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Chapter

Self-Learning Low-Level
Controllers
Dang Xuan Ba and Joonbum Bae

Abstract

Humanoid robots are complicated systems both in hardware and software
designs. Furthermore, the robots normally work in unstructured environments at
which unpredictable disturbances could degrade control performances of whole
systems. As a result, simple yet effective controllers are favorite employed in low-
level layers. Gain-learning algorithms applied to conventional control frameworks,
such as Proportional-Integral-Derivative, Sliding-mode, and Backstepping control-
lers, could be reasonable solutions. The adaptation ability integrated is adopted to
automatically tune proper control gains subject to the optimal control criterion both
in transient and steady-state phases. The learning rules could be realized by using
analytical nonlinear functions. Their effectiveness and feasibility are carefully
discussed by theoretical proofs and experimental discussion.

Keywords: backstepping control, PID control, sliding mode control, gain-learning
control, position control, low-level control

1. Introduction

Precise motion control of low-level systems is one of the most important tasks in
industrial and humanoid robotic systems [1–3]. Different from industrial robots which
commonly operate in compact regions with simple and almost repetitive missions,
humanoid robots perform complicated works and face to unknown disturbances in
daily activities. Hence, designing a high-performance controller that is easy to use in
real-time implementation for such the maneuver systems is a big challenge [4, 5].

To accomplish motion control in real-time applications, conventional
proportional-integral-derivative (PID) controllers are the first selection from engi-
neers and researchers thanks to simplicity in design and acceptable control outcome
for uncertain systems [6–11]. Stability of the servo-controlled systems is proven by
theoretical analyses, and their flexibility could be enhanced using machine-learning
methods such as ordinary or neuro fuzzy-logic-based self-tuning [7, 10, 11], pole-
placement adaptation [8], or convolutional learning [9]. However, using linear control
signals to suppress the nonlinear behaviors of the robotic dynamics may lead to
unexpected transient performance. To overcome this drawback, nonlinear controllers
such as sliding mode control (SMC), backstepping control (BSC), or inverse dynami-
cal control have gotten attention from developers [12–17]. Indeed, a robust-integral--
sign-error (RISE) controller was studied to consolidate lumped disturbances inside the
system dynamics for achieving asymptotic control results [13]. In another direction, a
model-based nonlinear disturbance-observer controller was proposed based on the
backstepping technique to yield excellent control accuracies [15]. Nevertheless,
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extended studies noted that the outstanding control performances are difficult to be
preserved with hard control gains employed in diverse real-time operations [18, 19].

As a result, gain-learning SMC algorithms have been developed for robotic
systems [18–21]. The control objective could be minimized by learning processes of
robust gains, driving gains or massive gains [22, 23]. In fact, some control gains still
need to manually tune for their possibly wide ranges due to nature of each control
plant. Thus, it may lead to inconvenience during the operation.

Intelligent methods for automatically tuning all the control gains have been also
proposed based on modified backtracking search algorithms (MBSA) combining
with a Type-2 fuzzy-logic design [24] or model predictive approaches [25]. The
desired gains could be estimated for the best performance by dealing with closed-
loop optimal constraints. Though promising control results were presented, smooth
variation of the gain dynamics need to further consideration.

Gain-learning control approaches under backstepping design provided another
interesting direction as well. PID control with a gain-varying technique encoded by
the backstepping scheme was formerly studied [26]. Success of the creative control
method was confirmed by a thorough theoretical proof and experimental validation
results. Since the learning process of all the control gain is generated only by one
damping function, versatility of the control designmay be limited for diverse working
conditions. Improvement on the flexibility of gain selection is thus still an open issue.

In this chapter, an extensive gain-adaptive nonlinear control approach is
presented for high-performance motion control of a low-level servo system. The
controller is comprised of an inner robust nonlinear loop and an outer gain-learning
loop. The inner loop is developed based on a RISE-modified backstepping framework
to ensure asymptotic tracking control in the existence of nonlinear uncertainties and
disturbances. The second loop contains a new gain-adaptive engine to activate varia-
tion gains of the inner loop in real-time applications. Theoretical effectiveness of the
proposed controller is concretely proven by Lyapunov-based analyses. Feasibility of
the control approach was confirmed by intensive real-time experiments on a legged
robot. Their features are presented in detail in the below sections.

2. Problem statements

General dynamics of a robotic system could be expressed in the following form:

M qð Þ€qþ C q, _qð Þ _qþ g qð Þ þ τfr _qð Þ þ JTf ext ¼ τ (1)

where q, _q, €q∈ℜn are respectively the joint position, velocity and acceleration
vectors, M qð Þ∈ℜn�nis the inertia matrix, C q, _qð Þ∈ℜn�nis the Centrifugal/Coriolis
matrix, g qð Þ∈ℜndenotes the gravitational torque, τfr _qð Þ∈ℜn is the frictional

torque, JT is the respective Jacobian matrix, f ext is the external disturbance, and τ is
control torque at robot joints.

The main control objective here is to find out a proper control signal τ that
ensures a control error between the system output and a desired profile stabilizing
at origin under various complicated environments.

