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Chapter

Flavonoids: Understanding Their 
Biosynthetic Pathways in Plants 
and Health Benefits
InnocentMary IfedibaluChukwu Ejiofor  

and Maria-Goretti Chikodili Igbokwe

Abstract

Flavonoids are polyphenolic compounds and are one of the most abundant 
secondary metabolites present in plants. They are found in almost all vegetables and 
fruits. Flavonoids are of essence to plants and to man as well, due to their Medicinal 
and Pharmaceutical importance. Explicit understanding of the biosynthetic 
pathway of flavonoids is very essential. This will provide a stepwise explanation 
of the processes and mechanisms through which different forms of flavonoids 
are synthesized in plants, including the enzyme(s) responsible for each step. The 
importance in plants, medicine and pharmacy, of all the product(s) of each step 
will be emphasized.
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1. Introduction

Flavonoids represent an important class of natural products; mainly, they are of 
the family of secondary plant metabolites having a multi-phenolic structure, found 
commonly in fruits, vegetables and certain beverages. They have various favorable 
biochemical, and antioxidant effects associated with various diseases such as can-
cer, Alzheimer’s disease (AD), atherosclerosis and other reported pharmacological 
effects [1–3]. Flavonoids are associated with a wide spectrum of health-promoting 
effects and are crucial component in various nutraceutical, pharmaceutical, medici-
nal and cosmetic applications. This broad spectrum of health-promoting effect is 
due to their antioxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic 
properties coupled with their ability for cellular enzyme functions modulation [4].

In discussing the understanding of biosynthesis of flavonoids and their health 
benefits, we will be looking at it based on the sub headings of the enzymes involved 
in the biosynthetic pathway.

2. Phenylalanine ammonia lyase

Lyases are group of enzymes that catalyzes the removal of a functional group or 
a moiety from a compound by cleaving a carbon–carbon, carbon–oxygen, phospho-
rous-oxygen, and carbon-nitrogen bonds by mechanism of reaction other than 
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hydrolysis, or oxidation. This removal of a functional group or a moiety often leads 
to the formation of a new double bond or ring structure. The bonds cleaving usually 
occur by means of elimination reaction [5]. In the synthesis of flavonoids, an 
ammonia-lyase, Phenylalanine ammonia-lyase (PAL) is the primary enzyme in the 
pathway for the synthesis of phenol [6]. At the initial synthesis of flavonoids, the 
conversion of Phenylalanine to trans-cinnamic acid is catalyzed by Phenylalanine 
ammonia lyase through a mechanism of non-oxidative deamination [7] as shown 
below. This Phenylalanine that is deaminated is a product of another pathway, 
shikimic acid pathway. Shikimic acid pathway produces three amino acid; 
L-Tyrosine, L-Phenylalanine and L-Tryptophan. The phenylpropanoid pathway 
takes its root from the L-Phenylalanine generated from the shikimic acid pathway.

Cinnamic acids belong to a group of aromatic carboxylic acids (C6–C3), which 
occurs naturally in plant kingdom. In the biochemical process that leads to the 
formation of lignin, which is the naturally occurring polymeric material that is 
responsible for providing mechanical support to plant cell wall, cinnamic acids 
are produced [8]. In all green plants cinnamic acids occur [9]. They are covalently 
bound to cell walls in minute quantities [10]. They are also found in the reproduc-
tive organs of flowering plants [11].

Coffee beans, tea, cocoa, apples, pears, berries, citrus, brassicas vegetables, 
spinach, beetroot, artichoke, potato, tomato, celery, faba beans, grape and cereals 
also contain cinnamic acids [12]. Cinnamic acids, with quinic acid, usually appears as 
conjugates known as the chlorogenic acids. With other acids, sugars or lipids they can 
also form esters. They can also with aromatic and aliphatic amines, form amides. Some 
cinnamic-related molecules have been shown in literature those possess the following 
pharmacological properties; anticancer [13], antituberculosis [14], antimalarial [15], 
antifungal [16], antimicrobial [17], antiatherogenic [18] and antioxidant [17] activities.

Also, various surveys directed towards the synthetic procedure for cinnamic acid 
preparation and related atoms have been shown in the literature [19–21]. Medicinal 
chemists have done the alteration of potency, permeability, solubility or other param-
eters of a preferred drug or pharmacophore with the aid of cinnamic acids [22].

Cinnamic acid exists in two isomeric forms; trans and cis. Most often available 
in nature and commercially is the trans form. Cinnamic acid can be obtained from 
cinnamon bark and balsam resins such as storax.

