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Chapter

Asymptotic Behavior by
Krasnoselskii Fixed Point Theorem
for Nonlinear Neutral Differential
Equations with Variable Delays
Benhadri Mimia

Abstract

In this paper, we consider a neutral differential equation with two variable
delays. We construct new conditions guaranteeing the trivial solution of this neutral
differential equation is asymptotic stable. The technique of the proof based on the
use of Krasnoselskii’s fixed point Theorem. An asymptotic stability theorem with a
necessary and sufficient condition is proved. In particular, this paper improves
important and interesting works by Jin and Luo. Moreover, as an application, we
also exhibit some special cases of the equation, which have been studied extensively
in the literature.

Keywords: fixed points theory, stability, neutral differential equations, integral
equation, variable delays

1. Introduction

For more than one hundred years, Liapunov’s direct method has been very
effectively used to investigate the stability problems of a wide variety of ordinary,
functional, and partial differential, integro-differential equations. The success of
Liapunov’s direct method depends on finding a suitable Liapunov function or
Liapunov functional. Nevertheless, the applications of this method to problems of
stability in differential and integro-differential equations with delays have encoun-
tered serious difficulties if the delays are unbounded or if the equation has
unbounded terms (see [1–3]). Therefore, new methods and techniques are needed
to address those difficulties. Recently, Burton and his co-authors have applied fixed
point theory to investigate the stability, which shows that some of these difficulties
vanish when applying fixed point theory [1–22]. It turns out that the fixed point
method is becoming a powerful technique in dealing with stability problems for
indeterministic scenes (see for instance [16, 17, 21, 23]).

For example, Luo [16] studied the mean-square asymptotic stability for a class of
linear scalar neutral stochastic differential equations by means of Banach’s fixed
point theory. The author did not use Lyapunov’s method; he got interesting results
for the stability even when the delay is unbounded. The author also obtained
necessary and sufficient conditions for the asymptotic stability. Moreover, it
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possesses the advantage that it can yield the existence, uniqueness, and stability
criteria of the considered system in one step.

Neutral delay differential equations are often used to describe the dynamical
systems which not only depend on present and past states but also involve deriva-
tives with delays, (see [24–28]). It has been applied to describe numerous intricate
dynamical systems, such as population dynamics [18], mathematical biology [27],
heat conduction, and engineering [28], etc.

In particular, qualitative analysis for neutral type equations such as stability and
periodicity, oscillation theory, has been an active field of research, both in the
deterministic and stochastic cases. We can refer to [6, 7, 13, 15–17, 19–21, 23,
29–31], and the references cited therein.

With this motivation, in this paper, we aim to discuss the boundedness and
stability for neutral differential equations with two delays (1). It is worth noting that
our research technique is based on Krasnoselskii’s fixed point theory. We will give
some new conditions to ensure that the zero solution is asymptotically stable.
Namely, a necessary and sufficient condition ensuring the asymptotic stability is
proved. Our findings generalize and improve some results that can be found in the
literature. In our result, the delays can be unbounded and the coefficients in the
equations can change their sign. This paper is organized as follows. In Section 1
we present some basic preliminaries and the form of the neutral functional
differential equations which will be studied. In Section 2, we present the inversion of
the equation and we state Krasnoselskii’s fixed point theorem. The boundedness and
stability of the neutral differential Eq. (1) are discussed in Section 3 via Krasnoselskii’s
fixed point theory. Finally, in Section 4 an example is given to illustrate our theory
and our method, also to compare our result by using the fixed point theory with the
known results by Ardjouni and Djoudi [6].

In this work, we consider the following class of neutral differential equations
with variable delays,

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ c tð Þx0 t� τ1 tð Þð Þ þ b tð Þxσ t� τ2 tð Þð Þ, t≥ t0, (1)

denote x tð Þ∈ the solution to (1) with the initial condition

x tð Þ ¼ ψ tð Þ for t∈ m t0ð Þ, t0½ �, (2)

where ψ ∈C m t0ð Þ, t0½ �,ð Þ, σ ∈ 0, 1ð Þ is a quotient with odd positive integer

denominator. We assume that a, b∈C 
þ,ð Þ, c∈C1


þ,ð Þ and τi ∈C 

þ,þð Þ
satisfy t� τi tð Þ ! ∞ as t ! ∞, i ¼ 1, 2 and for each t0 ≥0,

mi t0ð Þ ¼ inf t� τi tð Þ, t≥ t0f g,m t0ð Þ ¼ min mi t0ð Þ, i ¼ 1, 2f g: (3)

Special cases of Eq. (1) have been recently considered and studied under various
conditions and with several methods. Particularly, in the case σ ¼ 1=3, and c tð Þ ¼ 0,
in [14] Jin and Luo using the fixed point theorem of Krasnoselskii obtained bound-
edness and asymptotic stability for the following equation:

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ b tð Þx
1
3 t� τ2 tð Þð Þ, t≥0: (4)

More precisely, the following result was established.
Theorem A (Jin and Luo [14]). Let τ1 be differentiable and suppose that there exists

α∈ 0:1ð Þ, k1, k2 >0, and a function h∈C m 0ð Þ,∞½ Þ,þð Þ such that for t1 � t2j j≤ 1,

ðt2

t1

b uð Þj jdu

�

�

�

�

�

�

�

�

≤ k1 t1 � t2j j, (5)
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and

ðt2

t1

h uð Þdu

�

�

�

�

�

�

�

�

≤ k2 t1 � t2j j, (6)

while for t≥0,

ðt

t�τ1 tð Þ
h uð Þj jduþ

ðt

0
e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þj jdu

 !

ds

þ

ðt

0
e
�
Ð t

s
h uð Þdu

h s� τ1 sð Þð Þ 1� τ01 sð Þ
� �

� a sð Þ
�

�

�

�þ b sð Þj j
� �

ds≤ α:

(7)

Then there is a solution x t, 0,ψð Þ of (4) on 
þ with x t, 0,ψð Þj j≤ 1:

Notice that when c tð Þ ¼ 0 in the second term on the right-hand side of (1), then (1)
reduces to (4). On the other hand, in the case, τ1 tð Þ ¼ τ1, a constant, Eq. (4) reduces to
the one in [9]. Therefore, we considered the more general system than in [9, 14].

