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Chapter

The Uniformly Parabolic
Equations of Higher Order with
Discontinuous Data in Generalized
Morrey Spaces and Elliptic
Equations in Unbounded Domains
Tair Gadjiev and Konul Suleymanova

Abstract

We study the regularity of the solutions of the Cauchy-Dirichlet problem for
linear uniformly parabolic equations of higher order with vanishing mean oscilla-
tion (VMO) coefficients. We prove continuity in generalized parabolic Morrey
spaces Mp,φ of sublinear operators generated by the parabolic Calderon-Zygmund
operator and by the commutator of this operator with bounded mean oscillation
(BMO) functions. We obtain strong solution belongs to the generalized

Sobolev-Morrey space Wm,1
p,φ

∘

Qð Þ. Also we consider elliptic equation in unbounded

domains.

Keywords: higher order parabolic equations, generalized Morrey spaces, sublinear
operators, Calderon-Zygmund integrals, VMO, Cauchy-Dirichlet problem, elliptic
equations, unbounded domain

1. Introduction

We consider the higher order linear Cauchy-Dirichlet problem in Q ¼

Ω� 0,Tð Þ, being a cylinder in 
nþ1, Ω⊂Rn be a bounded domain 0<T <∞

ut �
X

∣α∣ ≤m,

∣β∣ ≤m

aαβ x, tð ÞDαβu x, tð Þ ¼ f x, tð Þ, a:e: in Q (1)

u x, tð Þ ¼ 0 on ∂pQ, (2)

where ∂pQ ¼ ∂Ω� 0,T½ �ð Þ∪ Ω� t ¼ 0f gð Þ stands for the parabolic boundary of

Q and Dαβ ¼ ∂
∣α∣

∂x
α1
1 ,⋯, ∂xαnn

⋯ ∂
∣β∣

∂y
β1
1 ,⋯, ∂y

βn
n

, ∣α∣ ¼
Pn

k¼1αk, β ¼
Pn

k¼1βk.

The unique strong solvability of this type problem was proved in [1]. In [2] the

regularity of the solution in the Morrey spaces Lp,λ 
nþ1

� �

with p∈ 1,∞ð Þ,
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λ∈ 0, nþ 2ð Þ and also its Hölder regularity was studied. In [3] Nakai extend these

studies on generalized Morrey spaces Mp,φ 
nþ1

� �

with a weight φ satisfying the

integral condition

ð

∞

r

φ a, sð Þ

s
ds≤ cφ a, rð Þ, ∀a∈

nþ1, r>0:

The generalized Morrey space is then defined to be the set of all f ∈Lp,loc 
nþ1

� �

such that

∥f∥Mp,φ 
nþ1ð Þ ¼ sup

E

1

φ Eð Þ

1

∣E∣

ð

E

f xð Þj jpdx

� �1
p

,

where the supremum is taken over all parabolic balls E with respect to the
parabolic distance.

The main results connected with these spaces is the following celebrated lemma:
let ∣Df ∣ ∈Lp,n�λ even locally, with n� λ< p, then u is Holder continuous of exponent

α ¼ 1� n�λ
p . This result has found many applications in theory elliptic and parabolic

equations. In [2] showed boundedness of the maximal operator in Lp,λ 
nþ1

� �

that

allows them to prove continuity in these spaces of some classical integral operators.
So was put the beginning of the study of the generalized Morrey spaces Mp,φ,p> 1
with φ belonging to various classes of weight functions. In [3] proved boundedness
of maximal and Calderon-Zygmund operators in Mp,φ imposing suitable integral
and doubling conditions on φ. These results allow to study the regularity of the
solutions of various linear elliptic and parabolic value problems in Mp,φ (see [4–6]).
Here we consider a supremum condition on the weight which is optimal and ensure
the boundedness of the maximal operator in Mp,φ. We use maximal inequality to
obtain the Calderon-Zygmund type estimate for the gradient of the solution of the
problem (1) and (2) in theMp,φ.

The results presented here are a natural extension of the previous paper [7] to
parabolic equations. Here we study the boundedness of the sublinear operators,
generated by Calderon-Zygmund operators in generalized Morrey spaces and the
regularity of the solutions of higher order uniformly elliptic boundary value problem
in local generalized Morrey spaces where domain is bounded. Also hear we study
higher order uniformly elliptic boundary value problem where domain is unbounded.

In paper [8] Byun, Palagachev and Wang is study the regularity problem for
parabolic equation in classical Lebesgue classes and of Byun, Palagchev and Softova
[9, 10] where the problem studied in weighted Lebesgue and Orlicz spaces with a
Muckenhoupt weight and the classical Morrey spaces Lp,λ Qð Þ with λ∈ 0, nþ 2ð Þ.

In papers [11, 12] the authors studied second order linear elliptic and parabolic
equations with VMO coefficients.

Denote by a the coefficient a x, tð Þ ¼ aαβ x, tð Þ
� �

: Q ! Mn�n and by f x, tð Þ

nonhomogeneous term. Suppose that the operator is uniformly parabolic.
The paper is organized as follows. In section 2 we introduce some notations and

give the definition of the generalized Morrey spaces Mp,φ Qð Þ. In section 3 we study
sublinear operators generated by parabolic singular integrals in generalized Morrey
spaces. In section 4 we is consider sublinear operators generated by non-singular
integrals, in section 5 singular and non-singular integrals in generalized Morrey
spaces. In section 6 we consider uniformly parabolic equations of higher order
with VMO coefficients and proved regularity of solutions. In section 7 we study
uniformly elliptic equations in unbounded domains.
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2. Some notation and definition

The following notations are used in this paper:

x ¼ x0, tð Þ, y ¼ y0, τð Þ∈
nþ1 ¼ Rn � Rn,nþ1

þ ¼ Rn � Rþ;

x ¼ x00, xn, tð Þ∈Dnþ1
þ ¼ Rn�1 � Rþ � Rþ,D

nþ1
� ¼ Rn�1 � R� � Rþ;

∣ � ∣ is the Euclidean metric, ∣x∣ ¼
Pn

i¼1 x
2
i þ t2

� �1
2; Br x0ð Þ ¼ y0 ∈Rn

:jx0 � y0j< rf g,

∣Br∣ ¼ c � rn; I r x
0, tð Þ ¼ y∈

nþ1
:jx0 � y0j< r, jt� τj< r2

� �

,∣I r x
0, tð Þ∣ ¼ c � rnþ2; Qr ¼

I r x, τð Þ∩Q for each x, τð Þ∈Q, 2I r x, τð Þ ¼ I 2r x, τð Þ.

