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Chapter

Integrated Management  
Approach to Citrus Fungal 
Diseases by Optimizing  
Cocoa-Based Agroforests 
Structural Characteristics
Ndo Eunice Golda Danièle and Akoutou Mvondo Etienne

Abstract

The health and productivity of citrus are generally jeopardized by a host of 
diseases, for which the environmental conditions of the cropping system are critical 
drivers. Several studies conducted on various diseases of perennial crops have shown 
the involvement of the structural futures of the cocoa-based agroforestry system 
(CBAFS) in the spread of pathogens and the epidemics development. This chapter 
highlights the effect of the CBAFS’s structural characteristics on the intensity of 
three citrus diseases in the humid forest zones of Cameroon. The involvement of 
CBAFS structural characteristics in diseases regulation is demonstrated. In particu-
lar, the spatial structure of citrus in agroforests shows an effect on the spread of dis-
eases. Moreover, distribution of citrus in the CBAFS, with minimum spacing of 12 m 
between citrus trees, limits the damage caused by Pseudocercospora leaf and fruit 
spot disease (PLFSD) and citrus diseases caused by Phytophthora (CDP). Dense 
shading helps to minimize the intensity of diseases such as CDP and PLFSD and 
Citrus scab disease. This work may make it possible to contribute to the development 
of an integrated management tool for citrus diseases in an associated crop context.

Keywords: Integrated disease management, cultural practices, citrus,  
fungal diseases, shade trees, spatial structure

1. Introduction

Conventional and intensive agriculture has enabled a considerable increase 
in agricultural production since the 1950s. However, the resulting heavy ecologi-
cal balance sheet discredits this unsustainable model of agriculture [1]. Thus, 
although the preferred strategies of intensive agriculture have shown undeniable 
benefits, their use is becoming increasingly worrying both for agriculture itself 
and for the environment and human health. This is partly due to the excessive use 
of pesticides and other chemicals [2–6]. The improvement of intensive production 
systems towards new models of sustainable agriculture, favoring the development 
of effective means of combating diseases that are sustainable and environmentally 
friendly, is becoming a matter of urgency. Tropical agroforestry systems, thanks to 
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their high biodiversity and structural diversity, represent a privileged way out of the 
agroecological transition. Several studies have demonstrated the contribution of the 
structural characteristics of these systems in the integrated management of pests 
and diseases of perennial crops, particularly citrus [7–9].

Citrus represent a fruit crop of prime importance in socio-ecological terms in 
Cameroon [10–12]. Their significance lies in the fact of their high-quality nutri-
tional value and their contribution to the diversification of producers’ incomes in 
rural areas. Citrus are also important in the local pharmacopeia [13–15]. They are 
also known for their role in restoring ecological balances after deforestation [16]. 
However, despite the favorable agroecological conditions throughout the country, 
the number of production basins identified and even the density of trees in farms, 
production remains poor [12, 17, 18]. A diversity of diseases affecting citrus in the 
country humid zones is the main constraint to their production [8, 11, 19, 20].

Pseudocercospora leaf and fruit spot disease (PLFSD) caused by Pseudocercospora 
angolensis, citrus scab disease caused by Elsinoe spp.; and citrus diseases caused by 
Phytophthora (CDP) caused by Phytophthora spp., are the main soil diseases on 
citrus in Cameroon (Figure 1) [7, 21–25]. Damages caused by these diseases result 
in heavy crop losses [26]. Sorting deviations of up to 100% of the production can be 
recorded in the case of PLFSD, if no treatment measures are taken [27]. Concerning 
citrus scab, severe attacks on young C. volcameriana plants, for example in the nurs-
ery, result in their death [20, 28]. CDP significantly limits citrus production in the 
plots where it is present [29–34]. In addition to reduced yields from the beginning of 
infection, the economic viability of orchards is reduced following tree death [7, 32, 
35]. This strong and constantly changing diseases pressure, which not only causes 
enormous economic losses, but also leads (in the case of PLFSD) to quarantine and a 
ban on the export of citrus products to other production areas [25].