Very recently, by the same method of Jin and Luo [14], Ardjouni and Djoudi [6]
improved the results of Jin and Luo [14] to the generalized nonlinear neutral
differential equation with variable delays of the form

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ c tð Þx0 t� τ1 tð Þð Þ þ b tð ÞG xσ t� τ2 tð Þð Þð Þ, t≥0, (8)

where G :  !  is locally Lipschitz continuous in x. That is, there is an L>0 so
that if xj j, yj j≤ 1 then

G xð Þ � G yð Þj j< x� yj j and G 0ð Þ ¼ 0:

We note that due to the presence of the term c tð Þx0 t� τ1 tð Þð Þ, once the equation

is inverted then once will face with the term c tð Þ
1�τ01 tð Þ x t� τ1 tð Þð Þ, (where, τ01 tð Þ 6¼ 1 for

t≥0) which produces a restrictive condition for the stability of (8) (as described in
more detail below).

Theorem B (Ardjouni and Djoudi [6]). Let τ1 be twice differentiable and suppose
that τ01 tð Þ 6¼ 1 for all t∈ m 0ð Þ,∞½ Þ and suppose that there are constants α∈ 0:1ð Þ,

k1, k2 >0, and a function h∈C m 0ð Þ,∞½ Þ,þð Þ such that for t1 � t2j j≤ 1,

ðt2

t1

b uð Þj jdu

�

�

�

�

�

�

�

�

≤ k1 t1 � t2j j, (9)

and

ðt2

t1

h uð Þdu

�

�

�

�

�

�

�

�

≤ k2 t1 � t2j j, (10)

while for t≥0,

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

þ

ðt

t�τ1 tð Þ

h uð Þj jdu

þ

ðt

0
e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þj jdu

 !

ds

þ

ðt

0
e
�
Ð t

s
h uð Þdu

h s� τ1 sð Þð Þ 1� τ0 sð Þð Þ � a sð Þ � μ sð Þj j þ L b sð Þj jf gds≤ α,

(11)
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where

μ tð Þ ¼
c tð Þh tð Þ þ c0 tð Þð Þ 1� τ01 tð Þ

� �

þ c tð Þτ001 tð Þ

1� τ01 tð Þ
� �2 :

Then there is a solution x t, 0,ψð Þ of (8) on 
þ with x t, 0,ψð Þj j≤ 1:

By letting c tð Þ ¼ 0 and G xσ t� τ2 tð Þð Þð Þ ¼ xσ t� τ2 tð Þð Þ in (8), the present authors
[14] have studied, the asymptotic stability and the stability by using Krasnoselskii’s
fixed point theorem, under appropriate conditions, of the Eq. (4) and improved the
results claimed in [9]. Consequently, Theorem B improves and generalizes Theorem
A. Following the technique of Jin and Luo [14], Ardjouni and Djoudi [6] studied the
stability properties of (8). However, the condition (11) in Ardjouni and Djoudi [6]
is restrictive. By employing two auxiliary functions p and g for constructing a fixed
point mapping argument, the alternative condition (21) in Theorem 3.1 is obtained.
Note that the condition

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

< α,

for some constant α∈ 0, 1ð Þ, is not needed in Theorem 3.1. In the present paper,
we also adopt Krasnoselskii’s fixed point theory to study the boundedness and
stability of (1). A new criteria for asymptotic stability with a necessary and suffi-
cient condition is given. The considered neutral differential equations, the results
and assumptions to be given here are different from those that can be found in the
literature and complete that one. These are the contributions of this paper to the
literature and its novelty and originality. In addition, an example is provided to
illustrate the effectiveness and the merits of the results introduced.

2. Inversion of equation

In this section, we use the variation of parameter formula to rewrite the equation
as an integral equation suitable for the Krasnoselskii theorem. The technique for
constructing a mapping for a fixed point argument comes from an idea in [21]. In
our consideration we suppose that:

A1) Let τ1 be twice differentiable and suppose that τ01 tð Þ 6¼ 1 for all t∈ m t0ð Þ,∞½ ½:
A2) There exists a bounded function p : m t0ð Þ,∞½ ½ ! 0,∞ð Þ with p tð Þ ¼ 1 for

t∈ m t0ð Þ, t0½ � such that p0 tð Þ exists for all t∈ m t0ð Þ,∞½ ½:
Let y tð Þ ¼ ψ tð Þ on t∈ m t0ð Þ, t0½ �, and let

x tð Þ ¼ p tð Þy tð Þ for t≥ t0: (12)

Make substitution of (12) into (1) to show

y0 tð Þ ¼ �
p0 tð Þ

p tð Þ
y tð Þ �

a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ

p tð Þ
y t� τ1 tð Þð Þ

þ
c tð Þp t� τ1 tð Þð Þ

p tð Þ
y0 t� τ1 tð Þð Þ

þb tð Þ
pσ t� τ2 tð Þð Þ

p tð Þ
yσ t� τ2 tð Þð Þ, t≥ t0,

(13)

then it can be verified that x satisfies (1).
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We now re-write Eq. (13) in an equivalent form. To this end, we use the
variation of parameter formula and rewrite the equation in an integral from which
we derive a Krasnoselskii fixed point theorem. Besides, the integration by parts will
be applied.

We need the following lemma in our proof of the main theorem.
Lemma 2.1. Let h : m t0ð Þ,∞½ Þ ! 