To realize the control objective, conventional linear or nonlinear controllers such
as Proportional-Integral-Derivative (PID) and Sliding mode control (SMC)
methods are priority selections in industry thanks to their simplicity and robust-
ness. However, such the mission in humanoid robots is a different story in which
the systems frequently operate in unknown environments with harshly
unpredictable disturbances [27, 28]. Obviously, the required controller is strong
robustness, fast adaptation, and easy implementation.
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3. Low-level intelligent nonlinear controller

In this subsection, a position controller is developed based on the general
model using the backstepping technique and new adaptation laws. The dynamics
Eq. (1) can be splitted for low-level subsystems under the following state-space
form:

_x1 ¼ x2 þ υ

_x2 ¼ �a1x2 þ a2uþ d

�

(2)

where x1 ¼ qi∣i¼1::n presents a specific joint angle, x2 is the measurement joint

velocity, u ¼ τi∣i¼1::n is the control torque at the specific joint, υ is the measurement
noise, a1 is a positive constant presenting the nominal dynamics, a2 is another
positive constant standing for the inverse nominal mass at low-level dynamics, and
d is the lumped disturbance denoting the deviation of internal dynamics. Note that,
x1 and x2 hold for the following assumptions:

Assumption 1:

a. The system output x1 is measurable.

b. The angular velocity x2ð Þ is bounded and is indirectly measured from the
angular data with a bounded tolerance υð Þ:

3.1 Robust backstepping control scheme

Let formulate the main control error as:

e1 ¼ x1 � x1d (3)

where x1d is the desired trajectory of the controlled joint.
Before designing the final control signal, additional assumptions are given.
Assumption 2:

a. The measurement noise υ is bounded and differentiable up to the second
order.

b. The disturbance d and its time derivative are bounded.

c. The desired signal x1d is bounded and differentiable up to the third order.

The time derivative of the control objective e1 in considering the first equation of
dynamics Eq. (2) is:

_e1 ¼ x2 þ υ� _x1d (4)

To control the error e1 to zero or to be as small as possible, a virtual control signal
is employed to remove the time derivative of the desired signal and to compensate
for the disturbance υ:

x2d ¼ _x1d � k1e1 (5)

where k1 is a positive constant.
A new state control error is defined as:
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e2 ¼ x2 � x2d (6)

Differentiating the new error with respect to time and using the second equation
of the dynamics Eq. (2) lead to

_e2 ¼ �a1x2 þ a2uþ d� €x1d þ k1 x2 þ υ� _x1dð Þ (7)

To drive the new control error e2 to an expected range, the final control signal is
proposed as follows, including two sub-control terms (a model-based term and
robust term):

u ¼ �a�1
2 �a1x2 þ k1 x2 � _x1dð Þ þ k2 � k1ð Þe2 þ k3 þ k4ð Þe1 þ

ð

t

0

k4k1e1 þ k5 sgn e1ð Þð Þdτ

0

@

1

A

(8)

where ki∣i¼2,3,4,5 are positive control gains.
Stability of the closed-loop system under the controller Eq. (8) can be confirmed

by the following statement.
Lemma 1:
Given a low-level system Eq. (2) under Assumptions 1 and 2, if employing the

control rule Eqs. (3)–(8), stability of the closed-loop system is ensured for the
positive bounded control gains ki∣i¼1::5 satisfying:

k2 � k1 >0 (9)

Proof of Lemma 1 is given in Appendix A.
Remark 1: Lemma 1 reveals that the closed-loop system is stabilized at a vicinity

around zero under the constrain Eq. (9). Obviously, acceptable control perfor-
mance could be resulted in with proper control gains selected.

Effectiveness of the nonlinear control structure is achieved by the following
statement:

Theorem 1:
Given a closed loop system satisfying Lemma 1, it asymptotically converges if

properly further choosing the control gains such that:

k5 ≥Δ _h (10)

Proof of Theorem 1 is discussed in Appendix B.
Remark 2: In real-time situations [15, 29, 30], the position data x1 are employed

to approximate the velocity x2 throughout a low-pass filter. Thus, the perturbance
term (υ) obviously exists in the studied model Eq. (2) and its variation depends on
the used filter.

Remark 3:With the robust backstepping control scheme designed, an excellent
control performance can be resulted in by the proper control gains selected regard-
less of the presence of the disturbances. Perfectly selecting the gains for a good
transient performance and maintaining high-precision control results for divergent
working conditions in the real-time control is not a trivial work.

3.2 Auto gain-tuning rules

To effectively support gain selection for users, a simple strategy for gain tuning is

employed: the control gains kiji≜1::5
� �

are separated into two terms: nominal elements

ki
�

�

i≜1::5

� �

and variation elements k
^

i

�

�

�

i≜1::5

� 	

. The nominal ones play a key role in
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ensuring stability of the closed-loop system. The variation gains are self-adjusted to
suppress unpredictable disturbances for the expected transient performance.

Furthermore, to ensure high control quality by avoiding sudden change of the
gain variation, which could activate a chattering problem [25], the following
constraints are noted.

