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Chapter

Recent Advances in Antioxidant 
Capacity Assays
Andrei Florin Danet

Abstract

This work presents a survey of the important antioxidant capacity/activity 
assays applied for a diversity of samples including plant extracts, foods, biological 
material, etc. The published materials are critically discussed, emphasizing the 
recent findings in the field. New and emergent antioxidant capacity assays, such as 
nanoparticles-based assay, are also presented. The discussion includes chemical-
based methods as well as biochemical and cellular assays. Chemical methods 
detailed are radical/ROS-based scavenging assays (the trolox equivalent antioxidant 
capacity (TEAC/ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical 
absorbance capacity (ORAC) assays, chemiluminescence methods, total radical-
trapping antioxidant parameter (TRAP), total oxy radical scavenging capacity 
(TOSC), and β-carotene bleaching assays), non-radical redox potential-based 
assays (ferric reducing antioxidant power (FRAP), cupric reducing antioxidant 
capacity (CUPRAC), nanoparticle-based methods and electrochemical methods), 
metal chelation capacity and total phenolic content tests. The biochemical-based 
assays and in vivo assays discussed include the oxidation of low density lipoprotein 
(LDL), the thiobarbituric acid reactive substances (TBARS) and the cellular anti-
oxidant activity (CAA) assays. While a direct link between the antioxidant capacity 
and health benefits is still a matter of debate, the antioxidant testing methodologies 
presented in this chapter remain valuable for the high efficiency and cost-effective 
evaluation of antioxidants, from compound discovery to quality control.

Keywords: antioxidant, total antioxidant capacity, reactive species, phenolic 
compounds, antioxidant assay, phytochemicals, food analytical method

1. Introduction

Antioxidants are classified in two categories: (1) primary or chain-breaking anti-
oxidants, especially acting by scavenging reactive oxygen species/reactive nitrogen 
species (ROS/RNS) and (2) secondary or preventive antioxidants, that suppress 
the oxidation promoters such as metal ions, singlet oxygen, pro-oxidative enzymes 
and other antioxidants, commonly operating by transition metal ion chelation [1]. 
An antioxidant may operate directly or indirectly: directly by scavenging ROS/RNS 
species or by inhibiting their generation, indirectly, e.g., by up-regulating endog-
enous antioxidant defenses [2, 3]. Antioxidants can be also classified as enzymatic 
and non-enzymatic antioxidants. In the present review we shall discuss only the 
non-enzymatic antioxidants. The efficacy of an antioxidant depends on its antioxi-
dant activity and/or its antioxidant capacity.
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It should be stated from the very beginning that antioxidant activity and anti-
oxidant capacity are two different terms. The antioxidant activity is linked to rate 
constant of an antioxidant against a specified free radical, whereas the antioxidant 
capacity represents the number of moles of a specified free radical, scavenged by an 
individual antioxidant present in the analyzed mixture [4]. Antioxidant activity is 
related especially to the reaction kinetics, whereas antioxidant capacity is related to 
the thermodinamics of the process regarding the oxidative conversion of an antioxi-
dant and is connected with equilibrium constant of the process [5].

The antioxidant assays can target a specific compound (e.g., ascorbic acid, 
vitamin E, uric acid, etc.) or the total antioxidant capacity (TAC) given by the 
combined antioxidant capacities of all substances in a sample.

Antioxidant assays include direct and indirect methods. Direct assays are 
competitive, in which the produced reactive species simultaneously attack a „probe” 
and the antioxidant. Indirect assays are non-competitive, the redox reactions being 
simulated using an artificial probe, whose structural changes are measured by dif-
ferent techniques (spectroscopy, electrochemistry, or other methods).

The most common assays for TAC comprise: (i) the measurement of oxygen radical 
antioxidant capacity (ORAC) using different fluorescent probes [6], (ii) the Trolox 
equivalent antioxidant capacity based on 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) (TEAC/ABTS) [7], (iii) the 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) assay [8], (iv) the ferric reducing antioxidant power (FRAP) test [9], (v) the 
cupric reducing antioxidant capacity (CUPRAC) assay [10] and (vi) Folin–Ciocalteu’s 
phenol reagent reducing capacity (for the content of total phenolics) [11, 12].

Extensive reviews regarding the methods for assaying antioxidant capacity/activity 
could be found in literature [1, 5, 6, 13–19] and a book has also been published recently 
[20] with a focus on the measurement of antioxidant activity and capacity. Several 
papers have discussed the advantages and disadvantages of different antioxidant 
assays, with a focus on method selection for specific requirements [14–16, 21, 22].

There are numerous research articles in literature pertaining to the evaluation of 
antioxidant methodology. However very few discuss the mechanistic steps involved 
in the respective reactions [23, 24]. In depth evaluation of ORAC, ABTS and DPPH 
methods were comprehensively presented [25]. Some important antioxidant assays 
in terms of mechanisms and kinetics of the involved reactions were evaluated 
[6, 14], while the mechanisms, advantages and disadvantages of different antioxi-
dant assays were also described in [18, 26, 27].

A review of the main methods for monitoring the antioxidant capacity/activity 
of lipid-containing samples was presented in [28]. In addition, the determination of 
the antioxidant capacity of lipids via the flow injection analysis (FIA) coupled with 
chemiluminescence detection was specifically discussed in [29].

The role of antioxidants from a pharmaceutical perspective is presented in [30] 
and a review of the methodologies for the determination of biological antioxidant 
capacity in vitro is presented in [31].

Compiled information about antioxidants in terms of the chemistry, legislation 
and their application in foods as preservatives can be found in [32]. The extrapola-
tion of laboratory data relative to the antioxidants’ function and their implications 
on food production and human health, etc. is critically discussed in [33].

Some recent reviews [13, 34, 35] commented on the advance, applications, advan-
tages and disadvantages of total antioxidant capacity assays. The contentions and 
limitations of some largely used antioxidant assays, hints for suitable assay selection, 
emerging techniques in antioxidant testing and future perspectives are provided in [5].

An interesting discussion is presented in [36] about the development of several 
TAC databases of foods, the development of methods for evaluating TAC in the diet, 
the application of TAC databases in epidemiological studies, the application of TAC 
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methods to biological fluids and the correlation between consumption of antioxi-
dant rich-foods and the plasma TAC. The advantages and disadvantages of different 
TAC assays were also summarized.

Unfortunately many studies on TAC have reported disparate results regarding anti-
oxidant capacity measured on the same material in different laboratories even by using 
the same analytical method, or in a particular laboratory by using different methods. 
Such discrepancies could be explained by the fact that the employed methods evalu-
ate different things under various conditions, e.g., some measurements are done in 
homogenous solutions, other in suspensions, some methods evaluate hydrogen atom 
transfer capacity, other evaluate electron transfer capacity, etc.

Consequently, developing standardized antioxidant capacity methods might 
reduce the results spreading. A basic rationale to develop standardized anti-
oxidant capacity methods for food, being provided in [37], which considered 
three candidates assays for standardization, i.e., ORAC, TEAC/ABTS and Folin 
Ciocalteu method.

Radicals are usually quenched by two mechanisms [6, 25], i.e., by transferring 
either an electron (ET) or a hydrogen atom (HAT) to transform the radical to a more 
stable species, albeit sometimes the mentioned mechanisms may not be well distin-
guished [37]. Consequently antioxidant capacity measurements may be in large, cat-
egorized as electron transfer (ET)- and hydrogen atom transfer, (HAT)-based assays.