þ be an arbitrary continuous function and
suppose that (A1) and (A2) hold. Then y is a solution of (13) if and only if

y tð Þ ¼ ψ t0ð Þ �
p t0 � τ1 t0ð Þð Þ

p t0ð Þ

c t0ð Þ

1� τ01 t0ð Þ
� �ψ t0 � τ1 t0ð Þð Þ

 

�

ðt0

t0�τ1 t0ð Þ

h uð Þ �
p0 uð Þ

p uð Þ

� �

y uð Þdu

!

e
�
Ð t

t0
h sð Þds

þ
p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ
y t� τ1 tð Þð Þ þ

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

� �

y uð Þdu

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

	 


�y s� τ1 sð Þð Þds

�

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þ

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

� �

y uð Þdu

 !

ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
yσ s� τ2 sð Þð Þds,

(14)

where

μ tð Þ ¼
a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ

p tð Þ
,C tð Þ ¼

c tð Þp t� τ1 tð Þð Þ

p tð Þ
: (15)

and

β tð Þ ¼
C tð Þh tð Þ þ C0 tð Þ½ � 1� τ01 tð Þ

� �

þ C tð Þτ001 tð Þ

1� τ01 tð Þ
� �2 : (16)

Proof. Let y tð Þ be a solution of Eq. (13). Rewrite (13) as

y0 tð Þ þ h tð Þy tð Þ ¼ h tð Þ �
p0 tð Þ

p tð Þ

� �

y tð Þ �
a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ

p tð Þ
y t� τ1 tð Þð Þ

þ
c tð Þp t� τ1 tð Þð Þ

p tð Þ
y0 t� τ1 tð Þð Þ

þb tð Þ
pσ t� τ2 tð Þð Þ

p tð Þ
yσ t� τ2 tð Þð Þ, t≥ t0:

(17)
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Multiply both sides of (17) the previous equality by e

Ð t

t0
h sð Þds

and then integrate
from t0 to t, we have

y tð Þ ¼ ψ t0ð Þe
�
Ð t

t0
h sð Þds

þ

ðt

t0

h sð Þ �
p0 sð Þ

p sð Þ

� �

e
�
Ð t

s
h uð Þdu

y sð Þds

�

ðt

t0

e
�
Ð t

s
h uð Þdu a sð Þp s� τ1 sð Þð Þ � c sð Þp0 s� τ1 sð Þð Þ

p sð Þ
y s� τ1 sð Þð Þds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu c sð Þp s� τ1 sð Þð Þ

p sð Þ
y0 s� τ1 sð Þð Þds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
yσ s� τ2 sð Þð Þds:

(18)

Performing an integration by parts, we can conclude, for t≥ t0,

y tð Þ ¼ ψ t0ð Þe
�
Ð t

t0
h sð Þds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

d

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

� �

y uð Þdu

 !

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

� 1� τ01 sð Þ
� �

y s� τ1 sð Þð Þds

�

ðt

t0

e
�
Ð t

s
h uð Þdu a sð Þp s� τ1 sð Þð Þ � c sð Þp0 s� τ1 sð Þð Þ

p sð Þ
y s� τ1 sð Þð Þds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu c sð Þp s� τ1 sð Þð Þ

p sð Þ
y0 s� τ1 sð Þð Þds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
yσ s� τ2 sð Þð Þds:

Thus,

y tð Þ ¼ ψ t0ð Þ �
p t0 � τ1 t0ð Þð Þ

p t0ð Þ

c t0ð Þ

1� τ01 t0ð Þ
� �ψ t0 � τ1 t0ð Þð Þ

 

�

ðt0

t0�τ1 t0ð Þ

h uð Þ �
p0 uð Þ

p uð Þ

� �

y uð Þdu

!

e
�
Ð t

t0
h sð Þds

þ
p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ
y t� τ1 tð Þð Þ þ

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

� �

y uð Þdu

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

	 


�y s� τ1 sð Þð Þds

�

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þ

ðs

s�τ1 sð Þ

h uð Þ �
p0 uð Þ

p uð Þ

� �

y uð Þdu

 !

ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
yσ s� τ2 sð Þð Þds,

where μ sð Þ and β sð Þ are defined in (15) and (16), respectively. The proof is complete.
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Below we state Krasnoselskii’s fixed point theorem which will enable us to
establish a stability result of the trivial solution of (1) For more details on
Krasnoselskii’s captivating theorem, we refer to smart [20] or [3].

Theorem 2.1. (see, [Kranoselskii’s fixed point theorem, [20]]). Suppose that
X, :k kð Þ is a Banach space and M is a bounded, convex, and closed subset of X. Suppose
further that there exist, two operators, A,B ! M into X such that:

i. Axþ By∈M for all x, y∈M;

ii. A is completely continuous;

iii. B is a contraction mapping.

Then Aþ B has a fixed point in M:

3. Stability by Krasnoselskii fixed point theorem

From the existence theory, which can be found in Hale [26] or Burton [3], we
conclude that for each t0,ψð Þ∈

þ � C m t0ð Þ, t0½ �,ð Þ, a solution of (1) through
t0,ψð Þ is a continuous function x : m t0ð Þ, t0 þ ρ½ Þ !  for some positive constant
ρ>0 such that x satisfies (1) on t0, t0 þ ρ½ Þ and x ¼ ψ on m t0ð Þ, t0½ �. We denote such
a solution by x tð Þ ¼ x t, t0,ψð Þ. We define ψk k ¼ max ψ tð Þj j : m t0ð Þ≤ t≤ t0f g.

As we mentioned previously, our results in this section extend and improve
the work in [14] by considering more general classes of neutral differential
equations presented by (1). Our main results in this part can be applied to the
case when

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

≥ 1,

which improve [14]. In other words, we will establish and prove a necessary and
sufficient condition ensuring the boundedness of solutions and the asymptotic
stability of the zero solution to Eq. (1). However, the mathematical analysis used in
this research to construct the mapping to employ Krasnoselskii’s fixed point theo-
rem is different from that of [14].

The results of this work are news and they extend and improve previously
known results. To the best of our knowledge from the literature, there are few
authors who have used the fixed point theorem to prove the existence of a solution
and the stability of trivial equilibrium of several special cases of (1) all at once
[9, 14].

Let us know to recall the definitions of stability that will be used in the next
section. For stability definitions, we refer to [3].

