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Chapter

Application of Artificial Neural 
Networks to Chemical and Process 
Engineering
Fabio Machado Cavalcanti, Camila Emilia Kozonoe, 

Kelvin André Pacheco and Rita Maria de Brito Alves

Abstract

The accelerated use of Artificial Neural Networks (ANNs) in Chemical and 
Process Engineering has drawn the attention of scientific and industrial communi-
ties, mainly due to the Big Data boom related to the analysis and interpretation 
of large data volumes required by Industry 4.0. ANNs are well-known nonlinear 
regression algorithms in the Machine Learning field for classification and predic-
tion and are based on the human brain behavior, which learns tasks from experience 
through interconnected neurons. This empirical method can widely replace tradi-
tional complex phenomenological models based on nonlinear conservation equa-
tions, leading to a smaller computational effort – a very peculiar feature for its use 
in process optimization and control. Thereby, this chapter aims to exhibit several 
ANN modeling applications to different Chemical and Process Engineering areas, 
such as thermodynamics, kinetics and catalysis, process analysis and optimization, 
process safety and control, among others. This review study shows the increasing 
use of ANNs in the area, helping to understand and to explore process data aspects 
for future research.

Keywords: chemical and process engineering, Artificial Neural Networks, Big Data, 
Modeling

1. Introduction

Many chemical and process engineers are excited about the applications of 
Artificial Intelligence (AI) to their fields of expertise. AI can be defined as the abil-
ity of digital-computers to perform tasks at which people are better, at the moment 
[1]. In this context, Machine Learning (ML) is seen as one of the most relevant 
subareas, providing computers with the ability to learn without being programmed 
explicitly. It is essentially a form of applying statistics to estimate complex functions 
with less emphasis on obtaining the confidence intervals around them [2].

This current excitement was also stimulated by the Big Data boom related to the 
analysis and interpretation of large data volumes (of the order of several terabytes), 
which are generated at high rates and present various formats (numbers, text, 
multimedia, among others). Industry 4.0 requires this piece of knowledge from 
chemical and process engineers since process plants have large volumes of stored 
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historical data, obtained through sensors that measure thousands of variables in the 
order of seconds [3]. The analysis and exploitation of these data is a critical compo-
nent for the operation of an industrial process.

In this framework, the so-called Artificial Neural Networks (ANNs) have 
numerous advantages and applications. They are universal nonlinear approximators 
based on the human brain-behavior through interconnected neurons that learn 
tasks from experience; in that case, from data [4]. Similarly to the nervous system, 
artificial neural networks are organized in the form of several simple individual ele-
ments – nodes or neurons – which interconnect with each other, forming networks 
capable of storing and transmitting information from/to the outside. Another 
relevant capacity of ANNs is their plasticity, which, through a learning process, 
allows changing in the interconnection pattern of its elements [5]. ANNs have been 
widely used in modeling or regression (linear and nonlinear) for one or several 
independent variables. It is worth noting that their use is not new in Chemical and 
Process Engineering, dating from the 1980s with some progress along the way, 
decisively contributing to the resurgence of the interest of the scientific community 
in this subject [3].

Modeling, simulation, and optimization are essential activities and competitive 
differentials among researchers to meet the challenges produced by environmental 
and commercial restrictions. In this context, ANNs are mostly used in process 
prediction and classification, as they are a robust nonlinear regression. In particu-
lar, this technique should be used when the solution of a problem is hampered by 
some of the following points: lack of physical or statistical understanding of the 
problem, statistical variations of the observable data, and the nonlinear mechanism 
responsible for the generation of the data [6].

In general terms, the use of neural networks consists of the following steps:  
1- establishing the network architecture; 2- providing experimental data; 3- adjusting 
the network parameters – also known as their weights – until they learn the phe-
nomenon (step called training); and 4- using the trained network with new input 
data for predicting the corresponding output data.