In ET–electron transfer assays, one or more electrons are transferred to reduce 
the compounds of interest according to the following reaction schemes:

 
• • • • •

2 3
ROO AH / ArOH ROO AH / ArOH H O A / ArO H O

− + + ++ → + + → +            (1)

 
3 2

ROO H O ROOH H O
− ++ → +   (2)

 ( ) ( )• •
M III AH / ArOH AH / ArOH M II

+ ++ → +   (3)

HAT–hydrogen atom transfer assays involve the transfer of a H atom to the tar-
get radical and eventual secondary quenching by radical recombination, as follows:

 • • •
ROO  AH / ArOH  ROOH  A / ArO+ → +   (4)

 • •
ROO  A  ROOA+ →   (5)

where AH = any antioxidant with donatable H, ArOH = phenol or polyphenol, 
M = redox-active metal.

As can be seen from the chemical reactions written above, regardless of the 
mechanism involved (ET or HAT), antioxidants scavenge ROS/RNS generating the 
same end products indifferent to mechanism involved, albeit kinetics and influence 
of system parameters, particularly solvent and pH, and potential for side reactions 
vary [37]. Moreover, HAT and proton coupled ET reactions may occur concur-
rently and the main mechanism in a particular system is determined by antioxidant 
properties and structure, partition coefficient, solvent, etc. [37].

The ET-based methods evaluate an antioxidant’s reducing capacity (also of the 
probe for monitoring the reaction). Mainly HAT-based methods measure competi-
tive reaction kinetics, and the determination is effected taking into account the 
kinetic curves. HAT-based assays mostly involve a synthetic free radical source, 
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an oxidizable probe, and an oxidant. An elaborate description of antioxidant 
mechanisms is well presented in several review papers [6, 13–16, 38].

Antioxidant capacity is expressed as equivalents of a reference antioxidant such 
as trolox, gallic acid, etc., or antioxidant inhibition against oxidation of the probe 
(generated by ROS). Oxidation of the probe is determined by different detection 
techniques, such as: spectrophotometric, fluorimetric, chemiluminescent, EPR, 
amperometric methods, cyclic voltammetry, etc.

A classification of the methods for the assessment of antioxidant capacity/activ-
ity discussed in this work is presented in Table 1.

Classifications Assays References

Chemical based 

assays

Radical/ROS-based 

scavenging assays

HAT/ET 

assays

(Mixed 

mode)

TEAC/ABTS assay [1, 15, 18, 24, 

34]

DPPH assay [1, 15, 34]

HAT assay ORAC assay [1, 15, 25, 37]

Chemiluminescence methods [29, 37, 39, 40]

TRAP assay [13, 15, 41]

TOSC assay [15, 42]

β-Carotene bleaching assay [15, 34, 43]

Non-radical redox 

potential-based assays

ET assay FRAP assay [13, 15, 20, 34]

[21, 35, 44]CUPRAC assay

Nanoparticles based assays

• colorimetric detection, AuNPs- and 

AgNPs-based assays

• electrochemical detection, AuNPs-based 

assays

• magnetic NPs-based assays

[15, 45–47]

[15, 45–47]

[15, 45–47]

[48]

Electrochemical methods

• cyclic voltammetry (CV) based assays

• diferential pulse voltammetry (DPV) 

based assays

• Square wave voltammetry (SWV) based 

assays

• Amperometry, biamperometry-based 

assays

[49–51]

[52, 53]

[54]

[55]

[56–58]

Metal chelation capacity [13, 59]

Total phenolic content (TPC) [60, 61]

Biochemical based 

assays and in vivo 

assays

Oxidation of low density lipoproteins 

(LDL) assay

[18, 62]

The thiobarbituric acid reactive substances 

(TBARS) assay

[18, 63, 64]

Cellular antioxidant activity assay [18, 65, 66]

Table 1. 
Classifications of antioxidant capacity/activity assays.



5

Recent Advances in Antioxidant Capacity Assays
DOI: http://dx.doi.org/10.5772/intechopen.96654

2. Chemical based assays

2.1 Radical/ROS scavenging assays

2.1.1 Scavenging ability toward stable free radicals ABTS•+ and DPPH•

2,2′-azino-bis(3-ethylbenzothiazole-6-sulphonate) radical cation, ABTS•+ and 
2,2-diphenyl-1-picrylhydrazyl, DPPH• are colored and stable free radicals that have 
been largely used to measure antioxidant capacity. DPPH• is commercially available, 
but ABTS•+ must be produced from the oxidation of ABTS with chemical reagents 
such as K2S2O8, MnO2, etc. ABTS•+ is soluble in aqueous and in alcoholic media 
(λmax 734 nm), while DPPH• is soluble in different organic solvents (λmax 517 nm, in 
ethanol). The chemical structures of ABTS•+ and DPPH• are presented in Figure 1.

The trolox equivalent antioxidant capacity (TEAC/ABTS) assay based on the 
use of ABTS•+ radical cation and DPPH• radical-based (DPPH) assay are among the 
most used antioxidant capacity assays.

In TEAC/ABTS assays, the antioxidant capacity is evaluated as the capability 
of analyzed sample to diminish the color intensity after reacting with the ABTS•+ 
radical. This assay can be employed for lipophilic as well as hydrophilic compounds. 
The assay is technically simple, being widely applied for screening and habitual 
determinations. Most often, ABTS•+ is produced by oxidation of ABTS with K2S2O8. 
The reaction of antioxidants with ABTS•+ is quite fast. Generally, the measurements 
are done after a fixed period of time. The TEAC/ABTS assays were recently investi-
gated with regards to their basic chemistry, reaction stoichiometry and the reaction 
pathways behind the ABTS/potassium persulfate decolorization assay [24].

A recent review [67] of TEAC/ABTS assays gives a comprehensive insight into 
this approach for evaluating the antioxidant capacity, including different methods 
of ABTS•+ generation, experimental design, and quantification strategies, as well 
as TEAC value data collection obtained using a diversity of samples. Other recent 
reviews regarding both ABTS/TEAC and DPPH assays can be found in [1, 5, 18, 34].

A comprehensive critical evaluation of the TEAC/ABTS, DPPH, and oxygen 
radical absorbance capacity (ORAC) assays, presented in [25] discusses the differ-
ent methods, the intrinsic mechanisms of reactions, the advantages and disadvan-
tages, the limitations and recommendations for applications of the methods.

The TEAC method has several advantages:

• It allows the assessment of a plethora of synthetic as well as natural antioxi-
dants (phenols, peptides, thiols, indols, flavonoids, aminoacids, carotenoids, 
tocopherols, vitamin C, etc.).

• It can be applied over a large pH range.

Figure 1. 
Chemical structures of 2,2′-azino-bis(3-ethylbenzothiazole-6-sulphonate) radical cation, ABTS•+ and 
2,2-diphenyl-1-picrylhydrazyl, DPPH• radical.
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• The solubility of ABTS•+ in buffered and organic media enables measurement 
of both hydrophilic and lipophilic antioxidant activities.

• ABTS is affordable and easy to use.

Disadvantages of TEAC include:

• For some antioxidants different TEAC values may be obtained, depending on 
the way in which ABTS•+ is generated and on the measurement time interval 
selected.

• ABTS•+ (the same is applicable for DPPH•) is a metastable radical that does not 
exist in nature, being a “non-physiological” radical.