Sn is the unit sphere in 
nþ1;

Diu ¼
∂u

∂xi
,Du ¼ D1u, … ,Dnuð Þ, ut ¼

∂u

∂t
;

Dαβu ¼
∂
∣α∣
∂
∣β∣u

∂xα11 … ∂xαnn � ∂y
β1
1 � ∂y

βn
n

the letter C is used for various positive constants.

In the following, besides the standard parabolic metric ρ x, tð Þ ¼ max jx0j, tj j
1
2

� 	

.

We use the equivalent one

ρ x, tð Þ ¼
x0j j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0j j4 þ 4t2
q

2

0

@

1

A

1
2

considered by Fabes and Riviere in [13]. The topology induced by ρ x, tð Þ consists
of the ellipsoids

Er xð Þ ¼ y∈
nþ1

:
x0 � y0j j2

r2
þ

t� τj j2

r4
< 1

( )

, ∣Er∣ ¼ C � rnþ2,

E1 xð Þ � B1 xð Þ:

It is easy to see that the this metrics ore equivalent. In fact, for each Er there exist

parabolic cylinders I and I with measure comparable to rnþ2 such that I ⊂ Er ⊂ I .

Let Q ¼ Ω� 0,Tð Þ,T >0, be a cylinder in Rnþ1
þ : We give the definitions of the

functional spaces that we are going to use. Let a∈L1,loc 
nþ1

�

and let aEr ¼

Erj j�1Ð

Er
a yð Þdy be the mean value of the integral of a. Denote

ηa Rð Þ ¼ sup
r≤R

1

∣Er∣

ð

Er

f yð Þ � f Er

�

�

�

�

�

�dy for every R>0,

where Er ranges over all ellipsoids in 
nþ1. We say a∈BMO (bounded mean

oscillation [14]) if

∥a∥ ∗ ¼ sup
R>0

ηα Rð Þ

is finite. ∥ � ∥ ∗ is a norm in a BMO constant functions.
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We say a∈VMO (vanishing mean oscillation) [14] if a∈BMO and

lim
R!0

ηa Rð Þ ¼ 0

ηa Rð Þ is called the VMO-modulus of a. For any bounded cylinder Q we define
BMO Qð Þ and VMO Qð Þ taking a∈L1 Qð Þ and Q r ¼ Q ∩ Er xð Þ, x∈Q, instead of Er in
the definition above. If a function a∈BMO or VMO, it is possible to extend the

function in the whole of nþ1 preserving its BMO-norm or VMO-modulus, respec-
tively (see [15]). Any bounded uniformly continuous BUCð Þ function f with mod-
ulus of continuity ω f Rð Þ belongs to VMO with η f Rð Þ ¼ ω f Rð Þ: Besides, BMO and

VMO also contain discontinuous functions, and the following example shows the

inclusion W1
nþ2 

nþ1
� �

⊂VMO⊂BMO:

Example 2.1. We have that f xð Þ ¼ ∣ log ρ x, tð Þ∣ ∈BMOnVMO;

sin f xð Þ∈BMO∩L
∞


nþ1

� �

; f α xð Þ ¼ log ρ x, tÞð jα ∈VMOj for any α∈ 0, 1ð Þ;

f α ∈W1
nþ2 

nþ1
� �

for α∈ 0, 1� 1
nþ2

� 	

; f α ∉ W1
nþ2 

nþ1
� �

for α∈ 1� 1
nþ2, 1

h 	

:

Let φ : 
nþ1 � Rþ ! Rþ be a measurable function and p∈ 1,∞½ Þ: The generalized

parabolic Morrey space Mp,φ 
nþ1

� �

consists of all f ∈Lp,loc 
nþ1

� �

such that

∥f∥p,φ;nþ1 ¼ sup
x, rð Þ∈

nþ1�Rþ

φ�1 x, rð Þ r�n�2

ð

Er xð Þ

f yð Þj jpdy

 !1
p

<∞:

The space Mp,φ Qð Þ consists of Lp Qð Þ functions provided the following norm is
finite

∥f∥p,φ;Q ¼ sup
x, rð Þ∈

nþ1�Rþ

φ�1 x, rð Þ r�n�2

ð

Qr xð Þ

f yð Þj jpdy

 !1
p

:

The generalized weak parabolic Morrey space WM1,α Rnþ1ð Þ consists of all mea-
surable functions such that

∥f∥WM1,α 
nþ1ð Þ ¼ sup

x, rð Þ∈
nþ1�Rþ

φ�1 x, rð Þr�n�2∥f∥WL1 Er xð Þð Þ,

where WL1 denotes the weak L1 space. The generalized Sobolev-Morrey space

W2m,1
p,φ Qð Þ, p∈ 1,∞½ Þ, consists of all Sobolev functions U ∈W2m,1

p Qð Þ with distribu-

tional derivatives Dl
tD

s
xu∈Mp,φ Qð Þ, 0≤ 2lþ ∣s∣ ≤ 2m, endowed by the norm

∥u∥W2m,1
p,φ Qð Þ ¼ ∥ut∥p,φ;Q þ

X

∣δ∣ ≤ 2m

∥Dsu∥p,φ;Q :

We also define the space

W
0 2m,1

p,φ Qð Þ ¼ u∈W2m,1
p,φ Qð Þ : u xð Þ ¼ 0, x∈ ∂Q

n o

,

∥u∥
W
0 2m,1

p,φ Qð Þ
¼ ∥u∥Wm,1

p,φ Qð Þ

n o

,

where ∂Q means the parabolic boundary Ω∪ ∂Ω� 0,Tð Þð Þ: In problem (1) and

(2) the coefficient matrix a x, tð Þ ¼ aα,β x, tð Þ
� �n

i,j¼1
, ∣α∣, ∣β∣ ¼ m satisfies
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∃γ >0 γ
X