ANNs have been successfully applied to chemistry to correlate spectra of analyti-
cal methods and product properties [7]; in catalysis, to determine the relationships 
between the catalyst structure and its activity [8]; in process modeling, to predict 
product performance and operating conditions [9], and particularly in process con-
trol and fault diagnosis [10]. The main reasons for the growing popularity of the neu-
ral network approach are its lower computational cost compared to other methods 
and its ability to solve complex nonlinear problems [5]. Therefore, this review study 
demonstrates the increasing use of ANNs in Chemical and Process Engineering, 
helping to understand and to explore process data aspects for future research.

2.  Most common activation functions used in chemical and process 
engineering applications

A neural network contains hyperparameters to be tuned prior to training in 
order to achieve the best configuration. Among them, the following can be men-
tioned: (i) number of hidden neurons, (ii) activation function, (iii) optimizer, 
and (iv) regularization and their dependencies (learning rate, optimizer specific, 
dropout rate, etc.).

Particularly, activation functions determine the output of the model, its 
accuracy, and the computational efficiency of training a model; therefore, they 
are an essential part of the structure of the neural networks. The Sigmoid func-
tion, Hyperbolic Tangent (TanH), and ReLU (Rectified Linear Unit) are the most 
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common in Chemical Engineering; however, recent studies improve these classical 
activation functions, defining new ones, such as Leaky ReLU, Swish, H-Swish [11].

In the sigmoid activation function, the output values are bounded between 
0 and 1, normalizing each neuron output. However, there is a problem with the 
vanishing gradient, and outputs are not zero-centered. To make the modeling 
easier, the TanH was proposed, for which the outputs are zero-centered, i.e., when 
the inputs contain strongly negative, neutral, and strongly positive values.

In order to circumvent the computational expense, the ReLU was proposed. It 
is a computationally efficient linear activation function that will output the input 
directly if it is positive; otherwise, it will output zero. A further development is the 
Leaky ReLU, whereby the slope is changed to the left of x = 0, avoiding the dying 
ReLU problem, whereby some neurons can die for all inputs and remain inactive.

Therefore, the correct definition of the activation function is a fundamental 
part of the hyperparameter tuning to guarantee the best configuration of a neural 
network. In the course of the chapter, we will always mention which activation 
function each work used in the summary tables.

3. Applications to chemical and process engineering

In recent decades, there have been a large number of studies using ANNs in 
chemical engineering, from molecular property prediction [12], fault diagnosis 
[13], predictive control [14], and optimization [15, 16]. The use of first-principles 
knowledge must be integrated with the neural network in order to retain a more 
physical understanding of the system [14]. In the following subsections, we pre-
sented the principal papers of each area, with tables summarizing the characteris-
tics of the ANNs used.

3.1 Thermodynamics and transport phenomena

Several data-driven models have been employed to predict phase equilibrium and 
transport phenomena coefficients for various chemical systems [17]. Indeed, these 
fields already have some empiricism in their standard mathematical formulations. 
For example, flash algorithms have some empiricism when using binary interaction 
parameters in subjective mixing rules [18], and the majority of transport phenomena 
coefficients are estimated from empirical correlations, sometimes questionable [19]. 
Therefore, the use of ANNs is a better way to find functional relationships between 
the model variables instead of first determining these constants [20].

Moreover, ANNs reveal a conceivably faster choice to those property predic-
tion calculations in process simulations, limiting process control applications that 
require to be conducted in real-time. For this, Poort et al. [21] studied the replace-
ment of conventional Equations of State (EoS) for property and phase stability 
calculations on a binary mixture of methanol–water. They trained ANNs with data 
generated through the Thermodynamics for Engineering Applications (TEA) to 
represent four kinds of flash algorithms, leading to an enhancement of 15 times for 
the predictions of properties and 35 times for classification of the phases.

