral vectors, especially adeno-associated virus (AAV), have been tested 
for mitochondrial gene delivery [48]. The wild type human mitochondrial genes were 
added to MTS-AAV complex to compensate mutated and defective NADH ubiquinone 
oxidoreductase subunit 4 (ND4) gene which is the culprit for LHON [49]. In addition 
to these physical, chemical, and biological methods, there are several combinatorial 
approaches that have been tested. A recent review [50] gives details of these methods 
and also discusses the need for new approaches.

3.3 Barrier 2: eliminating mutant mtDNA molecules

Elimination of mutant mtDNA molecules can reduce the threshold of mutant 
molecule load. Total elimination of mutant mtDNA is not required because a small 
reduction in mutant mtDNA load just below the threshold can improve the clinical 
scenario of a diseased person.

3.4 Strategies to selectively target mutant molecules

Construction and characterization of mitoApaLI; one of the several mitochondria-
targeted restriction endonucleases developed so far, and its significant role in shifting 
heteroplasmy towards one of the two mtDNA haplotypes is explained in detail in a 
recent book chapter [51]. The prerequisite (also a limiting factor) of using mitoREs is 
that the target mutation should result in a unique restriction site to avoid breaking of 
wild type mtDNA. Different methods of mitochondrial transfection and strategies to 
deal with heteroplasmy are summerized in Figure 1.

Two recent gene editing systems namely mitochondria-targeted transcription 
activator-like effector nucleases (mitoTALENs) and mitochondria-targeted zinc 
finger nucleases (mtZFN) can selectively target single nucleotide mutations and can 
degrade them. Minczuk and Gammage laboratories have extensively used mtZFN 
to shift heteroplasmy [52, 53]. The mitoTALENs have been used to target specific 
mutations from animal and human-derived cells [54]. Although these gene therapy 
approaches are quite promising, we need to be careful because of the risk involved 
in this approach. mtDNA copy number may go down significantly and there may 
be undesirable off-target effects while attempting elimination of mutated copies. 
Crisper-Cas 9 cannot be used for this purpose because it needs single-guide RNA for 
gene editing and RNA import in mitochondria is restricted [55].
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4. Decrease in NAD+ levels

Nicotinamide adenine dinucleotide oxidized (NAD+) is a coenzyme required for 
action of many enzymes like polyADP ribose polymerase (PARP) and sirtuin deacety-
lases. Substantial decrease in NAD+concentration and the ratio of NAD+/NADH was 
reported in the cells having defective mitochondria [56]. Defective respiratory chain 
cannot reoxidize NADH to oxygen. This results in reduction of pyruvate to lactate 
by lactate dehydrogenase generating NAD+. Transport of excess lactate outside the 
cell leads to lactate acidemia, which is a common feature of mitochondrial diseases. 
Increasing the cellular levels of NAD+ either through supplementation or through 
bringing changes in enzymes involved in its synthesis have been reported [57]. 

Figure 1. 
The figure is a schematic representation of different methods of mitochondrial transfection and strategies 
to deal with heteroplasmy. Abbreviations used in the figure are: Outer mitochondrial membrane (OMM), 
intermembrane space (IMS), inner mitochondrial membrane (IMM), mitochondrial target signal peptide 
(MTS), translocase of outer membrane (TOM), translocase of inner membrane (TIM), adeno-associated virus 
(AAV) and mitochondrial DNA (mtDNA).
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A recent approach tested in mice was to reoxidize extracellular lactate to pyruvate and 
bring it back to the cell for its re-reduction by lactate dehydrogenase thus increasing 
NAD+/NADH ratio [58].

5. Prevention of transmission of mitochondrial diseases

5.1 Options to prevent transmission

Mitochondrial DNA is maternally inherited and genetic bottleneck makes it even 
more peculiar. Therefore, options different from those with nuclear genetic defects 
must be considered. It is important to know which mutation a woman carries and its 
level; especially in those cases who harbor heteroplasmic mtDNA mutations. Genetic 
diagnosis and expert counseling is invaluable for such cases. Post-counseling options 
include voluntary childlessness and adoption. Prenatal testing and preimplantation 
genetic diagnosis (PGD) are recently available alternatives. PGD includes in vitro 
fertilization (IVF) and embryo development to blastocyst stage. Because of inherent 
issues with IVF, PGD has limited chance to succeed.

5.2 Mitochondrial replacement therapy (MRT) or mitochondrial donation

MRT is probably the only way available to those couples who are suffering from mito-
chondrial disease and wish to have a healthy child. In such cases, nucleus is taken from a 
mother carrying defective mitochondria and transferred to an enucleated oocyte or egg 
of a woman with healthy mitochondria. Embryo formed after this procedure (also called 
as three parent embryo) will have nuclear DNA from both parents but mitochondrial 
DNA from another mother. Ideally such embryo should be free from defective mito-
chondria. Using this technique in human oocytes, good quality embryos could be formed 
as reported by several workers [59, 60]. Though potentially this is a great advancement, 
mitochondrial donation may raise ethical issues [61]. Also some workers observed that 
the nucleus which was transferred to enucleated oocyte/egg showed presence of con-
taminating defective mitochondria. Enrichment of such contaminating mitochondria 
may cause mitochondrial disease in individuals generated through MRT. This issue 
becomes more sensitive when female embryos are generated after MRT because they 
will be passing on their defective mitochondria to the next generation. MRT females 
may show same mitochondrial disease and infertility as their mothers. In future, better 
understanding of maternal inheritance of mitochondria will improve the efficacy of this 
therapeutic method and make it a sustainable approach for betterment of individuals 
across the generations. Another issue that may hamper the progress of mitochondrial 
donation is availability of oocyte donors because this involves hormonal treatment.

6. Conclusions

Advances in DNA sequencing are accelerating the diagnosis of mitochondrial dis-
eases and helping in assessment of heteroplasmy levels. Although molecular diagnosis 
is crucial, it can only identify the problem but cannot solve it. Input from reproduc-
tive biologists are equally important for comprehensive analysis and personal care of 
diseased individuals. Development of new treatments through further advancements 
in gene therapy holds great promise for the sufferers of mitochondrial disease.
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