Definition 3.1. The zero solution of (1) is said to be:

i. stable, if for any ε>0 and t0 ≥0, there exists a δ ¼ δ ε, t0ð Þ>0 such that
ψ ∈C m t0ð Þ, t0½ �,ð Þ and ψk k< δ imply x t, t0,ψð Þj j< ε for t≥ t0:

ii. asymptotically stable, if the zero solution is stable and for any ε>0 and
t0 ≥0, there exists a δ ¼ δ ε, t0ð Þ>0 such that ψ ∈C m t0ð Þ, t0½ �,ð Þ and
ψk k< δ imply x t, t0,ψð Þj j ! 0 as t ! ∞:.

Now, we can state our main result.
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Theorem 3.1. Suppose that assumptions (A1) and (A2) hold, and that there are
constants α∈ 0, 1ð Þ, k1, k2 >0, and an arbitrary continuous
function h∈C m t0ð Þ,∞½ Þ,þð Þ such that for t1 � t2j j≤ 1,

ðt2

t1

b uð Þ
pσ u� τ2 uð Þð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

�

�

�

�

�

�

�

�

≤ k1 t1 � t2j j, (19)

and

ðt2

t1

h uð Þdu

�

�

�

�

�

�

�

�

≤ k2 t1 � t2j j, (20)

while for t≥ t0

p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

þ

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

	 


ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

 !

ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þj j
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

ds< α,

(21)

where μ sð Þ and β sð Þ are defined in (15) and (16), respectively. If ψ is a given
continuous initial function which is sufficiently small, then there is a solution x t, t0,ψð Þ of
(1) on 

þ with x t, t0,ψð Þj j≤ 1:
We are now ready to prove Theorem 3.1.
Proof. We start with some preparation:

Let X, :j jg

� �

be the Banach space of continuous φ : m t0ð Þ,∞½ Þ !  with

φj jg ≔ sup
t≥m t0ð Þ

φ tð Þ=g tð Þj j<∞:

For each t0 ≥0 and ψ ∈C m t0ð Þ, t0½ �,ð Þ fixed, we define Xψ as the following space

Xψ ¼ φ∈X : φ tð Þj j≤ 1 fort∈ m t0ð Þ,∞½ Þandφ tð Þ ¼ ψ tð Þift∈ m t0ð Þ, t0½ �f g:

It is easy to check that Xψ is a complete metric space with metric induced by the
norm :j jg.

We note that to apply Krasnoselskii’s fixed point theorem we need to construct
two mappings; one is contraction and the other is compact. Therefore, we use (14)
to define the operator H : Xψ ! Xψ by

Hφð Þ tð Þ≔ Aφð Þ tð Þ þ Bφð Þ tð Þ,

where A,B : Xψ ! Xψ are given by

Aφð Þ tð Þ≔

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
φσ s� τ2 sð Þð Þds, (22)
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and

Bφð Þ tð Þ : ¼ ψ t0ð Þ �
p t0 � τ1 t0ð Þð Þ

p t0ð Þ

c t0ð Þ

1� τ01 t0ð Þ
� �ψ t0 � τ1 t0ð Þð Þ

 

�

ðt0

t0�τ1 t0ð Þ

h uð Þ �
p0 uð Þ

p uð Þ

� �

φ uð Þdu

!

e
�
Ð t

t0
h sð Þds

þ
p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ
φ t� τ1 tð Þð Þ þ

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

� �

φ uð Þdu

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

	 


�φ s� τ1 sð Þð Þds

�

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þ

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

� �

φ uð Þdu

 !

ds:

(23)

If we are able to prove that H possesses a fixed point φ on the set Xψ , then
y t, t0,ψð Þ ¼ φ tð Þ for t≥ t0, y t, t0,ψð Þ ¼ ψ tð Þ on m t0ð Þ, t0½ �, y t, t0,ψð Þ satisfies (13)
when its derivative exists and y t, t0,ψð Þj j< 1 for t≥ t0: That A maps Xψ into itself
can be deduced from condition (21).

For α∈ 0, 1ð Þ, we choose δ>0 such that

1þ
p t0 � τ1 t0ð Þð Þ

p t0ð Þ

c t0ð Þ

1� τ01 t0ð Þ
� �

�

�

�

�

�

�

�

�

�

�

 

þ

ðt0

t0�τ1 t0ð Þ

h uð Þ �
p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

!

e
�
Ð t

t0
h sð Þds

δþ α≤ 1:

(24)

Let ψ : m t0ð Þ, t0½ � !  be a given continuous initial function with ψk k< δ: Let
g : m t0ð Þ,∞½ Þ ! 1,∞½ Þ be any strictly increasing and continuous function with
g m t0ð Þð Þ ¼ 1, g sð Þ ! ∞ as s ! ∞, such that

p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

þ

ðt

t�τ1 tð Þ

h uð Þ �
p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

g uð Þ=g tð Þdu

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ

h uð Þ �
p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

g uð Þ=g tð Þdu

 !

ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

�g s� τ1 sð Þð Þ=g tð Þds< α:

(25)

Now we split the rest of our proof into three steps.
First step:We now show that φ,ϕ∈Xψ implies that Aφþ Bϕ∈Xψ : Now, let :k k

be the supremum norm on m t0ð Þ,∞½ Þ of φ∈Xψ if φ is bounded. Note that if
φ,ϕ∈Xψ then

Aφð Þ tð Þ þ Bϕð Þ tð Þj j≤
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ψk k 1þ
p t0 � τ1 t0ð Þð Þ

p t0ð Þ

�

�

�

�

�

�

�

�

c t0ð Þ

1� τ01 t0ð Þ
� �

�

�

�

�

�

�

�

�

�

�

þ

ðt0

t0�τ1 t0ð Þ

h uð Þ �
p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

 !

e
�
Ð t

t0
h sð Þds

þ ϕk k
p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

þ ϕk k

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

þ ϕk k

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

	 


ds

þ ϕk k

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

 !