In the flavors, dyes, and pharmaceuticals production, trans-Cinnamic acid is 
utilized. The principal use of trans-cinnamic acid is in manufacturing of its methyl, 
ethyl, and benzyl esters, which are an essential component of perfumes. Also, in the 
production of the sweetener aspartame, the acid serves as a precursor [23].

3. Cinnamate-4-hydroxylase (C4H)

Hydroxylases are enzymes which add hydroxyl group to organic compounds. C4H 
found in plants is a cytochrome P450 that catalyzes trans-cinnamic acid conversion to 
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p-coumaric acid and is the first hydroxylation step of lignin, flavonoids and hydroxy-
cinnamic acid ester biosynthetic pathway correlating with lignifications [24–27]. 
Generally, in the synthesis of flavonoids, Cinnamate-4-hydroxylase catalyzes the 
addition of hydroxyl group to the trans-cinnamic acid generated from the deamination 
of the L-Phenylalanine, leading to the production of p-coumaric acid as shown below.

p-coumaric acid also known as 4-Hydroxycinnamic acid or p-Hydroxycinnamic 
acid, is a hydroxycinnamic acid, and also organic compound which is a hydroxy 
derivative of cinnamic acid. p-coumaric acid exists naturally in three isomers, 
namely; ortho-, meta- and para- coumaric acid [28].

As can be observed from above, these isomers differ from each other differ by 
the position of the hydroxy group substitution on the phenyl group. p-coumaric 
acid (4-hydroxy-cinnamic acid) occurs widely in the cell walls of graminaceous 
plants and is the most abundant of the three isomers [29]. It decreases low-density 
lipoprotein (LDL) peroxidation [30, 31], antimicrobial activities [32, 33] and plays 
a vital role in human health. Coumaric acids have been shown to possess radical-
scavenging effect [34–40] which reduces stomach cancer risk by suppressing 
carcinogenic nitrosamines formation [41–43].

p-coumaric acid effectively suppressed endothelial cell migration, tube forma-
tion, and rat aorta ring sprouting [44]. It reduces intracellular and mitochondrial 
reactive oxygen species production [44]. In vivo p-coumaric acid significantly sup-
pressed tumor growth in vivo by blocking angiogenesis. p-coumaric acid is found in 
various edible plants, such as carrots, tomatoes and cereals [44].

4. 4-coumarate CoA ligase

Ligases are a class of enzymes capable of catalyzing the merging of two large 
compounds by forming a new chemical bond, mostly accompanied by a small 
chemical group’s hydrolysis on one of the large compounds or commonly causing 
the linkage of two mixtures together. Ligases are classified under EC 6 primary 
class of enzymes. They are also further group into six subclasses which are known 
as ligases that create carbon–oxygen bonds, carbon-sulfur bonds, carbon-nitro-
gen bonds, carbon–carbon bonds, phosphoric–ester bonds, and nitrogen–metal 
bonds [45, 46].



Bioactive Compounds - Biosynthesis, Characterization and Applications

4

Coenzyme A (CoA) is a type of coenzyme that contains pantothenic acid, 
adenosine 3-phosphate 5-pyrophosphate, and cysteamine; which take part in the 
transfer of acyl groups, notably in transacetylations [47]. Coenzymes can be 
defined as organic molecules or compounds that many enzymes required to elicit a 
catalytic effect [48].

4-coumarate-CoA ligase (4CL) is essential to the general phenylpropanoid 
pathway and takes part in monolignol biosynthesis through the production of 
p-coumaroyl-CoA, a precursor for the biosynthesis of p-coumaryl alcohol and 
coniferyl alcohol in conifers. Essentially, p-coumaroyl-CoA is also involved in the 
production of other metabolites of plant as a precursor, including stilbenes and 
flavonoids [49].

4-coumarate-CoA ligase causes the joining of Coenzyme A to p-coumaric acid, 
leading to the formation of p- coumaroyl-CoA.

Coumaroyl-coenzyme A is a molecule or compound present in plants. It is the 
THIOESTER of coenzyme-A and coumaric acid. Coumaroyl-coenzyme A is a basic 
or fundamental intermediate in the biosynthesis of various natural products found 
in plants [50].

5. Chalcone synthase

Synthases are enzymes that catalyze the formation of a particular compound. 
Chalcone synthase catalyzes the production of chalcone, in phenylpropanoid 
metabolic pathway.

Chalcone synthase (CHS) or naringenin-chalcone synthase is a member of the 
plant polyketide synthase superfamily, which also includes stilbene synthase (STS), 
acridone synthase, pyrone synthase, bibenzyl synthase, and p-coumaroyl triacetic 
acid synthase [51]. Polyketides are a ubiquitous group of secondary metabolites 
which contain either alternating carbonyl and methylene groups (-CO-CH2-) 
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or are derived from precursors which have alternating carbonyl and methylene 
groups [52].