Assumption 3: The variation terms k
^

i

�

�

�

i≜1::5

� 	

and their first-order time

derivatives are bounded.
Under operation of the flexible gains, the nonlinear control signal Eq. (8) is

modified:

unew ¼ uþ
sat k

^

1

� �

e1

a2
(11)

where sat k
^

i

� ��

�

�

i≜1::5
are the saturation functions limited by upper-bound values

k
^

i_up

�

�

�

i≜1::5

� 	

and lower-bound values k
^

i_lo

�

�

�

i≜1::5

� 	

as follows:

sat k
^

i

� ��

�

�

i≜1::5
¼

k
^

i_up if k
^

i ≥ k
^

i_up ≥0
� �

k
^

i if k
^

i_low < k
^

i < k
^

i_up

� �

k
^

i_low if k
^

i ≤ k
^

i_low ≤0
� �

8

>

>

>

>

<

>

>

>

>

:

Lemma 2:
If a closed-loop system satisfies Lemma 1, it is stable for the time-varying gains

complying with Assumption 3, and

i¼1::5

0< kimin ≤ ki ≤ kimax <∞

Δ _
k
^

i

<∞

8

<

:

�

�

�

�

�

�

Δ
k
^

1
þ Δ _

k
^

1

� 	

< k3min :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(12)

Proof of Lemma 2 is given in Appendix D.
To comply with Assumption 3, the learning laws for the dynamic gains is struc-

tured from activation functions of the state control errors and leakage functions,
which make sure boundedness of the learning gains.

The learning rules for the variation gains are proposed as follows:

_
k
^

1 ¼ �σ1e1ε� sat k
^

1

� �

_
k
^

2 ¼
1

σ2
ε2 � η2sat k

^

2

� �

_
k
^

3 ¼
1

σ3
e1ε� η3sat k

^

3

� �

_
k
^

4 ¼
1

σ4
εφ� η4sat k

^

4

� �

_
k
^

5 ¼
1

σ5
sgn e1ð Þφ� η5sat k

^

5

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(13)
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where ηi∣i¼2::5 andσi∣i¼1::5 are positive learning rates.

To investigate the control performance of the learning control system, a new
theorem is given.

Theorem 2:
If applying the control gains updated using Eq. (13) to a closed-loop system

satisfying Lemma 2, asymptotic convergences of the state control error and varia-
tion gains are obtained.

Proof of Theorem 2 could be referred in Appendix E.
Remark 4: Overview of the proposed controller is sketched in Figure 1. As

stated in Theorem 1, the stability of the closed-loop system is ensured in a robust
control framework, and as proven in Theorem 2, the adaptation of the control
structure is highlighted by all the control gains learning for minimizing the tracking
control error. The form of Eq. (E.4) reveals that the learning rates
(σi∣i¼1::5 and ηi∣i¼2::5) can be employed with predefined values for specific control

hardware.
Remark 5: In real-time applications, the proposed algorithm will be deployed in a

discrete-time environment, the control errors will converge to arbitrary vicinities
around zero. The desired control range can be however minimized under the learn-
ing mechanism proposed.

4. Real-time experiments

4.1 Setup

In this section, control performance of the intelligent controller is discussed
based on verification results carried out in a real-time legged 2DOF robot. The
experimental leg included one hip joint and one knee joint which were actuated by
two BLDC motors. The mechanical design and a photograph of the actual leg are
presented in Figure 2.

Incremental encoders were used to measure the joint angles, while a force sensor
was placed in the shank of the robot to evaluate the ground contact force. The
velocity signal was calculated from filtered backward differentiation of the position
data. The robot was setup to freely move in both x and y directions. Total weight of
the robot was about 15.74 kg. The proposed control algorithm was deployed in a NI
Electrical Controller throughout LABVIEW software with a sampling time of 2 ms.
The time derivative and integral terms in real-time implementation were approxi-
mated by Euler backward methods.

Two systematic parameters a1j, a2j
� �

j¼h,k
of the low-level systems could be

estimated offline or online using a model-based identification method derived in
previous works [27, 31, 32]. Nominal values of the parameters were approximately
determined as a1h ¼ 2:5; a2h ¼ 12:25; a1k ¼ 0:5; a2k ¼ 15:

Figure 1.
Overview of the gain-learning backstepping controller for low-level subsystems.
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4.2 Comparative control results

Both the hip and knee joints were controlled at the same time using the same
control algorithm proposed. The controller was also compared with an adaptive
robust extended-state-observer-based (ARCESO) controller, a robust integral-sign-
error (RISE) controller, and another case of itself with fixed gains (nominal gains)
in Eq. (8), which is denoted as the robust backstepping (RB) controller.

The ARCESO controller was designed based on a previous work [30] wherein
their control gains were chosen as

k1h ¼ 100; k2h ¼ 100;ω0h ¼ 60; θmin h ¼ 6, 1½ �T; θmax h ¼ 25, 5½ �T; θ̂h 0ð Þ ¼ 12:25, 2:5½ �T;

k1k ¼ 80; k2k ¼ 75;ω0k ¼ 40; θmin k ¼ 5, 0:2½ �T; θmax k ¼ 30, 1:5½ �T; θ̂k 0ð Þ ¼ 15, 0:5½ �T;