• The results of the assays depend on the reaction time. Some antioxidants react 
very fast and completely while other react slowly or combine a mix of fast and 
slow reactions [68].

• In the TEAC the molecular size and steric hindrance is an important character-
istic. The accessibility of polyphenolics with bulky substituents to the radical 
cation ABTS is sterically restricted.

The DPPH assay is low-cost and simple and consequently has been largely used 
in laboratory settings for many applications. The assay is based on measuring the 
decrease of the absorbance of DPPH• radical (at a wavelength of 517 nm) as a result 
of its reaction with antioxidants from the sample. This method was criticized for 
lacking standardization in different stages of the analytical process [37].

The criticism regarding DPPH assay is expressed even harder in [25]:“The DPPH 
reaction has been used as if it is a simplistic chemical “black box” – reagents are 
mixed and a number is generated, and the chemistry occurring between is ignored.” 
In fact, antioxidant reactions with DPPH reagent are actually complex and reaction 
curves show multiple reactivity patterns [69]. DPPH reactions are very sensitive 
to the reaction medium, such as: water and solvent, pH, light exposure, dissolved 
oxygen, pH, etc. [69, 70].

The disadvantages of DPPH assay consist of the following:

• The evaluation of antioxidant capacity by the change in DPPH• absorbance has 
to be carefully evaluated since the absorbance of DPPH• after reaction with an 
analyzed sample may be diminished by some other factors (pH, O2, light, type 
of solvent, etc.).

• Fixed-time assays may undervalue the radical scavenging capacities of slow-
reacting antioxidants.

• Since the ionization of phenols – and consequently the reaction rates – are 
highly influenced by solvent composition and pH, the DPPH assay is not 
adequate to ranking antioxidant compounds and natural extracts.

In essence, the significant shortcomings of both TEAC/ABTS and DPPH assays 
are related to the intricacy of the mechanisms of reaction with antioxidants, the big 
influence of the experimental conditions on the obtained results, and the impor-
tant difference between DPPH• and ABTS•+ chemical structures and those of free 
radicals existing in biological systems.
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2.1.2 Oxygen radical absorbance capacity (ORAC) assay

The ORAC method determines the radical chain breaking capacity of antioxi-
dants by measuring the blocking-up of peroxyl radical generated oxidation. The 
peroxyl radical reacts with a probe (usually fluorescent) to form a non-fluorescent 
product, and the process can be monitored with a good sensitivity by fluorescence. 
Antioxidant capacity is determined by measuring rate and amount of product 
generated over time. Competition between reaction of probe and antioxidants with 
the ROO• radical (or other ROS/RNS) constitute the premise of the assay.

Peroxyl radicals (ROO•) are the main free radicals that act in lipid oxidation in bio-
logical environment under physiological circumstances and in foods. For this reason, 
ORAC assay could be considered to have a biological concern as a reference for anti-
oxidant efficacy. Commonly, 2,2′-azo bis(2-methylpropionamidine) hydrochloride 
(AAPH) is employed as ROO• source that generates peroxyl radical at a known rate at 
incubation in aqueous media. The reactions involved in ORAC assay are as follows:

 •

2 2
AAPH O 2ROO N+ → +   (6)

 •

fluorescent non fluorescent
ROO Probe ROOH Oxidised Probe −+ → +  (7)

 • •
ROO AH ROOH A+ → +    (8)

 • •
ROO A ROOA+ →   (9)

The antioxidant capacity is measured by a diminished rate and through the 
quantity of product generated over time. A set of fluorescence decay curves can be 
obtained with or without antioxidants. The difference in the area under the curves 
(AUC) between the curves recorded in the presence and in the absence of the oxi-
dant is considered to be a marker of the peroxyl radical scavenging capacity. Usually 
trolox (a standard antioxidant) is employed as reference and the obtained ORAC 

Figure 2. 
ORAC antioxidant capacity of a sample expressed as the net AUC.
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values are provided as trolox equivalents of the tested antioxidants. Data are shown 
as micromoles of trolox equivalents (TE) per liter or per gram of sample (μmol of 
TE/L or μmol of TE/g). The ORAC antioxidant capacity of a sample shown as the 
net area under the curve (AUC) is presented in Figure 2.

ORAC assay is a HAT-based method because it measures the capacity of hydro-
gen atom donating ability of antioxidants. β-phycoerythrin (β-PE), a protein 
obtained from Porphyridium cruentum, was employed as the fluorescent probe in 
the first studies. However, the use of β-PE in antioxidant assays has several short-
comings and can cause false ORAC values. The currently preferred fluorescent 
probes are fluorescein and dichlorofluorescein diacetate [37], as they are more 
stable and less reactive. Nevertheless, fluorescein may undergo undesired fluores-
cence quenching and side reactions [71] and other fluorescent probes have been 
suggested in consequence.

In order to measure both hydrophilic as well as lipophilic antioxidants the initial 
ORAC assay was modified using a solution of 50% acetone/50% water (v/v) and 
7% randomly methylated β-cyclodextrin as a solubility enhancer of the antioxidants 
[72, 73].

The ORAC method has the utility to be a simple and standardized assay, how-
ever, secondary reactions can occur, affecting the reported results. For example, it 
was reported that antioxidant-metal reactions could result in a smaller concentra-
tion of antioxidants and hence to a depreciation of the ORAC value [74].

The ORAC method can be readily automated and it is perhaps the most largely 
recognized of all the antioxidant methods.

2.1.3 Chemiluminescence methods

The fundamental chemistry of chemiluminescence measurements of antioxi-
dants is based on the reaction of ROS/RNS species with special reagents to generate 
species in an excited state that light up (chemiluminescence). The chemical com-
pounds that react with the initiating reactive species diminish the light generation. 
Hence, generally, chemiluminescence measurements for antioxidant capacity assay 
are based on competitive reactions. By changing the oxidant initiator (e.g., O2

•, HO•, 
ROO•, ONOO−, HOCl, 1O2, etc.) it is possible to measure the capacity of quenching 
of different ROS/RNS by an antioxidant [37]. Chemiluminescence is a highly sensi-
tive analytical method. The detection limit is very low, below that of most chemical 
methods. The mainly used chemiluminescence reagents are luminol [37, 75–79], 
lucigenin [39], pholasin (a bioluminescent protein) [80] and peroxyoxalate [81]. 
Luminol is the main commonly employed aqueous chemiluminescent reagent. 
Luminol reacts with an oxidizing agent, hydrogen peroxide (in presence of a 
catalyst) to yield 3-aminophthalate in an excited electronic state, which emits light. 
Antioxidants can quench the produced ROS (by hydrogen peroxide) and diminish 
hydrogen peroxide-induced chemiluminescence.

Chemiluminescence method has been automated in flow-based assays, e.g., flow 
injection analysis (FIA) [29, 76, 79, 82], sequential injection analysis (SIA) [83, 84], 
multi-syringe FIA (MS-FIA) and multi commutation.

A review on antioxidant assays with chemiluminescence detection is presented 
in [40] and other more general reviews of antioxidant assays including methods 
with chemiluminescence detection are presented in [1, 16, 17].

The methods for the determination of lipid hydroperoxides and of the antioxi-
dant capacity of lipids by using flow injection analysis with chemiluminescence 
reagents are reviewed in [29].