∣α∣¼m

ξ2α ≤
X

∣α∣¼m

∣β∣¼m

aα,β x, tð Þξαξβ, (3)

for a.e. x, tð Þ∈Q, ∀ξ∈Rn,ξ ¼ ξα, jα ¼ mj∈RN
� �

, N–number different

multiindeks with length equal to m, aα,β x, tð Þ ¼ aβ,α x, tð Þ, which implies
aα,β x, tð Þ∈L

∞
Qð Þ:

Theorem 2.1. (Main results) Let a x, tð Þ∈VMO Qð Þ with ηα,β ¼
Pn

i,j¼1ηαβij satisfy

(3), and, for each p∈ 1,∞ð Þ, let u x, tð Þ∈W
0 2m,1

p Qð Þ be a strong solution (1) and (2). If

f ∈Mp,φ Qð Þ with φ x, rð Þ being a measurable positive function satisfying

ð

∞

r
1þ ln

s

r

� 	

ess inf
s< ξ<∞

φ x, ξð Þξ
nþ2
p

s
nþ2
p þ 1

ds≤Cφ x, rð Þ (4)

x, rð Þ∈Q � Rþ, then u x, tð Þ∈W
0 2m,1

p,φ Qð Þ and

∥u∥
W
0 2m,1

p,φ Qð Þ
≤C∥f∥p,φ;Q (5)

with C ¼ C n, p, γ, ∂Ω,T, ηα, ∥a∥∞;Q

� �

.

3. Sublinear operators generated by parabolic singular integrals in
generalized Morrey spaces

Let f ∈L1 
nþ1

� �

be a function with a compact support and a∈BMO: For any

x ∉ suppf define the sublinear operators T and Ta such that

∣Tf xð Þ∣ ≤ c

ð


nþ1

∣f yð Þ∣

ρnþ2 x� yð Þ
dy, (6)

∣Taf xð Þ∣ ≤ c

ð


nþ1
∣a xð Þ � a yð Þ∣

∣f yð Þ∣

ρnþ2 x� yð Þ
dy, (7)

This operators are bounded in Lp 
nþ1

� �

satisfy the estimates

∥Tf∥Lp
≤C∥f∥Lp

, ∥Taf∥Lp
≤C∥a∥ ∗ ∥f∥Lp

, (8)

where constants independent of a and f : Let we have the Hardy operator

Hg rð Þ ¼ 1
r

Ð r
0g sð Þds, r>0:

Theorem 3.1. (see [12]) The inequality

ess sup
r>0

ω rð ÞHg rð Þ≤Aess sup
r>0

ϑ rð Þg rð Þ (9)

holds for all non-increasing functions g : Rþ ! Rþ if and only if

5
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A ¼ Csup
r>0

ω rð Þ

r

ðr

0

ds

ess sup
0< ξ< s

ϑ ξð Þ
<∞ (10)

Lemma 3.1. (see [12]) Let f ∈Lp,loc 
nþ1

� �

, p∈ 1,∞½ Þ, be such that

ð

∞

r
s�

nþ2
p �1

∥f∥Lp Es γ0ð Þð Þds<∞ ∀ x0, rð Þ∈
nþ1 � Rþ (11)

and let T be a sublinear operator satisfying (6).

i. If p> 1 and T is bounded on Lp 
nþ1

� �

, then

∥Tf∥Lp Erð Þ x0ð Þ ≤ cr
nþ2
p

ð

∞

2r
s�

nþ2
p �1

∥f∥Lp Es γ0ð Þð Þds (12)

ii. If p ¼ 1 and T is bounded from L1 
nþ1

� �

on WL1 
nþ1

� �

, then

∥Tf∥WL1 Erð Þ x0ð Þ ≤ crnþ2

ð

∞

2r
s� nþ3ð Þ∥f∥L1 Es x0ð Þð Þds, (13)

where the constants are independent of r, x0 and f :
Theorem 3.2. (see [12]) Let p∈ 1,∞½ Þ and φ x, rð Þ be a measurable positive function

satisfying

ð

∞

r

ess inf
s< ξ<∞

φ x, ξð Þξ nþ2
p

s
nþ2
p þ1

ds≤Cφ x, rð Þ, ∀ x, rð Þ∈
nþ1 � Rþ (14)

and let T be a sublinear operator satisfying (6).

i. If p> 1 and T is bounded on Lp 
nþ1

� �

, then T is bounded on Mp,φ 
nþ1

� �

, and

∥Tf∥Mp,φ 
nþ1ð Þ ≤C∥f∥Mp,φ 

nþ1ð Þ (15)

ii. If p ¼ 1 and T is bounded from L1 
nþ1

� �

to WL1 
nþ1

� �

, then it is bounded

from M1,φ 
nþ1

� �

to WM1,φ 
nþ1

� �

, and

∥Tf∥WM1,φ 
nþ1ð Þ ≤C∥f∥M1,φ 

nþ1ð Þ (16)

with constants independent of f :

Our next step is to show boundedness of Ta in Mp,φ 
nþ1

� �

: For this we recall
some properties of the BMO functions.

Lemma 3.2. John-Nirenberg lemma [[12], Lemma 2.8]. Let a∈BMO and
p∈ 1,∞½ Þ: Then, for any Er,

1

∣Er∣

ð

Er

a yð Þ � aErj jpdy

� �1
p

≤ c pð Þ∥a∥ ∗ :

As an immediate consequence of (7) we get the following property.
Corollary 3.1. Let a∈BMO: Then, for all 0< 2r< s,

6
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∣aEr � aEs ∣ ≤C nð Þ 1þ ln
s

r

� 	

� ∥a∥ ∗ (17)

Now we estimate the norm of Ta:
Lemma 3.3. (see [12]) Let a∈BMO: and Ta be a bounded operator in

Lp 
nþ1

� �

, p∈ 1,∞ð Þ, satisfying (7) and (8). Suppose that, for any f ∈Lp,loc 
nþ1

� �

,

ð

∞

r

1þ ln
s

r

� 	

∥f∥Lp Es x0ð Þð Þ

ds

s
nþ2
p þ1

<∞ ∀ x0, rð Þ∈
nþ1 � Rþ (18)