(

The RISE controller was implemented based on a robust integral theory [13] to
control the studied system Eq. (2) without considering the measurement noise υð Þ.
Its control signal was:

e1 ¼ x1 � x1d; e2 ¼ _e1 þ kRISE1e1

uRISE ¼ �a�1
2 �a1x2 � €x1d þ kRISE1 x2 � _x1dð Þ þ kRISE2e2 þ

Ð

t

0

kRISE3e2 þ kRISE4 sgn e2ð Þð Þdτ

� 	

:

8

<

:

(14)

The RISE control gains were set to be:

kRISE1h ¼ 53; kRISE2h ¼ 85:4; kRISE3h ¼ 20; kRISE4h ¼ 250;

kRISE1k ¼ 45; kRISE2k ¼ 65; kRISE3k ¼ 17; kRISE4k ¼ 235;

(

The nominal gains of the proposed controllers were chosen to be:

k1h ¼ 1:5; k2h ¼ 72:5; k3h ¼ 2000; k4h ¼ 50; k5h ¼ 200;

k1k ¼ 5; k2k ¼ 72:5; k3k ¼ 2000; k4k ¼ 50; k5k ¼ 200;

(

The excitation signals ε and φð Þ of the learning laws Eq. (13) were directly
synthesized from the control error (e1) and its high-order time derivatives based on
Eq. (D.1):

Figure 2.
Design and setup of the experimental testing system.
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ε ¼ _e1 þ k1e1

φ ¼ €e1 þ k2 _e1ð Þ þ k3 þ k2 � k1ð Þk1 � sat k
^

1

� �� �

e1

(

(15)

From the nominal control gains selected, the feasible ranges of the variation
gains were then chosen to gratify the constraint Eq. (9):

k
^

1hmin ¼ �1:4; k
^

2hmin ¼ �66:5; k
^

3hmin ¼ �1000; k
^

4hmin ¼ �49;

k
^

1hmax ¼ 3:5; k
^

2hmax ¼ 500; k
^

3hmax ¼ 4000; k
^

4hmax ¼ 1500; k
^

5hmin ¼ �199; k
^

5hmax ¼ 1500;

8

<

:

k
^

1kmin ¼ �4:9; k
^

2kmin ¼ �66:5; k
^

3kmin ¼ �1000; k
^

4kmin ¼ �49;

k
^

1kmax ¼ 5; k
^

2kmax ¼ 500; k
^

3kmax ¼ 4000; k
^

4kmax ¼ 1500; k
^

5kmax ¼ 1500; k
^

5kmin ¼ �199;

8

<

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

The learning rates (σi∣i¼1::5 and ηi∣i¼2::5) were then set to comply with the condi-

tion Eq. (12) and to ensure the variation gains freely varying inside their
predetermined ranges. For simplicity, the relaxation rates (ηi∣i¼2::5) could be chosen

to be 1 or 2. Finally, the rates tuned were as

σ1h ¼ 1000; σ2h ¼ 10�2; η2h ¼ 1; σ3h ¼ 2� 10�4; η2h ¼ 1; σ4h ¼ 0:05;

η4h ¼ 2; σ5h ¼ 0:03; η5h ¼ 1;

σ1k ¼ 1000; σ2k ¼ 10�1; η2k ¼ 1; σ3k ¼ 2� 10�3; η2k ¼ 1; σ4k ¼ 0:05;

η4k ¼ 2; σ5k ¼ 0:03; η5k ¼ 1;

8

>

>

>

<

>

>

>

:

4.2.1 Simple verification

In this validation series, the proposed controller was only applied for position-
tracking control of the hip joint. A sinusoidal signal of x1dh ¼ 14 sin 4πtð Þ degð Þ was
chosen as the desired trajectory of the test. The leg was put to move freely in the air
to eliminate the external disturbance. Figure 3(a) presents the experimental data
obtained by the comparative controllers. The ARCESO controller produced a very
small control error of �0.14 deg. (�1.0%) in the high-speed tracking control thanks
to the use of an effective adaptive-disturbance learning mechanism. The ARCESO
control performance was still however limited with fast-variation disturbances
[30]. By adopting the integral-robust control signal Eq. (14) to compensate for the
lumped disturbance (d) in the low-level system Eq. (2), the RISE controller also
exhibited a high control accuracy (control error: [�0.16; 0.14] deg. (�1.14%)). In
fact, in real-time applications, improper control gains selected or large measure-
ment noise (υ) could degrade the RISE control performance. As operating under the
highly robust design Eq. (8) against all the disturbances, the RB technique provided
better control precision (control error: �0.138 deg. (� 0.98%)). Theoretically, the
control performance could be further increased if the best control gains were found,
but it may be a time-consuming work. As a solution, the gain-tuning process could
be supported by the learning mechanism Eqs. (11) and (13) proposed. Indeed, the
control quality was intuitively enhanced by applying GARB control method, which
yielded the smallest control error of �0.085 deg. (�0.6%).