The TAC of some Rosmarinus officinalis L. (rosemary) extracts was measured 
by an in batch analytical method based on Co(II)-ethylendiaminetetraacetic acid 
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(EDTA)-induced luminol-hydrogen peroxide chemiluminescence (luminol/Co(II)
EDTA/H2O2) [75]. The method allows for TAC determination in the range 10−5–2.5 
10−3 moles L−1 of gallic acid equivalent. The same in batch method was applied for 
the TAC determination of fruit juices and noncarbonated soft drinks [77] and fruit 
seeds extracts [85].

The luminol/Co(II)EDTA/H2O2 system with chemiluminescence detection was 
used also in a flow injection analysis (FIA) method for the total antioxidant capacity 
determination of wines [79] and culinary and medicinal plants extracts [76].

Amperometric TAC measurements of several plant extracts using an electro-
chemical gold nanozyme-sensor based on the enzyme-like catalytic activity of gold 
nanoparticles [58] were associated with those obtained from a chemiluminescence 
method reported in [75]. A good correlation has been found between the two 
methods (Pearson’s correlation coefficient of 0.958).

A new microfluidic chemiluminescence method for fast determination of the 
TAC of apple and pomegranate juices and honey samples was reported in [86]. The 
method is based on the NaHCO3-H2O2-Co2+ chemiluminescence reaction.

A chemiluminescence-sensing platform for the determination of natural 
antioxidants and imaging of their tissue distribution is reported in [87]. The che-
miluminescence radiation is emitted upon the redox reaction of antioxidants (e.g., 
L-ascorbic acid) with quinones (e.g., menadione), in the presence of luminol.

Different chemiluminescent system that allow the evaluation of both hydro-
philic and lipophilic antioxidants by using the same method were reported. Thus, 
lucigenin–hydrogen peroxide chemiluminescence in 2-propanol has been proposed 
to measure the activity of both hydrophilic and lipophilic antioxidants [88].

A peroxyoxalate–hydrogen peroxide–imidazol–fluorophore system was applied 
in the evaluation of antioxidants in olive oils and honey samples. The system relies 
on a furan dicarboxylate derivative as fluorophore [81].

2.1.4 Other radical/ROS scavenging assays

Total radical-trapping antioxidant parameter (TRAP) assay. This method gener-
ally measures the antioxidant’s capability to interfere with the reaction between 
ROO• (usually generated from AAPH) and a probe. It is relatively complex and 
laborious to perform [39 [37]. An early review of TRAP assay is presented in [89].

A TRAP assay for measuring total plasma antioxidant capacity used 
R-phycoerythrin (red protein pigments from the cells of red algae) as a fluorescent 
probe and AAPH, as ROO• radical generator [41]. Fluorescence quenching was 
measured in absence and in presence of the analyzed antioxidant samples. The 
quantification of antioxidants is based on the duration of the lag phase.

Initiators for ROO• radicals have been produced selectively by azides, enzymes 
(e.g., horseradish peroxidase) [90], or H2O2-hemin [91], etc. Some of the probes 
used in TRAP assays include fluorescein, dichlorofluorescein diacetate [92], 
R-phycoerythrin [93] and luminol [90].

It was reported that an important limitation of the TRAP assay is the use of the 
lag phase for determination of antioxidant capacity because not all antioxidants 
have a clear lag phase [94].

Total oxy radical scavenging capacity (TOSC) assay. The assay is based on 
the determination of antioxidants particularly toward three strong oxidants 
(•OH, ROO•, and ONOO−) [15, 42]. In TOSC assay the oxidation of α-keto-γ-
methiolbutyric acid (KMBA) to ethylene by ROS and ethylene formation was 
determined by head space gas chromatography relative to a reference reaction. 
The antioxidants compete with KMBA for ROS and the formation of ethylene is 
inhibited.
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The most important drawback of this assay is the long reaction time (hundreds 
of minutes) and the necessity of several chromatographic analyses for each experi-
ment [21].

β-Carotene bleaching assay. This assay employs an aqueous emulsion of linoleic 
acid and β-carotene, which is discolored under the influence of the radicals gener-
ated through the spontaneous oxidation of the fatty acid, owing to exposure to 
dissolved O2, promoted by thermal induction. The measurements are done typically 
at 50 °C. Quantification is based on varying the rate at which β-carotene absorbance 
decays (at a wavelength of about 470–490 nm) in the presence of increasing con-
centrations of the antioxidant or prooxidant under evaluation. The decolorization is 
due to the breaking of π-conjugation by the addition reaction of radicals into a C=C 
bond of β-carotene [34]. The antioxidant capacity/activity is calculated in terms of 
% inhibition with regard to the reference.

An investigation of the experimental conditions that influence β-carotene bleach-
ing assay is presented in [43] and in [95]. The β-carotene bleaching assay can screen 
both lipophilic and hydrophilic samples. It is sensitive to temperature, oxygen, pH 
and solvent effects and is time-consuming (an assay last hundreds of minutes).

2.2 Non-radical redox potential-based assays

2.2.1  Ferric reducing antioxidant power (FRAP) and cupric reducing antioxidant 
capacity (CUPRAC) assays

Ferric reducing antioxidant power (FRAP) and cupric reducing antioxidant capac-
ity (CUPRAC) assays were reviewed in several recent papers [13, 14, 20, 21, 34, 35].

FRAP assay is based on antioxidants to reduce the ferric 2,4,6-tripyridyl-s-
triazine complex [Fe3+−(TPTZ)2]

3+ to the blue colored ferrous complex, [Fe2+−
(TPTZ)2]

2+ in acidic medium (pH 3.6). Measuring the increase in absorption at 
593 nm monitors this reduction. The antioxidant capacity is expressed as μM Fe2+ 
equivalents or as a standard antioxidant equivalents. The FRAP assay is conducted 
at acidic pH 3.6 in order to prevent iron precipitation.

The reaction detects compounds with redox potentials lower than 0.7 V so FRAP 
is an adequate screen for the capacity to maintain redox status in cells or tissues. 
FRAP cannot measure compounds that act by radical quenching (H transfer), 
specifically bio-thiols (such as glutathione) and proteins [96]. For this reason the 
method is rather inadequate to measure the antioxidant capacity of intracellular 
fluids and human plasma/serum [97, 98].

Because the redox potential of [Fe3+−(TPTZ)2]
3+ is similar to ABTS•+ potential 

(0.68 V), similar compounds react in both the FRAP and TEAC assays. The FRAP 
mechanism is totally electron transfer and not mixed ET and HAT, and so in 
association with other antioxidant methods can be very useful in differentiating 
preponderant mechanisms with different antioxidants [37].

FRAP really determine only the reducing capacity based upon the ferric ion, 
which is not relevant to antioxidant capacity physiologically and mechanistically. 
However, in contrast to other assays of TAC, the FRAP method is simple, fast, 
inexpensive and robust and does not necessitate special equipment.

Cupric reducing antioxidant capacity (CUPRAC) assay. The method measures the 
reducing power of antioxidants to convert cupric (Cu2+) to cuprous (Cu+) ion. The 
copper reducing ability is measured by complexation of Cu+ with bathocuproine 
(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) or neocuproine (2,9-dimethyl-
1,10-phenanthroline) the corresponding complexes having absorption maximum 
at 490 nm and 450 nm, respectively [99]. Figure 3 presents the cupric reducing 
antioxidant capacity (CUPRAC) reaction mechanism.
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FRAP and CUPRAC have comparable values with TEAC values (with some 
exceptions) since similar redox potential probes are employed in the assay. The 
original CUPRAC assay has been modified in order to allow analysis of different 
samples, e.g., acetone/water medium containing methyl-β-cyclodextrin has been 
employed for simultaneous assay of hydrophilic and lipophilic antioxidants [100].