Chalcone synthases, the most well-known representatives of this family, make 
available the materials needed to initiate various sets of metabolites (flavonoids). 
These metabolites have important diverse role to play in flowering plants, like the 
provision of floral pigments, antibiotics, UV protectants and insect repellents [53].

In the production of chalcone, one molecule of p-coumaroyl-CoA and three 
malonyl-CoA molecules condensation is required. This is catalyzed by the enzyme, 
chalcone synthase. This process starts with the transfer of a coumaroyl moiety from 
a p-coumaroyl-CoA which is the starter molecule to an active site cysteine (Cys164) 
[54]. The next that follows is the series of condensation reactions involving three 
acetate units obtained from three malonyl-CoA molecules, each proceeding through 
an acetyl-CoA carbanion derived from malonyl-CoA decarboxylation, extends the 
polyketide intermediate. Following generation of the thioester-linked tetraketide, a 
regiospecific intramolecular Claisen condensation forms a new ring system to yield 
chalcone [55, 56].

Malonyl-CoA is the starting molecule for the synthesis of fatty acid and its elon-
gation. Malonyl-CoA is one of the foundations for the biosynthesis of some phyto-
alexins, flavonoids, and many malonylated compounds [57]. In plants and also in 
animals, malonyl-CoA is almost entirely obtained from acetyl-CoA by acetyl-CoA 
carboxylase [58].

Chalcone is an essential and resourceful molecule. It is a biogenetic precursor for 
flavonoids and isoflavonoids, which are bountiful in consumable plants. Chalcone 
contains two aromatic rings, linked together by a three-carbon-α, β unsaturated 
carbonyl system, i.e., 1,3-diphenyl-2-propen-1-one derivative. Structurally, 
chalcones are one of the most divergent forms of flavonoids. Chalcone derivatives 
exhibit a wide range of therapeutic activities which include anticancer [58–62] anti-
oxidants [63–67], anti-inflammatory [68–73], antihypertensive [74], antimalarial 
[75], antiulcer [76, 77], antiviral [78–81], antiprotozoal [82], cardiovascular activity 
[83] and mutagenic properties [84], and many other pharmacological properties.

6. Chalcone isomerase

Isomerases are class of EC 5 primary enzymes that catalyze the reactions that 
involve the rearrangement of a molecule structure [46].

The first detected flavonoid pathway enzyme was Chalcone isomerase. It 
catalyzes the stereospecific cyclization of chalcones to (2S)-flavanones, which 
were found to be the exclusive substrates for the reactions to the formation of other 
classes of flavonoids [85].

Although this type of isomerization reaction can go on spontaneously, the 
rate of turnover can be increased by 107 fold in the presence of CHI [86]. The 
CHIs present in plants can be divided into four types (type I to type IV). This 
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division depends on its phylogenetic relationships [87]. Type I and type II are 
considered bona fide catalysts with representative CHI enzymatic activity. Type 
I CHIs are mostly found in vascular plants; they are responsible for forming 
general flavonoids [88, 89].

In comparison with Type I CHIs, type II CHIs have wider substrate accept-
ability, besides making use of naringenin chalcone as substrate, they also under-
take the conversion of isoliquiritigenin to isoflavonoid which appear to be the 
specific metabolites in legume [90, 91]. Both type III and type IV CHIs do not 
participate in chalcone cyclization activity, unlike type I and type II CHI pro-
teins. Due to this, they are termed CHI-like proteins (CHIL). Type III CHIs, 
which is extensively dispersed in land plants and green algae, have been shown to 
be fatty acid-binding proteins that function to influence the synthesis and 
storage of fatty acid in plants [92]. Nonetheless, the action of type IV CHIs 
which completely lose the bona fide CHI activity is not well known, yet new 
studies have revealed type CHI-fold proteins might serve as the enhancer of 
colouration of flowers and production of flavonoid in diverse plant species [93]. 
All CHIs have a similar backbone arrangement and type III CHIs are thought to 
be the common forebear of bona fide CHIs [92, 94]. CHI, also regarded as 
chalcone flavonone isomerase.

Flavanones are primarily found in about 42 larger plant families, specifically 
in Compositae, Leguminosae, and Rutaceae. Depending on the type of plants, 
flavanones can be found in all of the parts above and below ground, from vegetative 
parts to generative organs: branches, bark, stem, leaves, roots, flowers, fruits, seeds, 
rhizomes, peels, and others [95].