ds

þ φσk k

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þj j
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

ds

≤ 1þ
p t0 � τ1 t0ð Þð Þ

p t0ð Þ

�

�

�

�

�

�

�

�

c t0ð Þ

1� τ01 t0ð Þ
� �

�

�

�

�

�

�

�

�

�

�

 

þ

ðt0

t0�τ1 t0ð Þ

h uð Þ �
p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

!

e
�
Ð t

t0
h sð Þds

δþ α≤ 1:

By applying (24), we see that Aφð Þ tð Þ þ Bϕð Þ tð Þj j≤ 1 for t∈ m t0ð Þ,∞½ Þ:
We see that also B maps Xψ into itself by letting φ ¼ 0 in the preceding sum.
Second step: Next, we will show that AXψ is equicontinuous and A is

continuous. We first show that AXψ is equicontinuous. If φ∈Xψ and if 0≤ t1 < t2
with t2 � t1 < 1, then

Aφð Þ t2ð Þ � Aφð Þ t1ð Þj j ¼

ð

t2

t0

e
�
Ð t2

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
ds

�

�

�

�

�

�

�

ð

t1

t0

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
e
�
Ð t1

s
h uð Þdu

ds

�

�

�

�

�

�

≤

ð

t2

t1

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
e
�
Ð t2

s
h uð Þdu

ds

�

�

�

�

�

�

�

�

�

�

�

�

þ

ð

t1

t0

e
�
Ð t2

s
h uð Þdu

� e
�
Ð t1

s
h uð Þdu

� �

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ
ds

�

�

�

�

�

�

�

�

�

�

�

�

≤

ð

t2

t1

e
�
Ð t2

s
h uð Þdu

d

ð

s

t1

b υð Þ
pσ υ� τ2 υð Þð Þ

p υð Þ

�

�

�

�

�

�

�

�

dυ

0

@

1

A

þ e
�
Ð t2

t1
h uð Þdu

� 1

�

�

�

�

�

�

�

�

ð

t1

t0

e
�
Ð t1

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

ds

≤

ð

t2

t1

b uð Þ
pσ u� τ2 uð Þð Þ

p uð Þ

�

�

�

�

�

�

�

�

du 1þ

ð

t2

t1

h uð Þe
�
Ð t2

s
h uð Þdu

ds

0

@

1

Aþ α e
�
Ð t2

t1
h uð Þdu

� 1

�

�

�

�

�

�

�

�
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≤ 2

ð

t2

t1

b uð Þ
pσ u� τ2 uð Þð Þ

p uð Þ

�

�

�

�

�

�

�

�

duþ α

ðt2

t1

h uð Þdu

�

�

�

�

�

�

�

�

≤ 2k1 þ αk2ð Þ t2 � t1j j,

by (19)–(21). In the space X, :j jg

� �

, the set AXψ is uniformly bounded and

equicontinuous. Hence by Ascoli-Arzela theorem AXψ resides in a compact set.
Next, we need to show that A is continuous. Let ε>0 be given and let φ,ϕ∈Xψ .

Now yσ, is uniformly continuous on �1,þ1½ � so for a fixed T >0 with 4=g Tð Þ< ε

there is an η>0 such that y1 � y2
�

�

�

�< ηg Tð Þ implies yσ1 � yσ2
�

�

�

�< ε=2: Thus for

φ tð Þ � ϕ tð Þj j< ηg tð Þ and for t>T we have

Aφð Þ tð Þ � Aϕð Þ tð Þj j=g tð Þ

¼ 1=g tð Þð Þ

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

φσ s� τ2 sð Þð Þ � ϕσ s� τ2 sð Þð Þj jds

≤ 1=g tð Þð Þ

ð

T

t0

e�
Ð t

s
h uð Þdu b sð Þ

pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

φσ s� τ2 sð Þð Þ � ϕσ s� τ2 sð Þð Þj jds

8

<

:

þ2

ð

t

T

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

ds

9

=

;

≤ αε=2g tð Þð Þ þ 2α=g Tð Þð Þf g≤ αε:

Third step: Finally, we show that B is a contraction with respect to the norm :j jg
with constant α: Let B be defined by (23). Then for ϕ1,ϕ2 ∈Xψ we have

Bϕ1ð Þ tð Þ � Bϕ2ð Þ tð Þj j=g tð Þ≤
p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

ϕ1 t� τ1 tð Þð Þ � ϕ2 t� τ1 tð Þð Þj j=g tð Þ

þ

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

ϕ1 uð Þ � ϕ2 uð Þj j=g tð Þdu

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

� ϕ1 s� τ1 sð Þð Þ � ϕ2 s� τ1 sð Þð Þj j=g tð Þds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

ϕ1 uð Þ � ϕ2 uð Þj j=g tð Þdu

 !

ds

≤ ϕ1 � ϕ2j jg
p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

	

þ

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

g uð Þ=g tð Þdu

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

g uð Þ=g tð Þdu

 !

ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

� �μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

g s� τ1 sð Þð Þ=g tð Þds




≤ α ϕ1 � ϕ2j jg, by (22).
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Since α∈ 0, 1ð Þ, we can conclude that B is a contraction on Xψ , :j jg

� �

:

The conditions of Krasnoselskii’s theorem are satisfied with M ¼ Xψ . Hence,
we deduce that H : Xψ ! Xψ has a fixed point y tð Þ, which is a solution of (13) with
y sð Þ ¼ ψ sð Þ on s∈m t0ð Þ, t0� and y t, t0,ψð Þj j≤ 1 for t∈ m t0ð Þ,∞½ Þ. Since there exists a
bounded function p : m t0ð Þ,∞½ ½ ! 0,∞ð Þ with p tð Þ ¼ 1 for t∈ m t0ð Þ, t0½ �, by
hypotheses (12) and from the above arguments we deduce that there exists a
solution x of (1) with x ¼ ψ on m t0ð Þ, t0½ � satisfies x t, t0,ψð Þj j≤ 1 for all
t∈ m t0ð Þ,∞½ Þ. The proof is complete.