A variety of strategies are used to control citrus diseases. These include the 
practice of sanitation measures, the use of resistant cultivars and varieties, grafting, 
organic or mineral soil amendments, the use of plant extracts, biological control in a 
systemic approach and, above all, chemical control through fungicides [32, 36–40]. 
However, the high costs of these methods, development of resistance to chemical 
inputs, emergence of new diseases and growing concerns about environmental 
and soil health make these methods inadequate [41–45]. In addition, most of these 
techniques are unsuitable for the socio-cultural and even technological context 
of small-scale producers in inter-tropical regions. The development of targeted 
control protocols, taking into account the local socio-ecological context and existing 
production systems is therefore imperative. This chapter highlights the effect of the 

Figure 1. 
Symptoms of citrus diseases in Cameroon. C. paradisi fruit torn following a severe attack by Pseudocercospora 
angolensis (a), C. volcameriana fruit covered with scab spots due to Elsinoe spp. (b), lesions resulting from 
crown attacks due to Phytophthora spp. on C. sinensis tree(c) and dieback due to various diseases of an  
C. sinensis (d).
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structural characteristics of the cocoa-based agroforestry system on the intensity of 
the three main citrus diseases in the humid forest zones of Cameroon.

2.  Complex cocoa-based agroforest systems and structural 
characteristics

In Cameroon, citrus are mainly grown in cocoa-based agroforestry systems 
(CBAFS) [7, 46]. These are complex, highly biodiverse, natural forest-like cropping 
systems (Figure 2) [30, 47, 48]. In this system, several interactions of different nature 
and intensity can take place depending on the species present, their sizes and their 
positions [9, 49, 50]. One of these interactions is the action of diseases. The structural 
characteristics of CBAFS can contribute to control of these [20, 30, 51, 52]. Studies in 
these cropping systems and on various pathosystems have shown that spatial struc-
ture of species is important in reducing diseases development [49, 52]. Indeed, spatial 
structure has a twofold effect on the pathogen: firstly, the high plant biodiversity 
into CBAFS makes it possible to dilute the pathogens resource and thus reduce their 
presence and damage [53–55]. Secondly, multi-species agroecosystems are recognized 
for the high diversity of vertical and horizontal structures that can be adopted by the 
plant population [56]. This diversity of plant spatial structure affects diseases mainly 
through the microclimatic weathering mechanism [51, 52].

Previous works have supported interactions between individuals of a host popu-
lation of pathogen and associated plants within intercropping systems [7, 8]. This 
type of interaction is likely to influence the presence of diseases. The action of shade 
trees on the understory microclimate decreases with decreasing distance between 
trees and pathogen transmission decreases as the distance between host individuals 
increases [51, 52, 57–59].

3.  Effect of spatial structure of citrus into cocoa based agroforest 
systems on citrus diseases

The spatial structure of a plant community is the vertical and horizontal 
arrangement of constituent elements [51, 60, 61]. It reflects therefore the local 
environment around each individual [55, 62]. Within agroforest, non-host plants 

Figure 2. 
Illustration of a cocoa-based agroforestry system planted with citrus trees (a) and the horizontal structure of its 
plant population (b). 1 = cocoa trees, 2 = various forest tree species, 3 = various other fruit tree species, 4 = citrus 
and 5 = palm trees.
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mainly perform a physical barrier effect on diseases [27, 51, 54]. The effect of the 
citrus spatial structure within CBAFS on the three main diseases affecting them in 
Cameroon has been assessed through various studies. A network of 27 plots in the 
three study sites was set up in Obala, Muyuka and Bokito sites. These are located 
in three ecological conditions into humid forest zone of Cameroon. CBAFS with at 
least 12 citrus trees in the plot area were selected. Each plot area was a square of at 
least 2500 m2 (50 X 50 m). Plots were chosen in villages among the most productive 
areas and also representative of the study zone in terms of system diversity and 
variability of citrus species produced.

