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Abstract

With the demand for bioproducts that can provide benefits for biotechnology 
sectors like pharmaceuticals, nutraceuticals, and cosmeceuticals, the exploration 
of microalgal products has turned toward extremophiles. This chapter is intended 
to provide an insight to most important molecules from halotolerant species, the 
cyanobacteria Phormidium versicolor NCC-466 and Dunaliella sp. CTM20028 
isolated from Sfax Solar Saltern (Sfax) and Chott El-Djerid (Tozeur), Tunisia. 
These microalgae have been cultured in standard medium with a salinity of 80 PSU. 
The in vitro antioxidant activities demonstrated that extremolyte from Dunaliella 
and Phormidium as, phycocaynin, lipids, and polyphenol compound presents an 
important antioxidant potential.
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1. Introduction

The primary producers of oxygen in aquatic environments are algae, especially 
planktonic microalgae. They play an important role in carbon dioxide (CO2) 
recycling through photosynthesis [1]. Microalgae have been divided into ten groups, 
which refer to the color of the cell including: Cyanobacteria, blue-green algae; 
Chlorophyta, green algae; Rhodophyta, red algae; Glaucophyta; Euglenophyta; 
Haptophyta; Cryptophyta; photosynthetic Stramenopiles; Dinophyta; and 
Chlorarachniophyta [2]. Cyanobacteria are much closer to bacteria in terms of 
structure and their cells lack both nucleus and chloroplasts. Cyanobacteria are 
also known as a source of pigments, chlorophyll (a), phycocyanin, phycoerythrin, 
xanthophyll, and ß-carotene. Microalgae are widely distributed in nature and 
adapted to different environments from fresh to hypersaline water ecosystems. 
Salt lakes in arid regions (sabkhas) and solar salterns are an examples of high salty 
environments inhabited by extremely halophilic microorganisms that include 
halophilic Archaea (halobacteria), halophilic cyanobacteria, and green algae [3–5]. 
These microorganisms must have specific adaptive strategies for surviving in high 
salinity conditions to prevent the loss of cellular water under high osmolarity in 
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hypersaline conditions [6]. Halophiles generally develop two basic mechanisms: (i) 
halobacteria and microalgae accumulate KCl (potassium chloride) in their cells to 
maintain high intracellular salt concentrations, osmotically at least equivalent to 
the external concentrations (the “salt-in” strategy); (ii) other halophiles produce or 
accumulate low molecular weight compounds (osmolyte or compatible solute) that 
have osmotic potential.

Microalgae provide many biotechnology applications in various industrial sec-
tors such as food, cosmetics, pharmaceuticals, energy and environmental indus-
tries. Hyperhalophilic microalgae and their bioproducts, has gained a great deal of 
attention in the last decade. They are well known for their production of high value 
products such as β-carotene, lipids, and omega 3 fatty acids.

There are high demands for novel lead molecules for new classes of pharma-
ceutical and research biochemicals, and in combination, these drivers have led to 
an increased interest in microalgae and cyanobacteria as sources of both bioactive 
natural products.

Cyanobacteria species contain potential products for medicinal [7] and energy 
applications [8]. Some of this group has secondary metabolites that can potentially 
be used as therapeutic agents, such as antivirals, immunomodulators, inhibitors, 
cytostastics and antioxidants [9]. Several natural compounds such as vitamin C, 
tocopherol, and numerous plant extracts have been commercialized as natural 
antioxidants to fight against oxidative stress associated with various chronic 
diseases including atherosclerosis, diabetes mellitus, neurodegenerative disorders, 
and certain types of cancer [10]. Antioxidants are a crucial defense against free 
radical-induced damage [11].

Microalgae are abundant in nature and can be used as a renewable source of 
natural antioxidants [12]. Free radicals including reactive oxygen species (ROS), 
such as superoxide (O2•−), hydroxyle (OH•) and Hydrogen Peroxide (H2O2), and 
reactive nitrogen species (RNS) are generated during normal cellular metabolism. 
These free radicals are highly reactive species and play a dual role in humans as 
both beneficial and toxic compounds depending on their concentration. At low 
or moderate concentration, these reactive species exert beneficial effects on cel-
lular redox signaling and immune function. At high concentration, however, these 
radical species produce oxidative stress, a harmful process that can lead to cell death 
through oxidation of protein, lipid, and DNA [11, 13].