Letting σ ¼ 1=3, and c tð Þ ¼ 0 in Theorem 3.1. Then we have the following
corollary.

Corollary 3.1. Let (19) and (20) hold, and (21) be replaced by

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� a sð Þ
p s� τ sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

	 


ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

 !

ds≤ α:

(26)

Then there is a solution x t, t0,ψð Þ of (4) on 
þ with x t, t0,ψð Þj j≤ 1:

Remark 3.2:When p tð Þ ¼ 1, then Corollary 3.1 reduces to Theorem A, which
was recently stated in Jin and Luo [14]. Therefore, the paper (Jin and Luo [14]) is a
particular case of ours.

For the next Theorem, we manipulate function spaces defined on infinite
t -intervals. So, for compactness, we need an extension of the Arzelà-Ascoli theo-
rem. This extension is taken from ([3], Theorem 1.2.2 p. 20).

Theorem 3.2. Let (19)–(21) hold and assume that

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

ds ! 0 as t ! ∞, (27)

and

lim
t!∞

inf

ðt

t0

h sð Þds> �∞: (28)

If ψ is given continuous initial function which is sufficiently small, then (1) has a
solution x t, t0,ψð Þ ! 0 as t ! ∞ if and only if

ðt

t0

h sð Þds ! ∞ as t ! ∞: (29)

Proof. We set

K ¼ sup
t≥ t0

e
�
Ð t

t0
h sð Þds

	 


, (30)
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by (28), K is well defined. Suppose that (29) holds.
Since p is bounded, it remains to prove that the zero solution of (1) is

asymptotically stable.
All of the calculations in the proof of Theorem 3.1 hold with g tð Þ ¼ 1 when :j jg is

replaced by the supremum norm :k k:
For

φ∈Xψ ,

Aφð Þ tð Þj j≤

ðt

t0

e
�
Ð t

s
h uð Þdu

b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

ds≕q tð Þ, (31)

where q tð Þ ! 0 as t ! ∞ by (27).
Add toXψ the condition thatφ∈Xψ implies thatφ tð Þ ! 0as t ! ∞.We can see that

for φ∈Xψ then Aφð Þ tð Þ ! 0 as t ! ∞ by (31), and Bφð Þ tð Þ ! 0 as t ! ∞ by (29).
Since AXψ has been shown to be equicontinuous, A maps Xψ into a compact

subset of Xψ . By Krasnoselskii’s theorem, there is y∈Xψ with Ayþ By ¼ y. As
y∈Xψ , y t, t0,ψð Þ ! 0 as t ! ∞: By condition (12), it is very easy to show that there
exists a solution x∈Xψ of (1) with x t, t0,ψð Þ ! 0 as t ! ∞:

Conversely, we suppose that (29) fails. From (28) there exists a sequence tnf g

with tn ! ∞ as n ! ∞ such that lim
n!∞

Ð tn
t0
h uð Þdu ¼ ξ for some ξ∈

þ: We may also

choose a positive constant J satisfying

�J ≤

ðtn

t0

h uð Þdu≤ þ J,

for all n≥ 1: To simplify the expression, we define

ω sð Þ≔ �μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

þ h sð Þj j

ðs

s�τ1 sð Þ

h uð Þ �
p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

duþ b sð Þ
pσ s� τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

,

for all s≥0: By (21), we have

ðtn

t0

e
�
Ð tn

s
h uð Þdu

ω sð Þds≤ α:

This yields

ðtn

t0

e
Ð s

0
h uð Þdu

ω sð Þds≤ αe
Ð tn

0
h uð Þdu

≤ eJ :

The sequence
Ð tn
t0
e
Ð s

0
h uð Þdu

ω sð Þds

	 


is bounded, hence there exists a convergent

subsequence. Without loss of generality, we can assume that

lim
n!∞

ðtn

t0

e
Ð s

0
h uð Þdu

ω sð Þds ¼ θ,

for some θ∈
þ: Let m be an integer such that
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ðtn

tm

e
Ð s

0
h uð Þdu

ω sð Þds≤
δ0

4K
,

for all n≥m, where δ0 >0 satisfies 2δ0Ke
J þ α≤ 1:

We now consider the solution y tð Þ ¼ y t, tm,ψð Þ of (1) with ψ tmð Þ ¼ δ0 and
ψ sð Þj j≤ δ0 for s≤ tm: We may choose ψ so that y tð Þj j≤ 1 for t≥ tm and

ψ tmð Þ �
p tm � τ1 tmð Þð Þ

p tmð Þ

c tmð Þ

1� τ01 tmð Þ
� �ψ tm � τ1 tmð Þð Þ

�

ðtm

tm�τ1 tmð Þ

h uð Þ �
p0 uð Þ

p uð Þ

� �

z uð Þdu≥
1

2
δ0:

In follows from (22) and (23) with y tð Þ ¼ Ayð Þ tð Þ þ Byð Þ tð Þ that for n≥m

y tnð Þ �
p tn � τ1 tnð Þð Þ

p tnð Þ

c tnð Þ

1� τ01 tnð Þ
� � y tn � τ1 tnð Þð Þ �

ðtn

tn�τ1 tnð Þ

h sð Þ �
p0 sð Þ

p sð Þ

� �

y sð Þds

�

�

�

�

�

�

�

�

�

�

≥
1

2
δ0e

�
Ð tn

tm
h uð Þdu

�

ðtn

tm

e
�
Ð tn

s
h uð Þdu

ω sð Þds

¼ e
�
Ð tn

tm
h uð Þdu 1

2
δ0 � e

�
Ð tm

0
h uð Þdu

ðtn

tm

e
Ð s

0
h uð Þdu

ω sð Þds

� �

≥ e
�
Ð tn

tm
h uð Þdu 1

2
δ0 � K

ðtn

tm

e
Ð s

0
h uð Þdu

ω sð Þds

� �

≥
1

4
δ0e

�
Ð tn

tm
h uð Þdu

≥
1

4
δ0e

�2J
>0:

(32)

On the other hand, if the zero solution of (13) y tð Þ ¼ y t, tm,ψð Þ ! 0 as t ! ∞,
since tn � τi tnð Þ ! ∞ as t ! ∞, i ¼ 1, 2, and (21) holds, we have

y tnð Þ �
p tn � τ1 tnð Þð Þ

p tnð Þ

c tnð Þ

1� τ01 tnð Þ
� � y tn � τ1 tnð Þð Þ �

ðtn

tn�τ1 tnð Þ

h sð Þ �
p0 sð Þ

p sð Þ

� �

y sð Þds ! 0

as t ! ∞, which contradicts (32). Hence condition (29) is necessary for the
asymptotic stability of the zero solution of (13), and hence the zero solution of (1) is
asymptotically stable. The proof is complete.