The analysis of the spatial structure of the citrus sub-population was done by 
the Ripley method [62]. Following the method illustrated in Ngo Bieng [55], a 
typology of spatial structure was build based on the spatial structure of the citrus 
trees in the study plots. In a first step, the horizontal spatial structure was char-
acterized on the citrus trees in each plot, using the L(r) modified Ripley function 
[20, 61, 63] . The L (r) function is based on the calculation of the expected number 
of neighbor trees (Figure 2), within a distance ≤ to r of any point of the study 
pattern. This method enables to distinguish three types of tree spatial patterns: 
regular when L (r) is <0, aggregated when L (r) is >0, and random when L (r) =0. 
This function characterizes the neighborhood structure around a point. It is used 
for a simple, homogeneous and isotropic point process of density λ [64].

 ( ) ( ) ( )
( )

1
K r E r

−= λ = −
r

K r
L r

π
 (1)

Subsequently, a hierarchical cluster analysis based on the Euclidean distance 
between the values of the L(r) function of the citrus trees in the different plots was 
made. It resulted in clusters of plots with a similar spatial structure, based on their 
trend to regular, random or aggregated spatial structure. This analysis was done 
with ads and ade4 package R 3.2.2 software (Figure 3). Symptoms of CDP, PLFSD, 
and citrus scab were assessed by the visual recognition method. The intensity was 
assessed using a scale from 1 to 4.

From this study it emerges that, the spatial structure has a significant influence 
on the intensity of the diseases observed. The analysis of variance and the mean 
comparison test reveal that plots in which citrus have an aggregated spatial struc-
ture, have a high intensity of citrus scab disease and PLFSD. On the other hand, 
plots in which citrus fruits have a regular spatial structure show a significantly low 
intensity of these same diseases (Table 1).

Figure 3. 
Hierarchical classification of plots according to the spatial structure of citrus trees in the experimental plots.



5 In
tegra

ted
 M

an
a

gem
en

t A
p

p
roa

ch
 to C

itru
s F

u
n

ga
l D

isea
ses by O

p
tim

izin
g C

ocoa
-B

a
sed

…
D

O
I: h

ttp
://d

x.d
oi.org/10.5772/in

tech
op

en
.95571

Maladies fongiques Aggregated spatial 

structure

Random Spatial 

structure

Regular Spatial 

structure

Anova/Tukey 

test

Df F value Pr(>F)

Pseudocercospora leaf and fruit spot 

disease

1.55 ± 0.36b 1.43 ± 0.28a 1.41 ± 0.26a 2 10.08 5.14e−7***

Citrus scab disease 1.22 ± 0.56b 1.11 ± 0.38ab 1.08 ± 0.34a 2 5.102 0.00638**

Phytophthora foot rot disease 1.59 ± 0.93a 1.97 ± 0.94b 1.78 ± 0.91ab 2 6.297 0.002**

In the same column, values with same letter are not significantly different (Tukey HSD test P < 0.05). *** indicates highly significant.

Table 1. 
Effect of the spatial structure of citrus trees in cocoa based agroforests systems on diseases.
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It is thus demonstrated that the aggregate spatial structure of citrus in CBAFS 
has a negative effect on diseases observed. These results are similar to those 
obtained by Ndo et al. [7, 8, 30] in the particular case of PLFSD. In addition to 
that, the involvement of spatial structure in the spread of various diseases has 
been shown [8, 53, 54]. Indeed, the aggregation of host populations favors the 
dispersion of diseases, while regularity would reduce it [65]. In addition, it is 
recognized that transmission of the pathogen decreases as the distance between 
host individuals increases [52, 58]. On the other hand, it has been shown that 
aggregation of host populations can reduce the incidence of pathogens [66]. 
Because the transmission of the pathogen between aggregates decreases with 
increasing distance between aggregates. These aspects would therefore explain 
the low intensity of CDP observed in plots where citrus fruits have an aggregated 
spatial structure.