A number of microalgae have been used in the commercial production of pig-
ments with antioxidant properties, for example: astaxanthin from Haematococcus 
pluvialis, ß carotene from Dunaliella salina, as well as phycobiliproteins from 
Arthrosphira and Phorphyridium [12]. The review here in is about antioxidant capac-
ity of the majors compounds extracted from new strain of hyperhalophilic microal-
gae (Dunaliella sp.) from salt lake Chott El-Djerid and cyanobacteria (Phormidium 
versicolor) from Sfax Solar Saltern (Tunisia).

2. Methods of cultivation and antioxidant assays

2.1  Isolation and principal production of the culture of new highly halophilic 
microalgae strains

Although most species of green algae (Chlorophyceae) are moderately 
halophilic, a few of them, including Dunaliella salina, are extremely halophilic 
species [3]. They are responsible for most of the primary production in hypersaline 
environments [4]. Dunaliella salina is the most important species of the genus for 
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beta-carotene production. Several investigations have demonstrated that D. salina 
produces more than 10% of the dry weight [14]. Lutein, chlorophyll, and other 
pigments and carotenoids are also produced by the genus of Dunaliella, under 
the same stressful environmental conditions [15]. Lipids for aquaculture, human 
nutrition, and biodiesel production have also been investigated in Dunaliella 
species [16].

Dunaliella sp. CTM 20028 have been isolated for the first time from Chott El-Djerid 
(Southern Tunisia) with a mean salinity of 142 PSU [17]. Chott El-Djerid (5. 000 km2) 
consists of salty shallow pools and marshes, and it is covered by a large salt pan during 
the dry season (June to August). The water emerges into the Chott El-Djerid trough a 
thinclay aquiclude of Quaternary age [18]. This generally allows temporary flooding of 
the Chott during winter. The climate of the area is arid-saharian with a mean annual 
rainfall between 80 and 140 mm and mean temperature of 21 °C. The elevation of 
the Chott surface is controlled by the position of the water table and the associated 
 capillary fringe [19].

After acclimatation and purification, Dunaliella sp. was cultured in optimized 
f/2 Provasoli medium. Culture was carried out in 200 ml flask at 31 °C, 21 rad/s 
agitation and 54 mmol photon/m2/s continuous illumination intensity supplied by 
cool-white fluorescence tubes and in a saturated atmosphere to 0.1 v/v/m CO2.

Cyanobacteria Phormidium versicolor NCC466 have been isolated from hypersa-
line ponds (75 PSU) of Sfax Solar Saltern (Central Tunisia). The solar saltern stud-
ied is located in the central-eastern coast of Sfax (Tunisia, 34°39’N and 10°42′E), 
and consists of a series of shallow interconnected ponds (20–70 cm depth) extend-
ing over an area of 1.500 ha. The salinity of water ponds varied from 45 to 450 PSU. 
The morphometric characteristics of the Saltern were reported elsewhere [20]. This 
Saltern show high microalgae diversity, 13 diatoms, 26 Dinoflagellates, 5 cyano-
bacteria and 2 Chlorophyceae [5]. Phormidium versicolor was identified according 
to its internal transcribed spacer sequence based on the rDNA sequence (GenBank 
accession number NCC 466). It was grown in 250 mL Erlenmeyer flasks in batch 
containing 100 mL of a modified BG11 medium. The flasks were placed in homeo-
thermic incubator at 25 °C under a light intensity of 100 μM photons m−2 s−1, with a 
14/10 h light/dark cycle for 11 days.

2.2 Extraction of metabolite and in vitro antioxidant evaluation

Total lipids were extracted at the end of the exponential phase of growth of 
Dunaliella’s cells according to the method of [21]. The phycocyanin pigment was 
isolated from P. versicolor using the method developed by [22]. However, the pheno-
lic and total flavonoids content were determined in ethanolic extract according to 
[23, 24], respectively.

2.2.1 In vitro free radical scavenging and antioxidant assays

The antioxidant potential of the lipid extract (LE) of Dunaliella 
from Chott El-Djerid in batch culture was assessed on the basis of the 
2,2-Diphenylpicrylhydrazyl (DPPH) and superoxide anion radical-scavenging 
activities. When DPPH radicals encounter a proton donating substrate, such as an 
antioxidant, the radicals would be scavenged and the absorbance would be reduced 
[25]. Antioxidant potential of C-PC was evaluated by Superoxide (O2•−) scaveng-
ing, Hydroxyl (OH•) and Nitric oxide (NO) scavenging capacity. Moreover, the 
ability of C-phycocyanin to inhibit the lipid peroxidation was assessed using the 
method described by [26].
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The free radical scavenging capacity of phenolic and flavonoids compounds 
extracted from P. versicolor was assessed through DPPH, NO and 2,2-azino-bis-
(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) tests. The antioxidant activities 
of polyphenol were expressed as IC50, defined as the concentration of the these 
compounds required causing a 50% decrease in initial DPPH, NO and ABTS 
concentration.