Flavanones show strong antioxidant and radical scavenging activity [96–103] 
and appear to be associated with a reduced risk of certain chronic diseases [98, 99] 
the prevention of some cardiovascular disorders [104–107] and certain kinds of 
cancer [108–112]. Flavanones also exhibit antiviral [113], antimicrobial, [114] and 
anti-inflammatory activities, [115] beneficial effects on capillary fragility, [116] 
and an ability to inhibit human platelet aggregation, [117] anti-ulcer [118, 119] and 
anti-allergenic [120] properties.

From flavanones other classes of flavonoids are biosynthesized with the aid of 
specific enzymes.

a. Flavones

Flavones are biosynthesized from flavanone with the aid of flavone synthase as 
catalyst. This enzyme catalyzes a double bond formation between C2 and C3 of 
flavanones.

Two FNS (I and II) enzyme systems have been described in dicots for flavone 
biosynthesis. FNSI is a soluble 2-oxoglutarate-dependent dioxygenase (2-ODD), 
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while FNSII is a cytochrome P-450-dependent monooxygenase enzyme system. 
FNSI and most FNSII enzymes convert flavanones to flavones directly [121].

Flavones are one of the largest subgroups of flavonoids [121]. Flavones are 
involved in various interactions with microbes, insects, and other plants 
[122–124]. In addition to their extensive functions in plants’ biochemistry and 
physiology, flavones are also essential for human nutrition and health [121, 
125]. Their pharmacological effects, such as antioxidant, antiviral, anti-inflam-
matory activities and potential, have made these compounds increasingly 
popular as dietary constituents or supplements [121].

b. Flavonol

Flavonols are a major class of the family of flavonoids, molecules that have 
interesting biological activity such as antioxidant, antimicrobial, hepatopro-
tective, anti-inflammatory, and vasodilatation effects, and they have been con-
sidered as potential anticancer agents [126, 127]. Examples of flavonol include 
fisetin, quercetin, kaempferol, myricetin etc.

The biosynthetic pathway for the synthesis of flavanols is shown below.

c. Isoflavones

Isoflavones are a polyphenol class usually found in legumes, including soy-
beans, chickpeas, fava beans, pistachios, peanuts, and other fruits and nuts 
[128]. Soybeans are the richest source of isoflavones, and soy foods and 
ingredients contain varying concentrations of isoflavones [129]. Isoflavones 
can be biosynthesized from flavanone with the aid of isoflavone synthase as a 
catalyst, as shown below.



Bioactive Compounds - Biosynthesis, Characterization and Applications

8

Common isoflavones include daidzin, genistin, biochanin A, and formononetin 
[130]. Isoflavones exhibit antioxidant, anticancer, antimicrobial, anti-inflamma-
tory, antiosteoporotic, and estrogenic properties [131–136]. Several studies have 
also shown that isoflavonoids may contribute to other multiple additional health 
benefits by reducing cardiovascular risk, osteoporosis, and decreasing the intensity 
of bone resorption [137].

d. Anthocyanidins

Anthocyanidins are a group of phytochemicals, which are natural pigments 
responsible for blue, red, purple and orange colors present in many fruits 
and vegetables and many fruits- and vegetable-based food products. Over 
and above 500 different anthocyanidins are known and described in the 
literature [138, 139]. This flavonoid group dominates teas, honey, fruits, 
vegetables, nuts, olive oil, cocoa and cereals. They can also be found in ber-
ries (e.g. black currant, blueberries, strawberries, elderberries), their juices, 
as well as red wine [140]. Cyanidin, pelargonidin, delphinidin, malvidin, 
petunidin and peonidin are the most common anthocyanidins present in 
fruits and vegetables.

The number and position of the hydroxyl and methoxyl moiety is the deter-
minant of different types of anthocyanidins [141]. Anthocyanidins have been 
reported to have some essential pharmacological role in cardiovascular 
disease, cholesterol decomposition, visual acuity, as well as antioxidant 
efficacy, and cytotoxicity [142]. Anthocyanidins can be synthesized as 
shown below.

e. Flavan-3-ol

The most common flavonoids in the diet, flavan-3-ols are considered func-
tional ingredients of beverages, fruits and vegetables, food grains, herbal 
remedies, dietary supplements, and dairy products. Flavan-3-ols have been 
reported to exhibit several pharmacological effects by acting as an antioxi-
dant, anticarcinogen, cardio-preventive, antimicrobial, anti-viral, and 
neuroprotective agents [143]. Flavan-3-ol can be synthesized as shown below, 
from dihydroflavanol.
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Flavonoids are an essential group of secondary metabolites that play so much 
role for the benefit of plants in which they exist or in their surroundings and for the 
health benefit of humanity. Understanding the biosynthetic processes of flavonoids 
and their pharmacological effects will aid proper utilization of flavonoids for health 
benefits and also draw more attention to the development of a synthetic laboratory 
process for the synthesis of flavonoid classes.
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