For the special case c tð Þ ¼ 0 and σ ¼ 1
3, we can get.

Corollary 3.2. Let (19), (20) and (27) hold and (21) be replaced by

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� a sð Þ
p s� τ sð Þð Þ

p sð Þ

�

�

�

�

�

�

�

�

	 


ds

þ

ðt

t0

e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

 !

ds≤ α:

Then the zero solution x t, t0,ψð Þ of (4) with a small continuous function ψ tð Þ is
asymptotically stable if only if
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ðt

t0

h sð Þds ! ∞ as t ! ∞:

Remark 3.3. The method in this paper can be applied to more general nonlinear
neutral differential equations than Eq. (1).

Remark 3.4. Theorem 3.1 is still true if condition (21) is satisfied for t≥ tρ with

some tρ ∈
þ.

4. Example

In this section, we now give an example to show the applicability of Theorem 3.1.
Example. Let us consider the following neutral differential equation of first

order with two variable delays, which is a special case of (1):

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ ln
0:95tþ 1

4 tþ 1ð Þ

� �

x0 t� τ1 tð Þð Þ

þ
0:6 0:95tþ 1ð Þ

1
3

tþ 1ð Þ2
x

1
3 t� τ2 tð Þð Þ, (33)

for t≥0 where τ2 tð Þ ¼ 0:5t, τ1 tð Þ ¼ 0:05t, and a tð Þ satisfies

�μ tð Þ þ h t� τ1 tð Þð Þ �
p0 t� τ1 tð Þð Þ

p t� τ1 tð Þð Þ

� �

1� τ01 tð Þ
� �

� β tð Þ

�

�

�

�

�

�

�

�

≤
0:03

tþ 1
,

where μ tð Þ and β tð Þ are defined in (15) and (16), respectively. Choosing h tð Þ ¼
1:5
tþ1 and p tð Þ ¼ 1

tþ1. By straightforward computations, we can check that condition

(21) in Theorem 3.1 holds true. As t ! ∞, we have

p t� τ1 tð Þð Þ

p tð Þ

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

≤
1

4� 0:95

�

�

�

�

�

�

�

�

≤0:263,

ðt

t�τ1 tð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du≤0:026,

ðt

0
e
�
Ð t

s
h uð Þdu

h sð Þj j

ðs

s�τ1 sð Þ
h uð Þ �

p0 uð Þ

p uð Þ

�

�

�

�

�

�

�

�

du

 !

ds≤0:026,

ðt

0
e
�
Ð t

s
h uð Þdu

�μ sð Þ þ h s� τ1 sð Þð Þ �
p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ

� �

1� τ01 sð Þ
� �

� β sð Þ

�

�

�

�

�

�

�

�

ds

≤

ðt

0
e
�
Ð t

s

1:5
uþ1du

0:3

sþ 1
ds≤0:2,

and
Ð t
0e

�
Ð t

s
h uð Þdu

b sð Þj j
pσ s�τ2 sð Þð Þ

p sð Þ

�

�

�

�

�

�ds≤0:4, and since
Ð t
0h sð Þds ! ∞ as t ! ∞, p tð Þ≤ 1: Let

α ¼ 0:263þ 0:026þ 0:026þ 0:2þ 0:4. It is easy to see that all the conditions of
Theorem 3.1 hold for α≃0:915< 1: Thus, Theorem 3.1 implies that the zero solution
of (33) is asymptotic stable.

However, for the asymptotic stable of the zero solution of (33), the
corresponding conditions used by the fixed point theory in Ardjouni and Djoudi [6]
are
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lim
c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

¼ lim
1

0:95
ln

0:95tþ 1

4 tþ 1ð Þ

� ��

�

�

�

�

�

�

�

¼ 1:513ast ! ∞:

This implies that condition (11) does not hold. So it is clear that the reduction of
the conservatism by our method is quite significant when compared to Ardjouni
and Djoudi [6].

Remark 4.1. It is an open problem whether the zero solution of (1) is uniform
asymptotically stable, perseverance, and so on.

5. Conclusion

This work is a new attempt at applying the fixed point theory to the stability
analysis of neutral differential equations with variable delays, several special cases
of which have been studied in [9, 14]. Some of the results, like Theorem B, is mainly
dependent on the constraint

c tð Þ

1� τ01 tð Þ

�

�

�

�

�

�

�

�

< 1:

But in many environments, the constraint does not hold. So by employing two
auxiliary continuous functions g and p to define an appropriate mapping, and
present new criteria for asymptotic stability of Eq. (1) which makes stability
conditions more feasible and the results in [14] are improved and generalized. From
what has been discussed above, we see that Krasnoselskii’s fixed point theorem
is effective for not only the investigation of the existence of solution but also for
the boundedness and the stability analysis of trivial equilibrium. We introduce an
example to verify the applicability of the results established. In the future, we will
continue to explore the application of other kinds of fixed point theorems to the
stability research of fractional neutral systems with variable delays.

Additional classifications

AMS Subject Classifications: 34K20, 34K30, 34B40

Author details

Benhadri Mimia
LAMAHIS Lab, Faculty of Sciences, Department of Mathematics, University of
Skikda, Skikda, Algeria

*Address all correspondence to: mbenhadri@yahoo.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

16

Recent Developments in the Solution of Nonlinear Differential Equations



References

[1] T. A. Burton, Stability by fixed point
theory or Liapunov’s theory: A
comparison, Fixed Point Theory 4
(2003), 15–32.