In another modified CUPRAC assay, an optical sensor containing immobilized 
CUPRAC reagent Cu2+–neocuproine complex onto a perfluorosulfonate cation-
exchange polymer (Nafion) membrane matrix was developed. The measurements 
of absorbance were done at 450 nm [101].

CUPRAC assay is more selective due to its lower redox potential than that of 
redox couples like Ce 4+/Ce3+ and Fe 3+/Fe2+ [102]. The CUPRAC assay have been 
discussed in a comprehensive review in [44].

2.2.2 Nanoparticles based assays

For the determination of antioxidants, nanoparticles (NPs) can be employed 
as electrochemical or colorimetric probes, components in chemical and biologi-
cal detection systems, and for radical generation. Several reviews regarding TAC 
determination by using NPs can be found in literature [18, 45–47, 103].

Chemical reduction-based nanotechnological assays of colorimetric TAC 
measurements make use of the generation or growth of noble metal nanoparticles 
(AuNPs, AgNPs, etc.) upon reaction of Au3+ or Ag+ salts with antioxidant. The 
strong visible light absorption at a specific wavelength results from the surface 
plasmon resonance absorption of metal nanoparticles.

In a pioneering work, reported in [104] the antioxidant capacity of several phe-
nolic acids was determined from the formation and growth of gold nanoparticles 
(AuNPs). The same experimental approach was employed in [105] to evaluate the 
antioxidant capacity of chrysanthemum extracts and tea beverages.

A comparison of a AgNPs-based method for TAC assays in different rapeseed 
varieties with those of several spectrophotometric methods (total phenolic with 
Folin–Ciocalteu reagent, FRAP and DPPH assays) was performed in [106]. A 
significant correlation (r: 0.59–0.91) was found between the spectrophotometric 
methods and the nanoparticle-based assay.

Another interesting alternative, an optoelectonic tongue based on an array of 
gold and silver nano-particles for analysis of a diversity of natural, synthetic and 
biological antioxidants is described in [107].

A portable nanoparticle based-assay for rapid and sensitive measurement of 
food antioxidants was proposed in [108] based on the use of immobilized ceria 

Figure 3. 
Cupric reducing antioxidant capacity (CUPRAC) reaction mechanism.
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(cerium oxide) nanoparticles. Due to the reversible oxidation state of cerium Ce3+/
Ce4+ on the NPs surface, nanoceria is capable of changing redox states and surface 
properties after interaction with antioxidants.

Furthermore, a novel chemical sensing array, based on metal oxide nanopar-
ticles (i. e., cerium oxide, titanyl oxalate, TiO2, Fe2O3, ZrO2, ZnO and SiO2) immobi-
lized onto cellulose, was described as a portable and cheap paper-based colorimetric 
assay for polyphenol detection and field evaluation of antioxidant containing 
samples [109].

Last but not least, a novel method was proposed in [110] for evaluating the 
composition of mixtures of natural polyphenolic compounds by using an array of 
nano-oxides sensors and by chemometric analysis of the experimental data.

Some spectrometric and electrochemical nanomaterial-based assays for antioxi-
dant assessment are presented in Table 2.

The nanoparticle-based assays to evaluate antioxidant capacity of natural 
products embody a novel and promising domain melding nanoscience with food 
and health research [18, 47].

Antioxidant Nano-

material

Detection principle Real 

samples

Reference

Spectro-

metric

Total 

polyphenols 

in fat-rich 

samples

AuNPs Detection of 

polyphenols in 

organic medium 

without extraction, 

by AuNPs formation 

at 540 nm

Chocolate,

olive oil

[111]

Polyphenols in 

food

AuNPs Detection of 

polyphenol-mediated 

AuNPs formation 

from extracts via 

LSPR* by UV- visible 

spectroscopy at 

540 nm

Tea, apple, 

pear, wine, 

honey

[112]

Polyphenols AuNPs Au reduction, mild 

conditions, LSPR* 

detection

Fruit 

extracts

[113]

Polyphenols AgNPs AgNPs seed-growth, 

LSPR* detection

Fruit juices, 

olive oils

[114]

Polyphenols AgNPs AgNPs seed-growth, 

LSPR* detection

Ginger [115]

Total catechins 

evaluation

RhNPs RhNPs LSPR* 

shifting

Teas [116]

Polyphenols CdTe QDs** CdTe QDs** 

fluorescence 

quenching inhibition

Teas [117]

Polyphenols Graphene 

QDs

Graphene QDs 

fluorescence 

quenching

Olive oil 

extracts

[118]

Phenolic acids AuNPs on 

paper

Reduction of gold 

ions to AuNPs on 

paper sensors and 

measurement of 

the resultant color 

intensity

Tea, red 

wine

[119]
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2.2.3 Electrochemical methods

Electrochemical techniques emerged as an alternative strategy for a quick, pre-
cise, and cost-effective determination of the TAC of different samples, e.g., foods 
and beverages, plant extracts, etc. They circumvent some of the drawbacks of spec-
trophotometric methods such as long analyses and sample preparation time, the use 
of expensive reagent and undefined reaction time. These methods also enable the 
quantification of the antioxidant compounds, with very good sensitivity [126, 127] 
and sometimes, they permit determinations in the presence of compounds that 
interfere in other methods, such as the case of ascorbic acid in juice [128].

Electrochemical methods for antioxidant capacity/activity evaluation have 
been reviewed in [129] and more recently in [14, 49–51, 130]. The most commonly 
used electrochemical techniques for antioxidant assays in different samples are 

Antioxidant Nano-

material

Detection principle Real 

samples

Reference

Flavonoids Fluorescent 

gold 

nanocluster

Fluorescence 

quenching of 

gold nanoclusters 

imbedded into the 

cavity of bovine 

serum albumin 

tertiary structure

Serum, 

plasma, 

phar-

maceutical 

analysis

[120]

Electro-

chemical

tert-

butylhydro-

quinone 

(TBHQ ) and 

butylated 

hydroxyanisole 

(BHA)

Nano-

carbon

black

Measurements in 

the presence of the 

cationic surfactant 

CPB*** by square 

wave voltammetry 

using a carbon black 

paste electrode

Food 

samples 

and 

biodiesel

[121]

Gallic acid NiAl2O4 

glassy 

carbon 

nano-

composite

Cyclic voltammetry 

and amperometry 

with a NiAl2O4 glassy 

carbon working 

electrode

Food 

samples

[122]

Flavonoids 

(myricetin and 

rutin)

Single- 

walled 

carbon 

nanohorns

Based on host–guest 

supramolecular 

recognition concept

Human 

serum

[123]

Antioxidant 

capacity

Multi-

walled 

carbon 

nanotubes

Chronocoulometry 

at glassy carbon 

electrode modified 

with multi-walled 

carbon nanotubes

Red/white 

wine

[124]

Antiioxidant 

capacity 

(o-diphenols)

Cerium 

(IV)oxide 

NPs

Polyphenols 

oxidation at 

quinones, quinones 

reduction at screen 

printed carbon 

electrode-CeO2(IV)

NPs

Red/white 

wine

[125]

*Laser surface plasmon resonance.
**Quantum dots.
***Cetylpyridinium bromide.