3. Lipid antioxidant properties of Dunaliella sp. from Chott El-Djerid

Lipid compounds such as wax, fat, fat-soluble vitamins, oil, triacylglycerols, 
phospholipids, co-enzymes (ubiquinone), pigments (carotenoids), and more, could 
be found in plants or animals. Lipids are formed from long-chain hydrocarbons 
and sometimes contain other functional groups of oxygen, phosphorus, nitrogen, 
and sulfur. They are insoluble in water, but soluble in organic solvents such as 
chloroform, hexane, and ether. As invascular plants, microalgae produce both polar 
and neutral lipids. There is a wide range of bio-based lipid products that can be 
harvested from microalgal biomass. Microalgae lipids offer great potential in terms 
of biotechnology applications (e.g. food, food supplements, energy, cosmetics, and 
pharmaceuticals). In functional food, the use of microalgal lipids has already been 
established as an industry. The type and quality of the lipid products depend on 
microalgae species, culture conditions, and recovery methods.

The present study is the first comprehensive in vitro study revealing the protec-
tive effect of the lipidic extract (LE) of the Dunaliella sp. from Chott El-Djerid 
[17]. The in vitro antioxidant activity demonstrated that LE presents an important 
antioxidant potential. The DPPH radical-scavenging activity was investigated at 
different concentrations from 0.1 to 3 mg/mL of the LE. LE exhibited an interest-
ing radical scavenging activity that was concentration dependent (Figure 1A). The 
IC50 value obtained was about 0.1 ± 0.02 mg/mL which, is only 1.4 times higher 
than those of control, ascorbic acid and BHT. The antioxidant effect of Dunaliella 
sp. lipid extract was assessed at aconcentration of 1, 2, and 3 mg/mL. The results 
show that the concentration of 2 and 3 mg/mL of Dunaliella sp. Lipid extract 
indicate a high radical scavenging ability compared with the ascorbic acid and BHT 
and that of 1 mg/mL of LE presents high activity compared with BHT as positive 
standard.

The low IC50 indicates the higher free radical-scavenging ability of Dunaliella 
sp.-LE, which contained a high amount of essential fatty acid [17]. In addition, 
these authors reported that Dunaliella sp.-LE exhibited a strong NBT (Nitroblue- 
terazolium) photoreduction inhibition. Omega-3 EFAs is well documented for the 

Figure 1. 
Antioxidant activities of Dunaliella salina lipid extract (LE) determined by two methods: DPPH-scavenging 
activity (A) and superoxide anion scavenging (B) and compared with synthetic antioxidants: Vitamin C  
(Vit C) and BHT. Data are presented as mean ± SD [17].
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attenuation of oxidant mediated organ damage induced by various xenobiotics and 
disease states [27]. Moreover [17], stated that LE of D. salina from Chott El-Djerid 
enhance the anticoxidant effect against Ni-induced toxicity by in vitro and in 
vivo test.

4.  Phycocyanin pigments from Phormidium versicolor NCC466 from 
Sfax solar saltern

Phycocyanin (C-PC) isa hetero-oligomer consisting of a grouping of subunits 
that are organized into complexes called « phycobilisomes » [28]. C-PC possess 
a number of unique properties that make it useful colorant, including a higher 
molecular absorbance, fluorescence quantum yields, stable oligomers, and high 
photosatbility [29]. Phycocyanin has primarily been used as natural dye; however, it 
is increasingly being used as nutraceuticals or in ither biotechnological applications 
[29]. However, to the best of our knowledge, the antioxidant capacity of P. versicolor 
phycocyanin fraction (C-PC) has not been proved.