The gain-learning behaviors are illustrated in Figure 3(b). As seen in the figure,
the variation gains were automatically changed in various ways under the adapta-
tion laws to minimize the control error. The maximum-absolute (MA) and root-
mean-squares (RMS) values of the control errors from after system was stable
(from 2 s to 5 s) are summarized in Table 1. Herein, the proposed controller shows
outperformance as comparing to the previous methods.
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4.2.2 Complex verification

To deeper challenge to the special properties of the proposed controller, the
robot was controlled to perform a squatting exercise in three different working
cases: in the air, on the ground, and with ground contact. The frequency and
amplitude of the squatting motion were selected to be 2 Hz and 80 mm, respec-
tively. These tests are normal working cases of the leg in real-time missions. The
desired trajectories x1dh and x1dkð Þ of the two robot joints (hip and knee) are plotted
in Figure 4. The trajectories were derived from desired foot motion of

Figure 3.
Experimental results of the single-joint test. (a). Comparative control errors of the testing controllers. (b). Gain
learning of the GARB controller.

Control error ARCESO RISE RB GARB

MA 0.140 0.160 0.138 0.085

RMS 0.080 0.074 0.072 0.030

Table 1.
Performance comparison of the controllers for the single-joint validation.

Figure 4.
Desired profiles of the robot joints in the multiple-joint tests.
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Py ¼ 460þ 40 sin 4πtð Þ;Px ¼ 0
� �

mm using simple inverse-kinematics computation

as noted in Appendix F.

4.2.2.1 Verification with minor external disturbances

Although the robot worked in the air, the disturbances affecting the control
joints were large due to high-speed control and interaction forces between the joints
during the system movement. The dynamical and statical control results obtained
by the validated controllers are respectively shown in Figure 5 and Table 2. In spite
of operating with faster motions (192.2 (deg/s) and 324.8 (deg/s) for the hip and
knee joints) and in harder internal disturbance conditions, the ARCESO controllers

Figure 5.
Experimental results of the testing controllers for the multiple-joint test in case of small external disturbance.
(a). Control errors of the comparative controllers. (b). Control inputs generated by the comparative controllers.
(c) Forces measured at the shank with respect to the GARB controllers. (d) Gain learning of the GARB
controllers.
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maintained high control outcome thanks to the strong adaptation ability:
�0:8deg � 4:8%ð Þ and �1:5deg � 4:1%ð Þfor the hip and knee joints.

As seen in Figure 5(a), the robust backstepping designs coped with the reaction
forces as well. The RB and RISE controllers stabilized the control errors inside
acceptable ranges: the errors for hip joint and knee joint are respectively
�0:5 ! 1½ �deg � 6%ð Þand �2 ! 1½ �deg � 5:5%ð Þ with the RB, while those are
�0:8 ! 1:1½ �deg � 6:6%ð Þ and �2:3 ! 1:2½ �deg � 6:3%ð Þ with the RISE. In the new
working conditions, excellent control errors were also resulted in by the GARB
controller based on a new set of the control gains found. Figure 5(d) depicts the
variation gains that were incorporated with the proposed robust design Eq. (11) to
create a better control performance as comparing to the others
( �0:2 ! 0:35½ �deg � 2:1%ð Þand �0:8 ! 0:5½ �deg � 2:2%ð Þ for the hip and knee
control errors).

Comparison of the control power required to conduct the high-speed control
motions is shown in Figure 5(b). Although the control efforts of the controllers were
almost same for this mission. Only minor disparate nonlinearities in the control
signals would lead to the divergence on control performances. The figure also reveals
that the GARB controllers generated applicable control inputs even though the learn-
ing gains were moderated in a risk of the high-order measurement noise. The benefit
comes from the low-pass-filter-like nature of the gain-learning algorithm proposed.
External force affecting the leg measured in the shank using the GARB controllers is
presented in Figure 5(c). The coordinate of the measured force is sketched in
Figure 2. This experiment shows the higher control accuracies and demonstrates the
advantages of the proposed controller as comparing to other controllers.

4.2.2.2 Verification with large external disturbances

In this experiment, the robust adaptive ability of the proposed controller was
harshly investigated under conditions of heavy external load. The robot was put on
the ground and supported by sliders in both the x and y directions. To avoid damage
for the robot, only the proposed controller was used in the verification. The control
results obtained are plotted in Figure 6. In this test, the external forces reacting
from environment were significantly increased from 10 N to 390 N. The data
presented in Figure 6(a) however implies that the controller still provided
acceptable control accuracy: �0:35 ! 0:68½ �deg � 4:08%ð Þ and
�1:5 ! 1:1½ �deg � 4:1%ð Þ for the hip and knee joints.

As demonstrated in Figure 6(b), in this case the system used larger energy than
in the second one to execute the fast-tracking control under critical conditions. As
presented in Figure 6(d), the control gains were also automatically changed to
higher values to deal with large disturbances for a smallest possible control error.
Hence, the strong robustness and fast adaptability of the proposed method can be
confirmed via this investigation.

Control error ARCESO RISE RB GARB

HIP MA 0.8 1.1 1 0.35

RMS 0.5 0.78 0.75 0.17

KNEE MA 1.5 2.3 2 0.8

RMS 0.74 1.17 1.15 0.37

Table 2.
Performance comparison of the validated controllers in the small disturbance tests.
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4.2.2.3 Verification with fast-variation external disturbances

In this case study, transient behaviors of the designed controller were carefully
validated by using fast-variation external disturbances. The robot was still con-
trolled to conduct the same squatting work. Harder testing conditions were consti-
tuted by two consecutive distinguished phases of one working cycle: a ground-
contact phase and ground-release phase. Figure 7(c) shows the ground-reaction
forces measured during the test. The nature of the external disturbance in this case
was different from those in the previous cases. Fast variation of the reaction forces
may make the system instable. The control system designed had however showed
the concrete robustness and impressive adaptation in real-time control again.