[2] T. A. Burton, Liapunov functionals,
fixed points, and stability by
Krasnoselskii’s theorem, Nonlinear
Studies 9 (2001), 181–190.

[3] T. A. Burton, Stability by fixed point
theory for functional differential
equations, Dover Publications, New
York, (2006).

[4]Ardjouni A, Djoudi A. Fixed points and
stability in linear neutral differential
equations with variable delays. Nonlinear
Analysis. 2011;74:2062-2070

[5] A. Ardjouni, A. Djoudi; Stability by
Krasnoselskii fixed point theorem for
neutral differential equations with
variable delays, Acta Universitatis
Apulensis Mathematica, (2012), no. 32,
17–30.

[6] A. Ardjouni, A. Djoudi; Fixed points
and stability in neutral nonlinear
differential equations with variable
delays, Opuscula Mathematica 32
(2012), no. 1, 5–19.

[7]M. Ad var, H. C. Koyuncuoğlu and Y.
N. Raffoul, Existence of periodic
solutions in shifts δ� for neutral
nonlinear dynamic systems on time
scales, Appl. Math. Comput. 242 (2014),
328–339.

[8] S. Althubiti, H.A. Makhzoum, Y. N.
Raffoul, Periodic solution and stability
in nonlinear neutral system with infinite
delay, Applied Mathematical Sciences,
Vol. 7, (2013), no. 136, 6749–6764.

[9] T. A. Burton, T. Furumochi,
Asymptotic behavior of solutions of
functional differential equations by
fixed point theorems, Dynam. Systems
Appl. 11 (2002), 499–519.

[10] T. A. Burton, T. Furumochi,
Krasnoselskii’s fixed point theorem and
stability, Nonlinear Anal. 49 (2002),
445–454.

[11]G. Chen, D. Li, O. Gaans, S. Lunel,
Stability of nonlinear neutral delay
differential equations with variable
delays, Electronic Journal of Differential
Equations, Vol. 2017 (2017), no. 118,
1–14.

[12] Y. M. Dib, M. R. Maroun, Y. N.
Raffoul, Periodicity a stability in neutral
nonlinear differential equations with
functional delay. Electronic Journal of
Differential Equations, Vol. 2005
(2005), no. 142, 1072–6691.

[13]M. N. Islam and Y. N. Raffoul,
Periodic solutions of neutral nonlinear
system of differentiale quations with
functional delay, J. Math. Anal. Appl,
331 (2007), 1175–1186.

[14] C. H. Jin, J.W. Luo, Stability in
functional differential equations
established using fixed point theory,
Nonlinear Anal. 68 (2008), 3307–3315.

[15] E. R. Kaufman and Y. N. Raffoul,
Periodic solutions for a neutral
nonlinear dynamical equation on a time
scale, J. Math. Anal. Appl, 319 (2006),
315–325.

[16] J. W. Luo, Fixed points and stability
of neutral stochastic delay differential
equations, J. Math. Anal. Appl., 334
(2007), 431–440.

[17] J. W. Luo and T. Taniguchi, Fixed
points and stability of stochastic neutral
partial differential equations with
infinite delays, Stoch. Anal. Appl., 27
(2009), 1163–1173.

[18] B. Lisena, Global attractivity in
nonautonomous logistic equations with
delay. Nonlinear Analysis: RWA, 9
(2008), 53–63.

17

Asymptotic Behavior by Krasnoselskii Fixed Point Theorem for Nonlinear Neutral…
DOI: http://dx.doi.org/10.5772/intechopen.96040



[19] Y. N. Raffoul, Existence of positive
periodic solutions in neutral nonlinear
equations with functional delay. Rocky
Mountain J. Math. 42 (2012), no. 6,
1983–1993.

[20]D. Zhao, New criteria for stability of
neutral differential equations with
variable delays by fixed points method,
Zhao Advances in Difference Equations
(2011), 2011:48.

[21]D. Zhao, The boundedness and
stability of neutral delay differential
equations with damped stochastic
perturbations via fixed point theory,
Applied Mathematics and Computation
219 (2013), 6792–6803.

[22] B. Zhang, Fixed points and stability in
differential equationswith variable delays,
Nonlinear Anal. 63 (2005) e233–e242.

[23] Y. Guo, X. Chao, W. Jun, Stability
analysis of neutral stochastic delay di
¤erential equations by a generalization
of Banach.s contraction principle.
International Journal of Control, 90
(2017), no. 8, 1555-1560.

[24] R. K. Brayton, Bifurcation of
periodic solutions in a nonlinear
difference-differential equation of
neutral type, Quart. Appl. Math. 24
(1966), 215–224.

[25] J. K. Hale and S.M.V. Lunel ,
Introduction to functional differential
equations, Ser. Applied Mathematical
Sciences. New York: Springer-Verlag,
Vol. 99, (1993).

[26] J. K. Hale and K.R. Meyer, A class of
functional equations of neutral type,
Mem. Am. Math. Soc. 76(1967), 1–65.

[27] Y. Kuang, Delay Differential
Equations with Applications in
Population Dynamics, Academic Press,
San Diego, (1993).

[28] V. B. Kolmanovskii, A.D. Myshkis,
Applied Theory of Functional

Differential Equations, Kluwer
Academic, Dordrecht, 1992.

[29]M. Liu, I. Dassios, and F. Milano,
"On the stability analysis of systems of
neutral delay differential equations, "
Circuits, Systems, and Signal
Processing, Vol. 38, (2019), Issue 4,
1639–1653.

[30] Y. N. Raffoul, Stability in neutral
nonlinear differential equations with
functional delays using fixed-point
theory, Math. Comput. Modelling 40
(2004), 691–700.

[31]D. R. Smart, Fixed points theorems.
Cambridge University Press,
Cambridge, (1980).

18

Recent Developments in the Solution of Nonlinear Differential Equations