Table 2. 
Spectrometric and electrochemical nanomaterial-based assays for antioxidant assessment.
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cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and 
amperometry.

Cyclic voltammetry (CV) [131]. The half-wave potential (E1/2) of the registered 
cyclic voltammogram indicates a specific constituent in the analyzed sample (its 
ability to donate electrons) whereas the maximum current intensity indicates the 
concentration of a constituent. Antioxidants with similar structures have similar 
electron donating abilities and therefore similar half-wave potentials in cyclic 
voltammetry. Thus, when present in mixtures, they contribute globally to the 
observed features of the sample cyclic voltammogram.

Cyclic voltammetry has been widely used for evaluating the TAC of low-
molecular weight antioxidants present in biological fluids, animal plasma, plants 
and fruits [52].

In [53] the results obtained for the TAC determination of 10 different fruit tea 
infusions using spectrophotometric methods (TEAC/ABTS, FRAP, DPPH and 
Folin–Ciocalteu’s reagent total phenolic content) and by applying the CV method 
were reported comparatively.

In addition, CV has been used to measure the antioxidant capacity of a diversity 
of samples such as different winemaking by-products (pomace, skins, seeds, and 
stems) [132], propolis [133], edible oils [134] and berry fruits [135], among others.

Differential pulse voltammetry (DPV) has been applied for TAC assay of white 
and red wines [54] by using gallic acid as reference. The elaborated method is based 
on gallic acid electro-oxidation at carbon nanotubes-modified carbon paste elec-
trode, at 350 mV (vs. Ag/AgCl) in 0.1 M phosphate buffer solution (pH = 2.50). The 
method enabled a reliable evaluation of the TAC for red and white wine samples, 
when glucose and ascorbic acid do not interfere.

Square wave voltammetry (SWV) has been used to analyze catechins in green 
and black teas [55] obtaining a detection limit of 40 nM for epigallocatechin gallate 
in green teas.

A databank of the content of antioxidants in food products was created based on 
amperometric measurements [56]. The antioxidants were quantified in 1140 food 
products, beverages, etc.

Amperometric, CV and DPV measurements using an electrochemical gold 
nanozyme-sensor [58] (based on the enzyme-like catalytic activity of gold 
nanoparticles), were used to evaluate the TAC of several plant extracts. The results 
of the amperometric measurements were compared to those from a chemilumines-
cence method for TAC assays [75] and a good correlation was found.

Biamperometric determinations are based on the reaction of the analyte with a 
redox pair such as I2/I−, Fe3+/Fe2+, DPPH•/DPPH, [Fe(CN)6]3−/[Fe(CN)6]4−. DPPH•/
DPPH biamperometry was used in the analysis of fruit juices for the determination 
of their TAC, using two identical Pt electrodes [57] and for tea, wine and coffee 
using glassy carbon electrodes [136].

Analytical characteristics of some electrochemical methods applied for the 
determination of antioxidants or total antioxidant capacity are presented in Table 3.

Electrochemical measurements of antioxidant capacity are redox-based meth-
ods with many advantages over conventional chemical assays since they are rapid 
and simple and do not require special chemical reagents or complicated sample 
preparation. Thus, they allow analysis of colored samples that do not permit direct 
evaluation by spectrophotometric techniques (e.g., wine and fruit juice) [150]. 
Electrochemical techniques allow also a large number of experimental parameters 
to be easily controlled and to register important information from a sample (e.g., 
the half-wave potential, the voltammetric charge, peak current intensity, etc.) that 
helps characterize different compounds from a sample [53]. These methods can be 
used to evaluate samples of whatever lipophilicity or hydrophilicity [151].
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Electrochemical 

method

Electrode Antioxidants LOD/Linear range Real samples References

Cyclic voltammetry Iridium-containing carbon (Ir-C) Caffeic acid 0.0–25.0

mg L−1

Wine [137]

Graphite

Carbon microspheres

Carbon nanotubes

Vanillic acid 2.85 μM

3.82 μM

4.13 μM/

10–400 μM

Artificial wine solutions [138]

Glassy carbon Curcumin 4.1 × 10−6 M Spices [139]

Carbon ink chemically modified electrode containing 

[Cu(neocuproine)2] (NO3)2

Trolox

Gallic acid

Ascorbic acid

2.51 × 10−5 M

-

-

Teas [140]

Glassy carbon electrode TAC* 2–80 μmol L−1 trolox Berry fruits [135]

Glassy carbon disc electrod (+)-catechin as standard 0.0078 to 1 mM Food grade oenological

tannins

[141]

Differential pulse 

voltammetry

Carbon paste platinum Ascorbic acid 0.02 mM/0.07–

20 mM;

0.087 mM/

0.31–20 mM

Fruit juices and wines [142]

Carbon nanotubes modified carbon paste TAC* (vs gallic acid) 3.0 x 10−7 M/

5.0 × 10−7- 

5.0 × 10−5 M

Red and white wines [54]

Dropping mercury Gallic acid 0.3 μM/

1.0–50 μM

Fruit juices [143]

Glassy carbon electrode surface activated by in situ 

chemical oxidation

Tertiary butyl 

hydroquinone

67 nM/

1.0 μM – 1.1 mM

Jatropha biodiesel [144]

Square wave 

voltammetry

4-[(4-decyloxyphenyl)- ethynyl]-1- methylpyridinium 

iodide modified glassy carbon

Total phenolic compounds 

(vs caffeic acid)

9.0 × 10−7 mol L−1/

9.9 × 10−7- 

3.8 × 10−5 mol L−1

Total polyphenol content of 

Yerba mate extracts

[145]
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Electrochemical 

method

Electrode Antioxidants LOD/Linear range Real samples References

Screen printed electrode modified with CeNPs.

(CeNPs/C/SPE)

Gallic acid

Caffeic acid

Quercetin

t-resveratrol

7.0 μM

10.0 μM

9.0 μM

8.0 μM

White/red wines [146]

Amperometry Biosensor based on peroxidase-modified carbon paste t-resveratrol

Caffeic acid

0.023 mg L−1/

0.05–52 mg L−1

0.020 mg L−1/

0.06–69 mg L−1

Wine [147]

Amperometry (flow 

injection)

Carbon nanotube modified-glassy carbon electrode Gallic acid

Catechin

Quercetin

Caffeic acid

Trolox

TAC* (vs trolox)

0.04 μM

0.02 μM

0.03 μM

0.08 μM

0.04 μM

Thai vegetables/herbs [148]

Amperometry (flow 

injection)

Glassy carbon/carbon nanotubes/polyethyleneimine 

electrode

Caffeic acid, gallic acid 

Ferulic acid

p-coumaric acid

< 0.1 μM/

10−7–10−4 M

Wines [149]

*Total antioxidant capacity.

Table 3. 
Analytical characteristics of some electrochemical methods applied for the determination of antioxidants or total antioxidant capacity.
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A disadvantage of the electrochemical methods of antioxidant capacity deter-
mination in complex media is the difficulty to analyze the macromolecules with 
antioxidant proprieties.

2.3 Metal chelating assay

Metal chelation capacity is evaluated by measuring the chelating effect of anti-
oxidants for metal ions. Fe2+ ions are known to enhance lipid peroxidation trough 
Fenton reaction and also by decomposing lipid hydroperoxides into peroxyl and 
alkoxy radicals, which are more reactive. By Fenton reaction (written below), the 
ferrous ions produce •OH radicals, which are highly reactive, and contribute appre-
ciably to oxidative stress. The resulting hydroxy radicals cause damage to proteins, 
carbohydrates, cellular lipids and nucleic acids leading to cellular damage.