As presented in Figure 7(a), the closed-loop system provided good
performance: �0:22 ! 0:76½ �deg � 4:56%ð Þ for the hip joint and
�0:8 ! 0:7½ �deg � 2:2%ð Þ for the knee joint. The control energy and control

Figure 6.
Experimental results of the GARB controllers for the multiple-joint test in case of large external disturbance.
(a) Control errors of the GARB controllers. (b) Control inputs generated by the GARB controllers.
(c) Measurement of ground reaction forces. (d) Gain learning of the proposed mechanisms.
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parameters were varied to properly adapt to change of the new working conditions.
Figure 7(d) shows that the new ranges of the control gains were found by the
proposed algorithm, and Figure 7(b) presents the required energy for the new test.

4.2.3 Additional Statical note

The RMS values of the control errors, control signals (u), and the ground-
reaction forces for the hip and knee joints of the complex validation process are
noted in Table 3. The data imply that the GARB controller was able to result in good
control performances with the preset learning rates in the high-speed task under
different working conditions. The learning mechanism and robust control tech-
nique generated proper power for each test case to effectively realize the control
objective. Some snapshots of the robot movement in the last experiment are shown
in Figure 8.

Figure 7.
Experimental results of the GARB controllers for the multiple-joint test in case of fast-variation external
disturbance. (a) Control errors of the GARB controllers. (b) Control inputs generated by the GARB controllers.
(c) Measurement of ground reaction forces. (d) Gain learning of the proposed mechanisms.
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5. Discussion

In many humanoid robots, so far, one mainly focuses on building complicated
high-level control structures while in the low-level framework simple controllers,
such as PID or SMC, were normally employed to realize the given command
[28, 33]. Obviously, to ensure the whole system operate as expected, auto-adjusting
terms must be implemented at the upper-level framework to compensate for the
imperfection of the simple low-level actions [34, 35]. With such the cross-over
interference between the control layers, it was hard to provide high accuracies and
fast responses for the overall system [28, 36]. Indeed, in our real-time experiments
with the legged robot, well-tuned PID controllers could be adopted for squatting
tests in a certain case. When the working condition changed, the control system
could be damaged by the PID controller due to degradation of the control perfor-
mance. Of course, precision controllers could be employed in the low-level layer but
their simplicity in implementation and less computation burden should be
preserved. The gain-adaptive robust backstepping control algorithm has been
developed in comply with these strict requirements.

As noted in the control signal Eq. (8), if one chooses k5 = 0 and a1 = 0, the
nonlinear control method becomes an ordinary PID controller. In another sense, if
the control gains k4 and k5 are removed, the control signal Eq. (8) presents for a

HIP KNEE

Testing condition Force (N) Error (deg) u (%) Error (deg) u (%)

Small external disturbance 4.1 0.168 3.149 0.327 2.932

Large external disturbance 229.8 0.405 6.4653 0.782 9.7454

Fast-variation external disturbance 89.4 0.267 3.888 0.496 4.491

Table 3.
Performance comparison of the garb controllers in the multiple-joint tests.

Figure 8.
Snapshots of the leg motion in the large external disturbance test.
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conventional form of the SMC scheme in which e2 is the sliding surface. Hence,
users have various options in adoption of the designed controller, which could be
easily switched to basic control options [6, 8, 28, 35].

Note also that the input gain constant (a2) could be selected with an arbitrarily
positive constant while the nominal dynamical constant (a1) could be zero or any
bounded value. Their deviations could be counted into the lumped disturbance (d)
or extended disturbance (h). One possible way to determine such the terms is use of
the model-based identification method presented in previous works [27, 30, 31].

As comparing to other intelligent gain-learning algorithms such as neural net-
work or fuzzy logic engines, the computational burden and fast response are note-
worthy advantages [9–11, 37, 38]. However, in some cases, one does not need to use
the nominal dynamics or (a1 = 0), and at that time, overall design of the proposed
control method becomes a model-free controller.

The experimental results have confirmed the outperformance of the gain-learning
controllers over other robust adaptive nonlinear controllers, such as ARCESO and RISE
[13, 30], thanks to a high-degree-of-learning mechanism. Furthermore, the designed
controller has been improved from the former controller [27] to increase the real-time
applicability by removing third-order time-derivation terms in the control signal.

From the above analyses, the flexibility of the designed controller in terms of
working efficiency and user implementation are intuitively observed. Its feasibility
in movable robots have been also confirmed by intensive experiments.

6. Summary

This chapter presents a gain-adaptive robust position-tracking controller for
low-level subsystems of large robotic systems. The mathematical model of the
system dynamics was reviewed to provide necessary information for the controller
design. To realize the tracking control objective, a robust control signal based on the
backstepping scheme was adopted. In fact, this design is a nonlinear extension of
ordinary PID controller or conventional sliding mode controller. New adaptation
laws were developed to automatically tune the control gains for different working
conditions. The learning mechanism was activated by various forms of the control
error and deactivated by the relaxation functions.