P. versicolor phycocyanin had a strong ability to scavenge free radicals (Figure 2). 
The ability of C-PC to scavenge the O2• − and OH• radicals were measured and 
compared with that of the positive control (ascorbic acid and BHT) (Figure 2(a) 
and (b)). C-PC presented the highest scavenging activity against O2• − and OH• 
radicals ((87.42 and 88.75% at 1 mg. mL−1), respectively). Phycocyanin fractions 
isolated from cyanobacteria species were reported to be very efficient free radical 

Figure 2. 
Antioxidant activity of C-PC extract on (a) superoxide radical, (b) hydroxyl radical, (c) nitric oxide radical 
and (d) inhibition of lipid peroxidation. BHT, ascorbic acid, TROLOX were used as standard. Values are 
presented as mean ± SD (n = 3).
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scavengers and exhibit the highest antioxidant activity [30]. All phycocyanin 
extracts showed fairly moderate to high scavenging capacity against free radicals. As 
for nitric oxide radical (NO•), the C-PC showed a strong NO• scavenging activity 
reaching up to 84.87% (Figure 2c).

Several studies showed that phycocyanin isolated from cyanobacteria species 
exhibited strong antioxidant properties and can be protected cells against oxidative 
stress [31, 32]. Moreover, in vitro studies suggest that phycocyanin of Spirulina 
enhance antioxidant enzyme activity and inhibit lipid peroxidation in cells. The 
effect of P. versicolor phycocyanin (C-PC) on ferrous sulfate induced lipid peroxida-
tion in vitro was illustrated in Figure 2d. Indeed, the inhibition rats of lipid peroxi-
dation of C-PC varied between 37.65 and 82.31%.

The results here in suggested that administration of C-PC in reaction mixture 
significantly inhibited lipid peroxidation. The present finding revealed that C-PC 
had a strong effect and had antagonized action against ferrous sulfate induced lipid 
peroxidation in vitro. In this regards, Thangam et al. [33] showed that phycocyanin 
isolated from Oscillatoria tenuis possesses excellent antioxidant activity against 
DPPH radical, OH• and nitric oxide. Similarly, Ou et al. [31] indicated that Spirulina 
maxima phycocyanin protects human hepatocyte cell line L02 against H2O2 induced 
lipid damage. C-PC from halophilic P. versicolor could be used to produce a natural 
antioxidant complement or added to healthy food products.

5.  Antioxidant properties of polyphenolic compounds from P. versicolor 
NCC466

Polyphenols represent a group of chemical compounds emerging from a 
common intermediate, phenylalanine, or a close forerunner, shikimic acid [34]. 
Polyphenols are able to protect cells from oxidative stress by various mechanisms; 
they can chelate transition metal ions, can inhibit lipid peroxidation by trapping 
the lipid alkoxyl radical, or can directly scavenge molecular species of active oxygen 
[34]. Flavonoids are a class of phenolic metabolites that have strong chelating and 
antioxidant properties [34]. Their tendency to inhibit free radical-mediated events 
is controlled by their chemical structure. This structure–activity relationship has 
been well established in vitro as previously reported [35, 36]. P. versicolor exhibited 
a high amount of phenolics and flavonoids reaching 408 ± 18.8 mg GAE g−1 FW 
and 13,67 ± 0.788 mg QEq g−1 FW, respectively (Table 1). These amounts are 
signficantly higher than those recorded in Dunaliella salina from Sfax Solar Saltern 
[37]. These later recorded 0.086 ± 0.002 mg GAE g−1 FW and 0.006 ± 0.0001 mg 
QEq g−1 FW respectively for phenolics and flavonoids. Total antioxidant capac-
ity (TAC) of phenolics and flavonoids extracted from P. versicolor are high about 
0.94 ± 0.02 mg Eq g-1 FW. The IC50 concentrations DPPH, ABTS and NO scan-
venging were low (0.007 to 0.031 mg. l−1), suggested a high antioxidant activity of 
polyphenols and flavonoids extract from P. versicolor on the ROS (Table 1).

Antioxidant test Polyphenols and flavonoids extract Standard

DPPH (mg. l−1) 0.031 ± 0.08 0.077 ± 0.06 (BHT)

ABTS (mg. l−1) 0.015 ± 0.01 0.098 ± 0.02 (TROLOX)

NO (mg. l−1) 0.007 ± 0.03 0.094 ± 0.01 (Vit C)

Table 1. 
Antioxydant capacity (IC50 concentrations) of phenolics and flavonoids metabolites extracted from 
P. versicolor NCC466. BHT, Trolox and vitamin C represent the standard.
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6. Conclusion

News hyerhalophilic microlagae strains, Dunaliella sp. and Phormidium versicolor 
NCC466 are rich in lipid and phycocyanin even secondary metabolite such poly-
phenloic compounds. Scavenging activity tests indicated that these extremoplytes 
have an excellent capacity as natural antioxidant.
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