 2 2
 +  + +→2+ 3+ -

Fe H O Fe OH OH


  (10)

Numerous metal ions such as Cu+, Ti3+, Cr2+, and Co2+ and their complexes in 
their lower oxidation states react with H2O2 in a similar manner as Fe2+, and the 
mixtures of these metal ions with H2O2 were named “Fenton-like” reagents [96].

Metal chelation capability could be used as an indicator of antioxidant capacity. 
Chelating agents stabilizing the oxidized form of the metal ions are effective as 
secondary antioxidants.

Commonly, metal chelation capacity is evaluated by determining the chelating 
effect of antioxidants for ferrous ion [59]. The evaluation of the metal-chelating 
activity of an antioxidant is based on the absorbance measurement of Fe2+-ferrozine 
complex in presence and in absence of the analyzed sample. The decrease in absor-
bance of the solution after the introduction of test sample is related to the metal 
chelation capacity of the sample. The measurements are performed spectrophoto-
metrically at 562 nm [13]. Ethylenediaminetetraacetic acid (EDTA) is generally 
used as a standard metal chelator. Metal chelation capability of different samples is 
expressed as EDTA equivalents.

In [38] the results obtained at the determination of metal chelation capacity 
for a number of antioxidants and extracts are presented. A study regarding the 
standardization of the experimental protocols to evaluate the capability to chelate 
Fe2+ (employing ferrozine as chromogenic reagent) and Cu2+ (employing pyrocat-
echol violet as the chromogen agent) is presented in [152]. This study used 96-well 
microplates and analyzed Brazilian coffees (n = 20).

2.4 Total phenolic content (TPC)

Total phenolic content (TPC) or Folin–Ciocalteu reducing (FCR) assay is an 
important parameter of total antioxidant capacity (TAC) and largely employed for 
evaluation of a diversity of samples. The TPC assay has been used for a long period 
as a measure of total phenolic content in natural products [37]. In this method, TPC 
values are evaluated as equivalents of gallic acid or another phenolic compound, 
e.g., caffeic acid, catechin, ferrulic acid, etc.

The Folin Ciocalteu reagent contains phosphomolybdic/phosphotungstic 
acid complexes, with added lithium sulfate and bromine, in strong basic medium 
(5–10% aqueous Na2CO3, pH 10–12) to generate the phenolate anion [153]. The TPC 
method is based on the measurement of the blue-colored chromophore (λmax = 620–
765 nm) generated as a result of reduction of Folin Ciocalteu reagent with phenols 
from the sample [154]. The reduction site is considered the molybdenum centre in 
the complex (Mo6+ ion is reduced to Mo5+ by phenols).
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TPC assay is operationally simple, reproducible and convenient for evaluation of 
total phenolic for a variety of samples because the reagent is commercially available.

However many non-phenolic compounds e.g., ascorbic acid, aromatic amines, 
sulfur dioxide, some metal ions (Cu+ and Fe2+), etc. can interfere by reducing Folin 
Ciocalteu reagent. Several methodologies have been studied to increase the selectiv-
ity of the TPC method for total phenolic determinations in plant extracts [60].

A critical review of the methods for the assays of TPC in food matrices is pre-
sented in [61]. The review focuses on the most used methods to measure by UV-Vis 
spectrometry the TPC, o-diphenols, flavonoids, flavonols, anthocyanins, and 
tannins. Examples of application of TPC assay for winemaking byproducts (seeds, 
skins, stems, and pomace) and in Venezuelean propolis are given in [155, 156], 
 respectively.

The TPC assay is still widely employed. However solid phase extraction (SPE) 
was considered as clean-up step in only a few cases. When SPE was employed, the 
SPE-FCR assay presented excellent reproducibility [157].

TPC assays are low-cost, simple, do not require expensive equipment and they 
are used largely to evaluate a big diversity of samples.

3. Biochemical-based assays and in vivo assays

3.1 Oxidation of low density lipoprotein (LDL) assay

A review of this assay alongside other assays measuring lipid oxidation can be 
found in [62]. The oxidation of LDL generated by ROS/RNS was studied long ago. 
ROS play an very important role in the initiation, propagation and termination 
reactions of the LDL lipid peroxidation. The lipid peroxidation processes could 
be followed by different methods, e.g., UV spectrophotometry and/or chemilu-
miniscence techniques. As an initiator of LDL oxidation is commonly employed 
cupric sulfate. By using a spectrophotometric methods the formation of diene 
conjugates at 234 nm is measured. By using a chemiluminescence methods the 
emitted radiation is measured as a result of the formation of oxidative products. By 
mixing a cupric sulfate solution with LDL sample, the kinetic profiles correspond 
to the occurrence of a lag phase owing to the existence of endogenous antioxidants 
such as coenzyme Q and vitamin E in the LDL particle. Following the lag time, the 
peroxidation of lipids is measured as an growth of the analytical signal (absorbance 
or chemiluminescence intensity) that finally, after minutes or hours, hit a plateau. 
By adding an antioxidant to the reaction mixture the lag time is enhanced. The 
antioxidant capacity is evaluated by measuring of the lag time. The most important 
advantage of this method is the employment of a biological significant target.

3.2 The thiobarbituric acid reactive substances (TBARS) assay

Two review dedicated exclusively to TBARS assays are presented in [63, 64]. 
Important aspects of the TBARS assay such as state-of-the-art of the method, 
determination in physiological systems, assays in food systems and the employment 
of TBARS in antioxidant evaluation studies are presented in [63].

The thiobarbituric reactive substances (TBARS) assay is frequently used to 
evaluate lipid peroxidation. The method is based on the reaction of malondialde-
hyde (MDA) generated as an advanced product of unsaturated lipid degradation 
under the influence of ROS/RNS, with thiobarbituric acid (TBA) under acidic 
conditions and at high temperature (100 °C) [158]. It is obtained a characteristic 
colored product [MDA-(TBA)2] which is measured spectrophotometrically at 



19

Recent Advances in Antioxidant Capacity Assays
DOI: http://dx.doi.org/10.5772/intechopen.96654

532 nm. MDA is a marker of oxidative stress. It is formed from polyunsaturated 
fatty acids (PUFA) with at least three double bonds in their molecule. This method 
is not a selective assay for lipid peroxidation products because TBA reacts with a 
diversity of aldehydes, not only those generated in the lipid peroxidation process 
[14]. The lack of specificity of the method is emphasized by the designation: thio-
barbituric acid reactive substances (TBARS). MDA formation is the most largely 
employed method for lipid peroxidation evaluation. The method was significantly 
enhanced by coupling with HPLC. Several food components such as sugar degrada-
tion products, proteins and Maillard browning products affect the measurements. 
The thiobarbituric acid reactive substances (TBARS) method is widely employed to 
evaluate antioxidant activity and lipid oxidation in a diversity of samples.

3.3 Cellular antioxidant activity (CAA) assay

Cellular-based antioxidant activity assays (CAA) are performed within the cell 
medium and are presumed to be biologically more appropriate than the respec-
tive chemical assays owing to their better representation of the physico-chemical 
characteristics of the medium [159]. At the cellular level the antioxidant outcome 
is not confined only to reactive species scavenging, but imply also gene expression, 
modulation of redox cell signaling and upregulation of detoxifying or antioxidant 
enzymes. Moreover, in order to assay antioxidant capacity/activity it is very impor-
tant to take into consideration some features regarding the bioavailability of an 
antioxidant such as the uptake, the partitioning in membranes and the metabolism. 
CAA assay is very useful for the evaluation of a new antioxidant because the change 
of the redox state at the cellular level (caused by the antioxidant) is strongly influ-
enced by the different cell components.