Then,

∥Taf∥Lp Es x0ð Þð Þ ≤ c � ∥a∥ ∗ r
nþ2
p

ð

∞

2r
1þ ln

s

r

� 	

∥f∥Lp Es x0ð Þð Þ

ds

s
nþ2
p þ1

(19)

where C is independent of a, f , x0 and r:
Theorem 3.3. Let p∈ 1,∞ð Þ and φ x, rð Þ be measurable positive functions such that

ð

∞

r
1þ ln

s

r

� 	

ess inf
s< ξ<∞

φ x, ξð Þξ
nþ2
p

s
nþ2þpð Þ

p

ds≤Cφ x, rð Þ (20)

for ∀ x, rð Þ∈
nþ1 � Rþ, where C is independent of x and r: Suppose that a∈BMO

and let Ta be a sublinear operator satisfying (7). If Ta is bounded in Lp 
nþ1

� �

, then

bounded in Mp,φ 
nþ1

� �

, and

∥Taf∥Mp,φ 
nþ1ð Þ ≤C∥a∥ ∗ � ∥f∥Mp,φ 

nþ1ð Þ (21)

constant C independent of a and f .
Then basic results of the theorem follows by Lemma 3.3 and Theorem 3.1 in the

same manner as for Theorem 3.2. For example the functions φ x, rð Þ ¼ rβ�
nþ2
p ,

φ x, rð Þ ¼ rβ�
nþ2
p � logm lþ rð Þ with 0< β< nþ2

p and m≥ 1, are weight functions

satisfying the condition (20).

4. Non-singular integrals in generalized Morrey spaces

Let x∈Dnþ1
þ , define x ¼ x00,�xn, tð Þ∈Dnþ1

� and x0 ¼ x00, 0, 0ð Þ∈Rn�1: Consider

the semi-ellipsoids Eþ
r x0ð Þ ¼ Eþ

r x0ð Þ∩Dnþ1
� : Let f ∈L1 Dnþ1

þ

� �

, a∈BMO Dnþ1
þ

� �

, and

T,Ta be sublinear operators such that

∣Tf xð Þ∣ ≤C

ð

Dnþ1
þ

∣f yð Þ∣

ρ x� yð Þnþ2 dy (22)

∣Taf xð Þ∣ ≤C

ð

Dnþ1
þ

∣a xð Þ � a yð Þ∣
∣f yð Þ∣

ρ x� yð Þnþ2 dy (23)

Let both the operators be bounded in Lp Dnþ1
þ

� �

, satisfy the estimates

∥Tf∥Lp Dnþ1
þð Þ ≤C∥f∥Lp Dnþ1

þð Þ, ∥Taf∥Lp Dnþ1
þð Þ ≤C∥a∥ ∗ ∥f∥Lp Dnþ1

þð Þ (24)

constants C independent of a and f :

7
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The following results hold, which can be proved in the some manner as in
Section 3 (see [12]).

Lemma 4.1. Let f ∈Lp,loc Dnþ1
þ

� �

, p∈ 1,∞ð Þ and for all x0, rð Þ∈Rn�1 � Rþ

ð

∞

r
s�

nþ2
p �1

∥f∥Lp Eþs x0ð Þð Þds<∞: (25)

If T is bounded on Lp Dnþ1
þ

� �

, then

∥Tf∥Lp Eþ
r x0ð Þð Þ ≤ cr

nþ2
p

ð

∞

2r
s�

nþ2
p �1

∥f∥Lp Eþ
s x0ð Þð Þds, (26)

where the constant c is independent of r, x0 and f :

Theorem 4.1. Suppose φ be a weight function satisfying (14), and let T be a sublinear

operator satisfying (22) and (24). Then T is bounded in Mp,φ Dnþ1
þ

� �

, p∈ 1,∞ð Þ and

∥Tf∥Mp,φ Dnþ1
þð Þ ≤C∥f∥Mp,φ Dnþ1

þð Þds, (27)

with a constant c independent of f :

Lemma 4.2. Let p∈ 1,∞ð Þ, a∈BMO Dnþ1
þ

� �

and Ta satisfy (23) and (24). Suppose

that, for all f ∈Lp,loc Dnþ1
þ

� �

,

ð

∞

r
1þ ln

s

r

� 	

∥f∥Lp Eþ
s x0ð Þð Þ s

�nþ2
p �1ds<∞, ∀ x0, r

� �

∈
nþ1 � Rþ: (28)

Then

∥Taf∥Lp Eþ
r x0ð Þð Þ ≤C∥a∥ ∗ r

nþ2
p

ð

∞

2r
1þ ln

s

r

� 	

∥f∥Lp Eþs x0ð Þð Þ
ds

s
nþ2
p þ1

with a constant c independent of a, f , x0 and r.

Theorem 4.2. Let p∈ 1,∞ð Þ, a∈BMO Dnþ1
þ

� �

, let φ x0, rð Þ be a weight function

satisfying (20) and Ta be a sublinear operator satisfying (7), (8). Then sublinear

operator Ta is bounded in Mp,φ Dnþ1
þ

� �

and

∥Taf∥Mp,φ Dnþ1
þð Þ ≤C∥a∥ ∗ ∥f∥Mp,φ Dnþ1

þð Þ (29)

constant c independent of a and f .

5. Singular and non-singular integrals in generalized Morrey spaces

We apply the above results to Calderon-Zygmund-type operators with parabolic

kernel. Since these operators are sublinear and bounded in Lp 
nþ1

� �

, their conti-

nuity in Mp,φ follows immediately. We are called a parabolic Calderon-Zygmund

kernel if the following a measurable function K x, ξð Þ : nþ1 � 
nþ1n 0f g ! R.

1.K x, �ð Þ is a parabolic Calderon-Zygmund kernel for a.e. x∈
nþ1

:

1a: K x, �ð Þ∈C∞ 
nþ1

� �

n 0f g,

1b: K x, μξ0, μ2sð Þð Þ ¼ μ�n�2K x, ξð Þ for all μ>0, ξ ¼ ξ0, sð Þ,

1c:
Ð

SnK x, ξð Þdσξ ¼ 0,
Ð

Sn ∣K x, ξð Þ∣dσξ < þ∞:
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2.∥Dβ
ξK∥L∞ 

nþ1�Snð Þ ≤M βð Þ<∞ for every multi-index β:

Moreover,

∣K x, x� yð Þ∣ ≤ ρ x� yð Þ�n�2
∣K x,

x0 � y0

ρ x� yð Þ
,

t� τ

ρ2 x� yð Þ

� �� �

∣ ≤
M

ρ x� yð Þnþ2 ,

which means the singular integrals

Bf xð Þ ¼ PV

ð


nþ1
K x, x� yð Þf yð Þdy, (30)

C a, f½ � xð Þ ¼ PV

ð


nþ1
K x, x� yð Þ a yð Þ � a xð Þ½ �f yð Þdy

are sublinear and bounded in Lp 
nþ1

� �

according to the results in [1, 13].