Stability of the overall systemwas concretely maintained by proper Lyapunov-
based constraints. Extended real-time experiments were conducted to verify the per-
formance of the proposed controller. The results achieved confirmed the advantages on
the robustness, adaptation, high accuracy, and fast response of the proposed controller.
Depending on the usage purpose of user, the controller could be simplified to become a
gain-learning PID controller or an adaptive robust slidingmode controller.

Appendix A. Proof of Lemma 1

Let define the following new disturbance:

h ¼ �€x1d þ _υþ k2υþ d (A.1)

Also synthesize a new state variable and lumped term as follows:

φ ¼ �
Ð

t

0

k4εþ k5 sgn e1ð Þð Þdςð Þ þ h

ε ¼ υþ e2

8

<

:

(A.2)
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By noting Eqs. (3), (4), (8), and (A.2), the following dynamics are obtained:

_e1 ¼ ε� k1e1

_ε ¼ �k3e1 � k2 � k1ð Þεþ φ

�

(A.3)

The following positive function is studied:

V10 ¼ 0:5k4k3e
2
1 þ 0:5k4ε

2 þ 0:5φ2 þ

ð

t

0

k5 sgn e1ð Þ � _h
� �

_εdτ þ V100 (A.4)

where V100 is a positive constant selected as.

V100 ¼
0:5 k5 þ Δ _h

� �2

k4
þ k5 þ Δ _h

� �

ε 0ð Þj j (A.5)

Here, Δ• ¼ max j•jð Þ is the maximum absolute value of function •ð Þ:
The proof of the positive function V10 can be obtained by applying integral

inequalities and the condition Eq. (A.5).

The time derivative _V10 is simplified using combinations of Eqs. (A.2) and (A.3),
as follows:

_V10 ¼ k4k3e1 ε� k1e1ð Þ þ k4ε _εþ k5 sgn e1ð Þ � _h
� �

_ε

� _εþ k2 � k1ð Þεþ k3e1ð Þ k4εþ k5 sgn e1ð Þ � _h
� �

≤ � k3k5 e1j j � k3k4k1 e1j j �
Δ _h

2k4k1

� 	2

þ
k3Δ

2
_h

4k4k1

� k2 � k1ð Þk4 εj j �
k5 þ Δ _h

� �

2k4

� 	2

þ
k2 � k1ð Þ k5 þ Δ _h

� �2

4k4

(A.6)

Let define the following positive constants:

e† ¼
Δ _h

2k4k1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k3k4k1

k3Δ
2
_h

4k4k1
þ

k2 � k1ð Þ k5 þ Δ _h

� �2

4k4

 !

v

u

u

t

ε† ¼
k5 þ Δ _h

� �

2k4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k2 � k1ð Þk4

k3Δ
2
_h

4k4k1
þ

k2 � k1ð Þ k5 þ Δ _h

� �2

4k4

 !

v

u

u

t

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

By noting Assumption 2, the terms Δ _h, e†, ε† are bounded. If (∣e1∣> e†) and/or

(∣ε∣> ε†), _V10 is negative. It implies e1 andεare bounded [19, 29]. Therefore, Lemma
1 is proven. ■

B. Proof of Theorem 1

A new Lyapunov function is investigated.

V11 ¼ V10 þ P1 tð Þ (B.1)
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where P1 tð Þ is a positive function defined as:

P1 tð Þ ¼ P1 0ð Þ þ
Ð

t

0

k5 sgn e1ð Þ � _h
� �

k2 � k1ð Þεþ k3e1ð Þ
� �

dτ

P1 0ð Þ ¼ 2 k2 � k1ð ÞΔe k5 þ Δ _h

� �

8

>

<

>

:

(B.2)

The proof of the function P1 tð Þ can be referred in Appendix C.
The time derivative of the Lyapunov function in adoption of Eqs. (A.6) and (B.2) is.

_V11 ¼ �k3k4k1e
2
1 � k4 k2 � k1ð Þε2 þ _P1 tð Þ � k5 sgn e1ð Þ � _h

� �

k2 � k1ð Þεþ k3e1ð Þ

¼ �k3k4k1e
2
1 � k4 k2 � k1ð Þε2

(B.3)

From Eqs. (2), (9)–(10), (A.6), (B.1)–(B.3), and Assumptions 1 and 2, we have:

e1, ε½ �T ∈L2
2. By recalling (A.4), _e1 is bounded, and.

€ε ¼ � k2 � k1ð Þ _εþ k1k3e1 þ _h� k3 þ k4ð Þε� k5 sgn e1ð Þ (B.4)

It implies that _ε is bounded. Hence, by using Barbalat’s lemma [39],Theorem 1 is
proven. ■

C. Proof of the positive function P1(t)

The function P1 tð Þ expressed in Eq. (B.2) can be expanded using the error
dynamics Eq. (A.3) and integral inequalities as follows:

P1 tð Þ≥P1 0ð Þ þ

ð

t

0

k5 sgn e1ð Þ � _h
� �

k3 þ k1k2 � k21
� �

e1
� �

dτ

� k2 � k1ð Þ

ð

t

0

_h_e1
� �

dτ � k5 k2 � k1ð Þ

ð

e1 tð Þ

e1 0ð Þ

d e1ð Þ

(C.1)

By applying the integrating procedures in previous works [8] and comparison
inequality, we have.