The principle of CAA is presented in Figure 4. The cell-permeable non-polar  
2 ́,7 ́-dichlorofluorescin diacetate (DCFH-DA) is used as a fluorescence probe. 
Within the cells this molecule is deacetylated by cellular esterases generating a 
polar molecule, 2 ́,7 ́-dichlorofluorescin (DCFH) which is captured in the cells. 
Afterwards, peroxyl radicals produced inside the cells from 2, 2 ́-azo bis(2-amid-
inopropane) dihydrochloride (AAPH) which cross easily the cellular membrane 
oxidize DCFH to form dichlorofluorescein (DCF) which is fluorescent. The fluo-
rescence intensity generated within the cells is related with the extent of oxidation. 
The molecules with antioxidant properties scavenge peroxyl radicals and will 
decrease the generation of fluorescence. Consequently, the antioxidant activity of a 
sample can be evaluated by assessing the decrease in the cellular fluorescence.

Several reviews were published regarding this topic [18, 65, 66]. Based on the 
CAA concept introduced in [160], CAA was used to determine the antioxidant 
capacity of dietary supplements, foods and phytochemicals in cell cultures [159]. 
In this study, human hepatocarcinoma HepG2 cells were loaded with the redox 
sensor DCFH which is oxidized to fluorescent DCF by the ROO• resulted from the 
thermal decomposition of AAPH. Antioxidants diminish the fluorescent radiation 
emitted by DCF. CAA is expressed as μmoles of quercetin equivalents per 100 μmol 
of tested pure compound or per 100 g product (vegetables, fruits, etc.). Several cell 
sorts have been employed for the CAA assay beyond HepG2, e.g., Caco-2 matured 
differentiated intestinal cells [161], human gastric adenocarcinoma cell line AGS 
[162], etc.

Cellular oxidative stress can also be elicited by exposing cell cultures to H2O2 
(in the mM range) and then measuring fluorimetrically the oxidation of the probe 
(DCFH) [163].

Saccharomyces cerevisiae cells were employed in a CAA assay to measure antioxi-
dant capacity of different types of products in living systems [164]. Pretreatment of 
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the cells with different flavonoids [164] or mixtures of polyphenols [165] partially 
diminished the damage generated by H2O2.

S. cerevisiae as a model organism system for the antioxidant activity assessment 
of dietary natural products is reviewed in [65].

An investigation of antioxidant activities of 44 types of dark teas using the 
DPPH, ABTS, FRAP assays, and CAA assay (by using HepG2 cells) is reported in 
[166]. Correlation analysis indicated that there was a significant positive correlation 
between the levels of epigallocatechin gallate and the antioxidant activities evalu-
ated using the ABTS and FRAP assays.

The CAA assay is an adequate and very good technique to measure the perfor-
mance of antioxidants against oxidative stress. In this manner it is evaluated the 
capacity of a compound or a mixture of compounds to exercise an antioxidant 
response at the cellular level and to reduce intracellular oxidative stress, not just 
its capability as a reducing agent or its ROS/RNS scavenging ability. The CAA 
methodology is closer to a biological approach, and an antioxidant is regarded as a 
compound useful to modulate the redox state of the cell.

Figure 4. 
Schematic presentation of cellular antioxidant activity assay. DCFH-DA, _ dichlorofluorescin diacetate; 
DCFH, 2 ́,7 ́-dichlorofluorescin; DCF, dichlorofluorescein; AAPH, 2, 2 ́-azo bis(2-amidinopropane) 
dihydrochloride.
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It is indicated to evaluate the antioxidant capacity of a sample by employing 
several chemical methods and CAA assays. The antioxidant capacities evaluated by 
CAA assays are not related well with their chemical values because the two types of 
methods are affected by very distinct factors.

4. Conclusions

Many studies were published concerning the antioxidant capacity of different 
products. However, with all these research efforts, a direct link between a food TAC 
value and health benefits was not found [12].

Taking into account the vast material published in the literature the following 
conclusion regarding the antioxidat assays can be drawn [14, 15]:

• The expression “total antioxidant capacity” (TAC) correspond to the coop-
erant effect of antioxidants existing in a sample (cumulative and maybe 
synergistic/antagonistic). It is a more adequate term to express the total 
antioxidant capability of a sample than the summation of individual antioxi-
dant constituents.

• It is a stringent need to standardize the TAC assays and to formulate the 
results of measurements as equivalents of a standard material so that to enable 
relevant comparison between different methods and different samples [18].

• Most methods developed for TAC evaluation are not based on well detailed 
investigations of the chemical system involved in measurements (antioxidants 
interactions, pH, effect of solvents, kinetics, etc.) [16, 19].

• Many in vitro antioxidant methods are accomplished at pH values far from 
physiological pH and cannot have much sense for in vivo determinations of 
antioxidant effect.

• It is very useful to add a cellular-based assay to assess the analyzed sample 
capability to generate a cellular antioxidant response, in addition to its ability 
as a good scavenger of ROS/RNS [18].

• Potential mutual action of antioxidants (i.e., synergistic or antagonistic 
effects) or prooxidant actions of antioxidants (e.g., under the influence of the 
composition of the medium) should be taken into account [16, 167].

• For testing natural compounds it is necessary to employ several in vitro 
chemical-based assay that measures various facets of the reactivity of the 
antioxidants toward ROS/RNS [18]. Including a CAA assay is highly recom-
mended [20].

Taking into account our evaluation regarding the state-of-the-art in the field 
of antioxidant capacity/activity assays we consider that the assessment regarding 
this subject expressed in [25] is correct, namely:” Twenty five years of antioxidant 
screening have NOT resolved issues of assay chemistry, standardization, and 
reporting; provided significant insight into chemical mechanisms and factors 
controlling antioxidant action; clearly connected in vitro assay chemistry to in vivo 
actions; established rate constants for reaction of antioxidants with radicals that are 
relevant in foods and biological tissues;...”.
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The in vitro antioxidant assays and the determination of total phenolic content 
employing colorimetric methods are not only used for the evaluation of potential 
beneficial effects of different products. There are also used for the quality control 
of natural products and foods [166, 168] where the antioxidant capacity of com-
mercial samples, evaluated by in vitro assays, can be collated against reference 
materials. Hence, trends can be very valuable for comparing samples from the same 
materials. In food technology, in vitro antioxidant methods and TPC assay may be 
useful to assess, e.g., the antioxidant actions of herbal extracts on lipid-rich foods, 
the effects of processing steps on the stability of phenolic compounds from herbal 
extracts [168] employed to counteract lipid oxidation, or to obtain more antioxidant 
compounds from raw materials. In the area of active packaging, radical scavenging 
assays can contribute to assessing efficiency of antioxidant packaging formulations 
[169]. The in vitro methodologies for antioxidant and TPC assays are applied in 
routine quality control programs by food companies in many countries [170, 171]. 
The methodologies for antioxidant and TPC assays can be considered valuable 
high-throughput, low cost tools used to evaluate and find antioxidant sources and 
for quality control of foods and natural products.
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