Theorem 5.1. Let f ∈Mp,φ 
nþ1

� �

m then there exist constants c depending on n, p
and the kernel such that

∥Bf∥Mp,φ 
nþ1ð Þ ≤C∥f∥Mp,φ 

nþ1ð Þ, (31)

∥C a, f½ �∥Mp,φ 
nþ1ð Þ ≤C∥a∥ ∗ ∥f∥Mp,φ 

nþ1ð Þ:

Corollary 5.1. For any cylinder Q in 
nþ1
þ , f ∈Mp,φ Qð Þ, a∈BMO Qð Þ and

K x, ξð Þ : Q � 
nþ1
þ n 0f g ! R: Then the operators (30) are bounded in Mp,φ Qð Þ and

∥Bf∥Mp,φ Qð Þ ≤C∥f∥Mp,φ Qð Þ, ∥C a, f½ �∥Mp,φ Qð Þ≤C∥a∥ ∗ ∥f∥Mp,φ Qð Þ:
(32)

constant c independent of a and f .
We define the extensions

K x, ξð Þ ¼
K x, ξð Þ, x, ξð Þ∈Q � Rnþ1

þ n 0f g

0, elsewhere

(

, f xð Þ ¼
f xð Þ, x∈Q

0, x ∉ Q

�

and then the singular integral satisfying inequalities

∣Bf xð Þ∣ ≤ ∣Bf xð Þ∣ ≤C

ð


nþ1

∣f yð Þ∣

ρ x� yð Þnþ2 dy

and

∥Bf∥Mp,φ Qð Þ ≤∥Bf∥Mp,φ 
nþ1ð Þ ≤C∥f∥Mp,φ 

nþ1ð Þ ¼ C∥f∥Mp,φ Qð Þ:

Corollary 5.2. Let a∈VMO. Then for any ε>0 there exists a positive number r0 ¼
r0 ε, ηað Þ such that for any Er x0ð Þ with a radius r∈ 0, r0ð Þ and all f ∈Mp,φ Er x0ð Þð Þ

∥C a, f½ �∥Mp,φ Er x0ð Þð Þ ≤Cε∥f∥Mp,φ Er x0ð Þð Þ, (33)

where c is independent of E, f , r, and x0:
For the proof of corollary see [12].
For any x0 ∈Rn

þ and any fixed t>0, define the generalized reflexion
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τ xð Þ ¼ τ0 xð Þ, tð Þ, τ0 xð Þ ¼ x0 � 2xn
an
αβ x0,tð Þ

ann
αβ x0,tð Þ

, (34)

where ∣α∣ ≤m, ∣β∣ ≤m, anαβ xð Þ is the last row of the coefficients matrix a xð Þ ¼

aαβ xð Þ
� �

of (1). The function τ0 xð Þ maps Rn
þ into Rn

�, and the kernel

K x, τ xð Þ � yð Þ ¼ K x, τ0 xð Þ � y0, t� τð Þ is non-singular for any x, y∈Dnþ1
þ : Taking

x∈Dnþ1
þ , there exists positive constants K1 and K2 such that

K1ρ x� yð Þ≤ ρ τ xð Þ � yð Þ≤K2ρ x� yð Þ: (35)

Let f ∈Mp,φ Dnþ1
þ

� �

, a∈BMO Dnþ1
þ

� �

define the non-singular integral operators

Bf xð Þ ¼

ð

Dnþ1
þ

K x, τ xð Þ � yð Þf yð Þdy,

C a, f½ � xð Þ ¼

ð

Dnþ1
þ

K x, τ xð Þ � yð Þ a yð Þ � a xð Þ½ �f yð Þdy:

(36)

Since K x, τ xð Þ � yð Þ is still homogeneous and satisfies 1b, we have

∣K x, τ xð Þ � yð Þ∣ ≤
M

ρ τ xð Þ � yð Þnþ2 ≤
C

ρ x� yð Þnþ2 :

Hence, the operators (36) are sublinear and bounded in Lp Dnþ1
þ

� �

, p∈ 1,∞ð Þ:

From section 4 the following results are obtained.

Theorem 5.2. Let a∈BMO Dnþ1
þ

� �

and f ∈Mp,φ Dnþ1
þ

� �

with p,φð Þ as in (8) Then

the non-singular operators are continuous in Mp,φ Dnþ1
þ

� �

and

∥Bf xð Þ∥Mp,φðD
nþ1 ≤C∥f∥Dnþ1

þ
,

∥C a, f½ � xð Þ∥Mp,φðD
nþ1 ≤C∥a∥ ∗ ∥f∥Dnþ1

þ

(37)

constant C independent of a and f .
Corollary 5.3. For any a∈VMO. Then there exists a positive number r0 ¼ r0 ε,φað Þ

such that for any Er x0ð Þ with a radius r∈ 0, r0ð Þ and all ∥f∥Mp,φ Eþr x0ð Þð Þ

∥C a, f½ �∥Mp,φ Eþ
r x0ð Þð Þ ≤Cε∥f∥Mp,φ Eþ

r x0ð Þð Þ (38)

where C is independent of E, f , r and x0, ε>0.

6. Proof of the first main result

Now using boundedness of singular integral of Calderon-Zygmund operators in
generalized Morrey spaces we will get interval estimates for solutions of problem
(1), (2) with coefficients from VMO spaces.

Let Ω to be open bounded domain in Rn, n≥ 3 and we suppose that its boundary
is sufficiently smoothness.