4. Effect of shade intensity management on CDP and PLFSD

Depending on the situation of citrus in the CBAFS and in relation to the upper 
stratum, three levels of shading (dense, moderate and no shading) were defined. 
Shade trees play various roles in tropical agroforests. They can improve adverse 
weather conditions by modulating temperature variations [51, 52, 57, 59]. Shading 
has been recognized as one of the factors that can influence PLFSD dissemination 
[54, 67, 68]. Given that shading favors climatic conditions for the development 
of certain citrus pathogenic fungi such as P. angolensis or many Phytophthora spp. 
(high relative humidity (>60%) and cool temperature conditions (<25°C))  
[18, 28, 69]. It is assumed that within a plot, trees under shade would have a 
higher incidence of the disease than those in full sunlight. On the other hand, 
given the role of shade trees in improving climatic and nutritional conditions, 
the growth of trees under these conditions can be improved, as well as their vigor 
and response to disease. In addition, shade trees can act as a barrier against wind 
and rain (the main factors in the spread of conidia) and slow the progress of the 
epidemic.

An experiment carried out in a fruit trees orchard in Foumbot in the Western 
region of the country demonstrated the effect of shade trees on the PLFSD 
epidemic. The trial was set up in the Institute of Agricultural Research for 
Development (IRAD) experimental orchard. This orchard comprises collection 
plots of mango (Manguifera indica), avocado (Persea americana) and various citrus 
trees separated from each other by fallow plots often reserved for annual crops. This 
experimental plot enabled to compare tree shading situations ie dense shade (under 
mango trees), light shade (under avocado trees) and full sun light (fallow plot). 
One-year old pomelo seedlings have been placed in three levels of shade i.e.: under 
mango trees (dense shade), under avocado trees (light shade) and on fallow land 
(no shade).

The results of this experiment showed that the higher the shade index (under 
mango trees), the lower the PLFSD severity. When the shade intensity is lower 
(under avocado trees), disease severity is also lower, however the differences are 
not significant (Figure 4). These results suggest that shading should be sufficient 
to significantly reduce PLFSD incidence. Otherwise too little shading will not have 
significant effect on disease severity. But in the meantime, the plant must receive 
sufficient sun radiation for good growth. So, it is necessary to determine an opti-
mum shading that allows a good compromise between plant growth and reduces 
PLFSD incidence. This optimum can vary according to the climatic and sanitary 
conditions of the plantations under consideration [18, 20, 52].
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Another experiment conducted in 26 cocoa-based agroforestry systems showed 
the effect of shading on the spread of CDP and citrus scab disease. In this study, a 
total set of 476 citrus were observed under three shading conditions. Depending 
on the tree diversity and population, the various scenarios of shade density have 
been coded as follows: (1) “dense shade” when the citrus tree were placed under a 
direct and thick shading of the upper stratum; (2) “light shade” when the citrus 
tree received a mean shading of a higher stratum and finally (3) “full sun” when the 
citrus fruit did not receive a shade of a top stratum.

Results showed that, there is a variation in the citrus diseases intensity depend-
ing on whether they are located under dense shade, light shade or in full sunlight. 
The mean comparison test thus revealed significant differences in the intensities of 
CDP, according to the three citrus trees situations depending on shade. Citrus trees 
under dense shade are significantly less affected by CDP compared to those under 
light shade and those in full sunlight (Table 2).

Results therefore showed that, the shade had a significant effect on diseases. 
This shading effect was positive on the intensity of CDP. In general, in CBAFS, 
shade reduces diseases intensity [52, 70]. Indeed, for pathogens, spore dispersal and 
germination are the two main phases of their life cycle. Shading promotes spore 
germination while the sensitivity of the dispersion of pathogen spores to microcli-
mate depends on how it is dispersed [7, 59].

Figure 4. 
Graphical representation of the percentage of diseased leaves for each pomelo plant and the shade indices of the 
different shade trees during the first observation date (A) and the second date (B) in the Foumbot plot.