P1 tð Þ≥P1 0ð Þ þ

ð

t

0

k5 � Δ _h

� �

k3 þ k1k2 � k21
� �

e1j j
� �

dτ � k2 � k1ð Þ Δ _h þ k5
� �

e� e 0ð Þj j

(C.2)

The proof is completed by noting Lemma 1, the conditions Eqs. (10) and (B.2),
the definition Eq. (A.1), and Assumptions 1 and 2.

D. Proof of Lemma 2

By applying the control input Eq. (11) to the dynamics Eq. (2), the closed-loop
system is:
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_e1 ¼ ε� k1e1

_ε ¼ � k2 � k1ð Þε� k3 � sat k
^

1

� �

�
_
k
^

1

� 	

e1 þ φ:

8

<

:

(D.1)

A new positive function is studied.

V20 ¼ 0:5φ2 þ

ð

t

0

k5 sgn e1ð Þ � _h
� �

_εdτ þ

ð

t

0

k4 k3 � sat k
^

1

� �

�
_
k
^

1

� 	

e1 _e1dτ þ

ð

t

0

k4ε _εdτ

þ V200

(D.2)

where V200 is a positive constant selected as.

V200 ¼
0:5 k5max þ Δ _h

� �2

k4min
þ k5max þ Δ _h

� �

ε 0ð Þj j

þ0:5k4max ε 0ð Þð Þ2 þ 0:5k4max k3max þ Δ
k
^

1
þ Δ _

k
^

1

� 	

e1 0ð Þð Þ2
(D.3)

The proof of Lemma 1 can be reused for the positive function V20 based on
Eq. (D.3) and for its time derivative. Then, the time derivative of the new function is:

_V20 ¼ k5 sgn e1ð Þ � _h
� �

_εþ k4 k3 � sat k
^

1

� �

�
_
k
^

1

� 	

e1 ε� k1e1ð Þ þ k4ε _ε

� _εþ k2 � k1ð Þεþ k3 � sat k
^

1

� �

�
_
k
^

1

� 	

e1

� 	

k4εþ k5 sgn e1ð Þ � _h
� �

≤ � e1j j k3 � sat k
^

1

� �

�
_
k
^

1

� 	

k4k1 e1j j þ k5 � Δ _h

� �

� k2 � k1ð Þ εj j k4 εj j � k5max � Δ _h

� �

(D.4)

By employing the same discussion with Lemma 1 under Assumption 2, Lemma 2 is
proven.■

E. Proof of Theorem 2

Let consider the following Lyapunov function:

V2 ¼ 0:5 k3k4e
2
1 þ k4ε

2 þ 2P2 tð Þ þ φ2 þ σ2k4k
^2

2 þ σ3k4k
^2

3 þ σ4k
^2

4 þ σ5k
^2

5

� 	

(E.1)

where P2 tð Þ is a positive function which is chosen as follows:

P2 tð Þ ¼ P2 0ð Þ þ

ð

t

0

k5 sgn e1ð Þ � _h
� �

φ

� �

dτ2 (E.2)

The proof of the function P2 tð Þ can be satisfactory using the similar arguments
presented in Appendix C with the following conditions:
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P2 0ð Þ ¼ 2 k5 þ Δ _h

� �

Δ_e þ k2maxΔeð Þ

k3 þ k2 � k1ð Þk1 � sat k
^

1

� �� �

min
>0

k5 ≥Δ _h

8

>

>

<

>

>

:

(E.3)

Substituting Eqs. (D.1) and (13) to the time derivative of the new Lyapunov
function leads to.

_V2 ¼ �k3k4k1e
2
1 � k2 � k1

� �

k4ε
2 � k4σ1 e1εð Þ2 � η2σ2k4k

^

2sat k
^

2

� �

�η3σ3k4k
^

3sat k
^

3

� �

� η4σ4k
^

4sat k
^

4

� �

� η5σ5k
^

5sat k
^

5

� � (E.4)

Theorem 2 is proven by noting Eqs. (2), (D.1), (E.1), (E.4), Assumptions 1 and 2,
and the discussions in the proof of Theorem 1. ■

F. Inverse Kinematics of the robot leg

The desired angles of the leg joints (hip x1dhð Þ and knee x1dkð Þ) can be calculated
from the position of the foot (the end-effector) using the following inverse
kinematics:

x1dh ¼ atan2 Px,Py

� �

þ arc
P2
x þ P2

y þ l21 � l22

2l1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
x þ P2

y

q

0

B

@

1

C

A

x1dk ¼ atan2 Px � l1 sin x1dhð Þ,Px � l1 cos x1dhð Þð Þ � x1dh

8

>

>

>

<

>

>

>

:

(E.5)

where l1 ¼ 0:21mand l2 ¼ 0:295m are the link lengths of robot (thigh and
shank), respectively. Px and Py are the end-effector position of the robot foot with
respect to the robot coordinate setting at the hip joint, as sketched in Figure 2(b).
The feasible working range of the hip joint was selected to be 0 ! þ80½ �deg:
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