Let coefficients aαβ xð Þ, ∣α∣, ∣β∣ ≤m are symmetric and satisfying to the condition
uniform ellipticity, essential boundedness of the coefficient aαβ xð Þ∈L

∞
Qð Þ and

regularity aαβ xð Þ∈VMO Qð Þ: Let f ∈Mp,φ Qð Þ, p,φð Þ as in (8) Since Mp,φ Qð Þ is a
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proper subset of Lp Qð Þ, (1) and (2) is uniquely solvable and the solution u xð Þ belongs

at least toW2m,1
p Qð Þ. Our aim is to show that this solution also belong toW

0 2m,1

p,φ Qð Þ.

For this we need an a priori estimate of u, which we prove in two steps. Before we

give interior estimate. For any x0 ∈Rnþ1
þ define the parabolic semi-cylinders

Cr x0ð Þ ¼ Br x00
� �

� t0 � r2, t0ð Þ. Let ϑ∈C∞0 Crð Þ and suppose that ϑ x, tð Þ ¼ 0, for t≤0.
According to [1, 7, 16], for any x∈ suppϑ the following representation formula for the

higher derivatives of ϑ holds true if u∈W
0 2m

p Qð Þ

D∣α∣u xð Þ ¼ P:V:

ð


nþ1
D∣α∣

Γ x, x� yð Þ
X

∣α∣, ∣β∣ ≤ 2m

aαβ xð Þ � aαβ yð Þ
� �

Dα,βϑ yð Þ

" #

dy

þP:V:

ð


nþ1
D∣α∣

Γ x, x� yð ÞLϑ yð Þdyþ Lϑ xð Þ

ð

Sn
D∣β∣

Γ x, yð Þνidσy

(39)

where ν ¼ ν1, … , νnþ1ð Þ is the outward normal to Sn. Here, Γ x, ξð Þ is the funda-
mental solution of the operator L. Γ x, tð Þ can be represented in form

Γ x, ξð Þ ¼
1

n� 2ð Þωn detaαβ
� �1

2

X

n

i, j¼1

Aαβ xð Þξiξ j

 !2�n
2

for a.e. x∈
nþ1 and ∀ξ∈Rnn 0f g, where Aαβ

� �

n�n
is inverse matrix for aαβ

� �

n�n
:

Since any function ϑ∈W2m,1
p Qð Þ can be approximated by C∞0 functions, the represen-

tation formula (39) still holds for any ϑ∈W2m,1
p Cr x0ð Þð Þ. The properties of the funda-

mental solution (see [7, 17]) imply that D∣α∣
Γ x, yð Þ are variable Calderon-Zygmund

kernels in the sense of our definition above. By notation above, we can write

Dα,βϑ xð Þ ¼ Dα,βC aα,β,ϑ

 �

xð Þ þDα,βB Lϑð Þ xð Þ þ Lϑ xð Þ

ð

Sn
Dα

Γ x, yð Þνidσy:

∣α∣, ∣β∣ ≤m:

(40)

The operators Dα,βB and Dα,βC are defined by (30) with K x, x� yð Þ ¼

Dα,β
Γ x, x� yð Þ. Due to (30) and (31) and the equivalence of the metrics we obtain

for E >0 there exists r0 Eð Þ such that for any r< r0 Eð Þ

∥Dα,βϑ∥Mp,φ Cr x0ð Þð Þ ≤C ∥Dα,βϑ∥Mp,φ Cr x0ð Þð Þ þ ∥Lϑ∥Mp,φ Cr x0ð Þð Þ

� 	

(41)

for some r small enough. From (41) we get that

∥Dα,βϑ∥Mp,φ Cr x0ð Þð Þ ≤C n, p,φαð Þ � ∥Dα,β
Γ∥L

∞
Qð ÞÞ∥Lϑ∥Mp,φ Cr x0ð Þð Þ:

Define a cut-off function ψ xð Þ ¼ ψ1 x0ð Þψ2 tð Þ, with ψ1 ∈C∞0 Br x00
� �� �

, ψ2 ∈C∞0 Rð Þ

such that

ψ1 x0ð Þ ¼
1, x0 ∈Bθr x00

� �

0, x0 ∉ Bθ0r
x00
� �

,

ψ2 tð Þ ¼
1, t∈ t0 � θrð Þ2, t0

� i

0, t< ðt0 � θ0rð Þ2
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with θ∈ 0, 1ð Þ, θ0 ¼ θ 3� θð Þ=2>0 and ∣Dαψ ∣ ≤C θ 1� θð Þr½ ��α, ∣α∣ ≤ 2m, ∣ψ t∣ �

∣Dαψ ∣. For any solution u∈W2m,1
p Qð Þ of (1) and (2) define ϑ xð Þ ¼

φ xð Þu xð Þ∈W2m,1
p Crð Þ. Hence,

∥Dα,βu∥Mp,φ Cθ�r x0ð Þð Þ ≤∥Dα,βϑ∥Mp,φ Cθ0r x0ð Þð Þ

≤C∥Lϑ∥Mp,φ Cθ0r x0ð Þð Þ ≤C∥f∥Mp,φ Cθ0r x0ð Þð Þ þ
∥Dαu∥Mp,φ Cθ0r x0ð Þð Þ

θ 1� θð Þr
þ
∥u∥Mp,φ Cθ0r x0ð Þð Þ

θ 1� θð Þr½ �2
:

As so,

θ 1� θð Þr½ �2∥Dα,βu∥Mp,φ Cθ�r x0ð Þð Þ ≤

≤C r2∥f∥Mp,φ Qð Þ

� 	

þ θ0 1� θ0ð Þr∥Dαu∥Mp,φ Cθ0 �r x0ð Þð Þ þ ∥u∥Mp,φ Cθ0 �r x0ð Þð Þ:

We introduce

θα ¼ sup
0< θ< 1

θ 1� θð Þr½ �α∥Dαu∥Mp,φ Cθ�r x0ð Þð Þ, ∣α∣ ≤ 2m,

the above inequality becomes

θ 1� θð Þr½ �2 � ∥Dαu∥Mp,φ Cθ�r x0ð Þð Þ ≤ θ2m ≤C r2∥f∥Mp,φ Qð Þþθmþθ0

� 	

(42)

Now we use following interpolation inequality (see [5])

θm ≤ ε � θ2m þ
c

ε
θ0 for any ε∈ 0, 2mð Þ:

where there exists a positive constant C independent of r. Thus (42) becomes

θ 1� θð Þr½ �2∥Dα,βu∥Mp,φ Cθ�r x0ð Þð Þ ≤ θ2m ≤C r2 þ θ0
� �

, ∀θ∈ 0, 1ð Þ:

Taking θ ¼ 1
2 we obtain the Caccioppoli-type estimate

∥Dα,βu∥Mp,φ Cr=2 x0ð Þð Þ ≤C ∥f∥Mp,φ Qð Þ þ
1

r2
∥u∥Mp,φ Cθ�r x0ð Þð Þ

� �

We get the boundedness of the coefficients

∥ut∥Mp,φ Cr=2 x0ð Þð Þ ≤∥a∥L
∞

Qð Þ � ∥D
α,βu∥Mp,φ Cr=2 x0ð Þð Þþ

þ∥f∥Mp,φ Cr=2 x0ð Þð Þ ≤C ∥f∥Mp,φ Qð Þþ 1
r2
∥u∥Mp,φ Cr x0ð Þð Þ

� 	

:

Let Q 0 ¼ Ω
0 � 0,Tð Þ and Q 00 ¼ Ω

00 � 0,Tð Þ the cylinders with Ω
0 ∈Ω

00 ∈Ω. By the
standard covering procedure and partition of the unity we obtain that

∥u∥W2m,1
p,φ Q 0ð Þ ≤C ∥f∥Mp,φ Qð Þ

� 	

þ ∥u∥Mp,φ Q 00ð ÞÞ (43)

where C depends on n, p,Λ,T, ∥DΓ∥L∞ Qð Þ, ηα, ∥a∥L∞ Qð Þ and dist Ω0, ∂Ω00ð Þ.

Now we give boundary estimates. For any fixed x0, rð Þ∈
nþ1 � Rþ define the semi-

cylinders
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Cþ
r x0
� �

¼ Bþ
r x00
� �

� 0, r2
� �

¼ ∣x0 � x0∣< r, xn >0, 0< t< r2

with Sþr ¼ x00, 0, tð Þ : ∣x0 � x00∣< r, 0< t< r2. For any solution u∈W2m,1
p Cþ

r x0ð Þ
� �

with supp u∈Cþ
r x0ð Þ, the following boundary representation formula holds (see

[1, 7, 16]).

Dα,βu xð Þ ¼ Cij aα,β,D
α,βu


 �

xð Þ þ Bij Luð Þ xð Þ þ Lu xð Þ

ð

Sn
Dα

Γνidσy � Jij xð Þ,

where

Jij xð Þ ¼ Bij Luð Þ xð Þ þ ~Cij aα,β,Dα,βu
h i

xð Þ, i, j ¼ 1, … , n� 1,

Jin xð Þ ¼ Jni xð Þ ¼
X

n

i¼1

∂τ xð Þ

∂xn

� �l

Cil aα,β,Dα,βu

h i

xð Þ þ Bil Luð Þ xð Þ
h i

, i ¼ 1, … , n

Jnn xð Þ ¼
X

n

r, l¼1

∂τ xð Þ

∂xn

� �r
∂τ xð Þ

∂xn

� �l

Cil c,D
α,βu


 �

xð Þ þ Bil Luð Þ xð Þ

 �

,

∂τ xð Þ

∂xn

� �

¼ �2
an1α,β xð Þ

annα,β xð Þ
, … ,�2

ann�1
α,β xð Þ

annα,β xð Þ
,�1, 0

 !

:

Here Bij and Cij are non-singular operators defined by (36) with a kernel

K x, τ xð Þ � yð Þ ¼ Dα,β
Γ x, τ xð Þ � yð Þ. Applying the estimates (37) and (38) and having

in mind that the components of the vector ∂τ xð Þ
∂xn

� 	

are bounded, we obtain that

∥Dα,βu∥Mp,φ Cr x0ð Þð Þ ≤C ∥f∥Mp,φ Qð Þ þ r2∥u∥Mp,φ Cr x0ð Þð Þ

� 	

Taking r small enough we can move the norm of u on the left-hand side,
obtaining that

∥u∥Mp,φ Cr x0ð Þð Þ ≤C∥f∥Mp,φ Qð Þ

with a constant C depending on n, p,Λ,T, ηα, ∥a∥L∞ Qð Þ. By covering the bound-

ary with small cylinders, using a partition of the unit subordinated by that covering
and local flattening of ∂Ω we get that

∥u∥W2m,1
p,φ QnQ 0ð Þ ≤C∥f∥Mp,φ Qð Þ (44)

Using (43) and (44), we obtain (5).

7. The higher order elliptic equations in unbounded domains

Now we are consider boundary value the Dirichlet problem for higher order
nondivergence uniformly elliptic equations with coefficients in modified Morrey
spaces in unbounded domains Ω

Lu ¼
X

∣α∣ ≤ ∣β∣ ≤m

aα,βD
α,βu ¼ f xð Þ in Ω

Dαu ¼ g xð Þ ∣α∣ ≤m� 1 on ∂Ω

(45)
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where the coefficients matrix a xð Þ ¼ a
ij
α,β xð Þ

n on

i,j¼1
satisfies

∃Λ>0 Λ

X

∣α∣¼m

ξ2α ≤
X

∣α∣¼∣β∣¼m

aα,βξαξβ, (46)

for a.e. x∈Ω, ∀ξ∈Rn, aα,β ¼ aβ,α,ξ ¼ ξα, kαj¼ m∈RN
� �

, N–number different
multiindeks with length equal to m.

Under these assumptions we prove that the maximal operator M are bounded

from the modified Morrey space ~Lp,λ Rnð Þ to ~Lq,λ Rnð Þ if and only if,

α

n
≤

1

p
�

1

q
≤

α

n� λ
:

For x∈Rn and t>0, let B x, tð Þ denote the open ball centered at x of radius t and
∁B x, tð Þ ¼ RnnB x, tð Þ. One of the most important variants of the Hardy-Littlewood
maximal function is the so-called fractional maximal function defined by the formula

Mαf xð Þ ¼ sup
t>0

B x, tÞð j�1þα
n

ð

B x,tð Þ

∣f yð Þ∣dy, 0≤ α< n,

�

�

�

�

�

where ∣B x, tð Þ∣ is the Lebesgue measure of the ball B(x,t). The fractional maximal
function Mαf coincides for α ¼ 0 with the Hardy-Littlewood maximal function
Mf � M0f .