Citrus 

diseases

Shade conditions Anova/

Tukey 

test

Df F value Pr (>F)

Full 

sunlight

Light shade Dense shade

Citrus scab 

disease

1.08 ± 0.34a 1.11 ± 0.41a 1.18 ± 0.50a 2 2.257 0.106

Phytophthora 

foot rot 

disease

1.92 ± 0.91b 1.98 ± 1.00b 1.56 ± 0.86a 2 11.18 1.8 e−6***

In the same column, values with same letter are not significantly different (Tukey HSD test P < 0.05). *** indicates 
highly significant.

Table 2. 
Effect of shade on citrus diseases.
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5.  Mode of dispersal of citrus infectious pathogens and CBAFS 
structural characteristics

The majority of fungi require moisture for infection and production of conidia 
[9, 71, 72]. These conidia may be disseminated by wind or soil water runoff for tel-
luric fungi like Phytophthora. Local dispersal is primarily favored by rain-splash as 
well as some insects moving on trees [24]. This mode of dissemination determines 
the spatial distribution of each disease.

In the case of PLFSD, the analysis of its spatial distribution indicates that the 
disease is distributed in clusters, and that above 12 m there is no spatial dependency. 
In fact, the disease spreads from one tree to its closest neighbors depending on wind 
speed and/or rainfall intensity. Infection will depend on the presence and quality of 
the host. If neighbors are susceptible hosts, infection continues and the epidemio-
logical cycle continues. Otherwise, the course of the disease can be circumscribed. 
This may explain the aggregated spatial structure of diseases that usually have this 
mode of spread. However, Brown and Bolker [65] pointed out that the aggregation 
of host populations favors the dispersal of the diseases while its regulation reduces 
it. That is, the further away the trees are from each other, the slower the transmis-
sion of the disease [22].

With regard to CDP, the spread of Phytophthora in the field is primarily ensured 
by the use of infected plant material [32]. However, mechanical means of dispersal 
of Phytophthora have been illustrated. Cases of transmission from an infected root 
to a healthy root following their respective growing zones have been reported. The 
inoculum can also be spread by run-off water. Splashes can promote the spread 
of the inoculum from the soil to the aerial parts of the plant. This mode of disease 
spread may be promoted by aggregation of the host species of this pathogen. This 
hypothesis was confirmed by Akoutou et al. [7, 30]. These studies showed that 
citrus with an aggregated spatial structure were more attacked by CDP in contrast 
to those with a regular spatial structure. In fact, root diversity in the rhizosphere 
could limit contact between roots of the same species. Host trees planted at wide 
spacings and having non-host trees between them are less likely to come into con-
tact and this would help to limit the spread of the inoculum. This effect of dilution 
of the pathogen’s resource can also be applied to the mode of transmission through 
diseased fruits and contact with parts of the plant close to the soil.

In addition, it was shown that environmental factors play a critical role in the 
development, severity, dispersal and conservation of inoculum in the epidemiol-
ogy of Phytophthora disease. The increase in temperature favors population growth 
of species such as P. parasitica and P. palmivora. Hot, dry climates are favorable to 
P. parasitica. These observations corroborate the conclusions drawn on the effect 
of shading on CDP development. Indeed, the cooler environmental conditions in 
the understory created by shade trees would make the habitat unfavorable for the 
pathogen. Citrus planted under dense shade would therefore be less exposed to the 
inoculum, which is therefore more intense in plot areas of the plot where there is 
no shade.

6. Conclusion

This study highlighted the effect of shading trees on citrus in agroforestry plots. 
In such plots citrus trees are mixed with plants belonging to different tree. Spatial 
structure has a significant influence on the observed diseases intensity. Plots in 
which citrus have an aggregated spatial structure have a high intensity of studied 
diseases, while plots in which citrus have a regular spatial structure are significantly 
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less attacked by these diseases. Optimizing the structural characteristics of CBAFS 
could lead to the development of integrated control strategies against fungal dis-
eases. These management strategies will be adapted to local agroecological contexts, 
respectful of the environment, and applicable by smallholders.
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