Let 1≤ p<∞, 0≤ λ≤ n, t½ �1 ¼ min 1, tf g. We denote by ~Lp,λ Rnð Þ the modified
Morrey space, as the set of locally integrable functions f xð Þ, x∈Rn, with the finite
norm

∥f∥~Lp,λ
¼ sup

x∈Rn, t>0

t½ ��λ
1

ð

B x,tð Þ

f yð Þj jpdy

 !1
p

Note that

~Lp,0 Rnð Þ ¼ Lp,0 Rnð Þ ¼ Lp Rnð Þ,

~Lp,λ Rnð Þ↪Lp,λ Rnð Þ∩Lp Rnð Þ and max ∥f∥Lp,λ
, ∥f∥Lp

n o

≤∥f∥~Lp,λ
,

and if λ<0 or λ> n, then Lp,λ Rnð Þ ¼ ~Lp,λ Rnð Þ ¼ θ, where θ is the set of all

functions equivalent to 0 on Rn. W~Lp,λ Rnð Þ-the modified weak Morrey space as the
set of locally integrable functions f xð Þ, x∈Rn with finite norm

∥f∥W~Lp,λ
¼ sup

r>0
r sup
x∈Rn, t>0

t½ ��λ
1 fy∈B x, tð Þ :j f yð Þj> rgj j

� 	1
p
:

Note that

W~Lp,0 Rnð Þ ¼ WLp,0 Rnð Þ ¼ WLp Rnð Þ,

~Lp,λ Rnð Þ⊂W~Lp,λ Rnð Þ and ∥f∥W~Lp,λ
≤∥f∥~Lp,λ

:

We study the ~Lp,λ-boundedness of the maximal operator M.
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The classical result by Hardy-Littlewood-Sobolev states that if 1< p< q<∞, then

the Riesz potential Iα is bounded from Lp Rnð Þ to Lq Rnð Þ if and only if α ¼ n 1
p �

1
q

� 	

and for p ¼ 1< q<∞, Iα is bounded from L1 Rnð Þ to WLq Rnð Þ if and only if α ¼

n 1� 1
q

� 	

. D.R. Adams studied the boundedness of the Iα in Morrey spaces and

proved the follows statement.
Theorem (Adams) Let 0< α< n and 0≤ λ< n� α, 1≤ p< n�λ

α
.

1. If 1< p< n�λ
α
, then condition 1

p �
1
q ¼

α
n�λ

is necessary and sufficient for the

boundedness of the operator Iα from Lp,λ Rnð Þ to Lq,λ Rnð Þ.

2. If p ¼ 1, then condition 1� 1
q ¼

α
n�λ

is necessary and sufficient for the

boundedness of the operator Iα from L1,λ Rnð Þ to WLq,λ Rnð Þ.

If α ¼ n
p �

n
q, then λ ¼ 0 and the statement of Theorem reduced to the aforemen-

tioned result by Hardy-Littlewood-Sobolev Theorem also implies the boundedness
of the fractional maximal operator Mα.

In this section we study the fractional maximal integral and the Riesz potential in
the modified Morrey space. In the case p ¼ 1 we prove that the operator Iα is

bounded from ~L1,λ Rnð Þ to W~Lq,λ Rnð Þ if and only if, αn ≤ 1� 1
q ≤

α
n�λ

. In the case

1< p< n�λ
α

we prove that the operator Iα is bounded from ~Lp,λ Rnð Þ to ~Lq,λ Rnð Þ if and

only if, αn ≤
1
p �

1
q ≤

α
n�λ

.

Theorem 7.1. If f ∈ ~Lp,λ Rnð Þ, 1< p<∞, 0≤ λ< n, then Mf ∈ ~Lp,λ Rnð Þ and

∥Mf∥~Lp,λ
≤Cp,λ∥f∥~Lp,λ

,

where Cp,λ depends only on p, λ and n.
Proof. We use Fefferman-Stein inequality and get

ð

B x,tð Þ

Mf yð Þð Þpdy≤C

ð

Rn
f yð Þj jpMχB x,tð Þ

yð Þdy:

Later from some estimates for MχB x,tð Þ
we have the following inequalities

ð

B x,tð Þ

Mf yð Þð Þpdy≤C

ð

B x,tð Þ

f yð Þj jpdyþ

 

þ
X

∞

j¼0

ð

B x,2 jþ1tð ÞnB x,2 jtð Þ

tn f yð Þj jpdy

jx� yjþtð Þn

!

≤C t½ �λ1 � ∥f∥
p
~Lp,λ

:

□

Theorem 7.2. (see [18]) Let 0< α< n, 0≤ λ< n� α and 1≤ p< n�λ
α
.

1.If 1< p< n�λ
α
, then condition α

n ≤
1
p �

1
q ≤

α
n�λ

is necessary and sufficient for the

boundedness of the Riesz potential operator Iα from ~Lp,λ Rnð Þ to ~Lq,λ Rnð Þ.

2. If p ¼ 1< n�λ
α
, then condition α

n ≤ 1� 1
q ≤

α
n�λ

is necessary and sufficient for the

boundedness of the operator Iα from ~L1,λ Rnð Þ to ~Lq,λ Rnð Þ.
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Recall that, for 0< α< n

Mαf xð Þ≤ ν
α
n�1
n Iα jf jð Þ xð Þ

where νn is the volume of the unit ball in Rn. From [7] for unbounded domains
Ω⊂Rn we have following result.

Theorem 7.3. Let Ω⊂Rn be an unbounded domains with noncompact boundary ∂Ω,

and 0< α< n, 0≤ λ< n� α and 1< p< n�λ
α
. Also let satisfies conditions α

n ≤
1
p �

1
q ≤

α
n�λ

,

f ∈ ~Lq,λ Ωð Þ, function U xð Þ is a solution of problem (45). Then there is exist constant C

which dependent only at n, λ, p, q,Ω such that

∥U∥
~W

2m
p,λ

Ωð Þ≤C∥f∥~Lq,λ Ωð Þ, (47)

where ~W
2m

p,λ-is correspondingly modified Sobolev-Morrey space.

The proved Theorem 7.3 consequence from methods of [7] and Theorem 7.1
and 7.2.
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