Also noteworthy is that ANNs have also been used to predict if a particular 
mixture forms an azeotrope – essential information to design and to control a 
separation process. Alves et al. [22] successfully developed an ANN classification 
model to determine whether binary mixtures can exhibit (or not) azeotropy based 
solely on the properties of pure components as input variables. Therefore, it shows 
the power of ANNs for this type of thermodynamic evaluation since it does not take 
into account the non-ideality of the mixture.
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They are also widely employed to predict thermal-physical properties of ionic 
liquids, such as density and viscosity [23]. The primary source of these values comes 
from experiments at the laboratory since ionic liquids do not present a universal 
description of their phase behavior. For example, using the definition of group 
contribution and the operating temperature, Valderrama et al. [24] successfully 
developed a three-layer FF-ANN to estimate the density of ionic liquids.

ANNs have also been employed in statistical thermodynamics techniques, which 
compute physicochemical properties from molecular simulations. One of these 
methods – the High-Throughput Force Field Simulation (HT-FFS) – can generate 
large volumes of data. ANNs can be trained with these data, thus building a gray-
box model to improve the property predictions with a lower computational effort 
[25]. They have also been used in Density Functional Theory (DFT) calculations to 
replace some physical functionals with data-driven ones, finding the energy levels 
for electronic structures of different compounds with a balance between computa-
tional cost and accuracy [26].

Regarding their application to Transport Phenomena, it is well-known that 
ANNs – as an excellent universal approximator for any nonlinear function [27] – 
can be used for estimating convective heat- and mass-transfer coefficients [17]. 
Mainly in situations in which there is no mathematical correlation that can adjust 
them, as is the case of bubble columns. For this, Verma and Srivastava [19] suc-
cessfully built an ANN model from literature data with eight inputs related to the 
system configuration of a bubble column (gas velocity, Prandtl number, number of 
holes, hole diameter, column diameter, surface tension, gas holdup, and bed height) 
and one output (heat coefficient).

Table 1 displays a summary of the current applications of neural networks 
to thermodynamics and transport phenomena discussed above. In the table, we 
specify the field, case study, class of neural network, activation function, topology 
and software used in each work.

3.2 Kinetics and catalysis

Neural networks have been successfully applied to catalysis to determine the 
relationship between the catalyst structure and its activity [8]. As heterogeneous 
catalysis has developed increasingly efficient experimentation techniques, the num-
ber of new data have increased exponentially [28], both from synthesis and from 
characterization and catalytic tests [29]. Thus, there is a need for more adequate 
tools to manage these large amounts of experimental data, to understand and to 
model it, and to generate a way to optimize the catalytic performance [30].

Two types of ANNs applications have been described so far in the frame of 
combinatorial catalysis: (i) ANN catalyst compositional models, correlating com-
position and synthesis variables with catalytic performance, and (ii) ANN kinetic 
models, correlating reaction conditions with the catalytic performance [31]. For 
example, those applications include the design of ammoxidation of propylene 
catalyst [32], design of methane oxidative decoupling catalyst [33], analysis and 
prediction of results of the decomposition of NO over zeolites [34], among other 
studies. Also, ANNs have been used combined with genetic algorithms for design-
ing propane ammoxidation catalysts [35]. Another work successfully reported 
the viability of ANNs in the analysis and prediction of catalytic results within 
a collection of catalysts produced by combinatorial techniques [36]. Recently, 
an ANN was applied to estimate the rate of dehydration reaction of methanol 
in dimethyl ether synthesis [37]. The results showed that an ANN is a powerful 
tool for evaluating the reaction rate instead of using sophisticated kinetic model 
equations.
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The number of publications in this catalysis field has had an upward trend, 
especially in the last decade with the high demand for practical applications of the 
concepts of Big Data. The group of Turkish researchers led by Günay and Yildirim 
has excelled with work in the field, using not only ANNs for extracting knowledge 
from catalytic data, but also decision tree algorithms to determine the heuristic 
conditions and rules that lead to a high performance of the catalyst. For example, in 
work about carbon monoxide oxidation over Cu-based catalysts, they successfully 
used 1337 data points from 20 studies for evaluating catalyst performance using 
ANNs [38].

In the field of heterogeneous catalysis, ANNs can be used to select better pos-
sible catalysts – cheaper, less toxic, and composed of non-precious metals – for 
a given reaction, thus reducing the massive number of needed high-throughput 
experiments, peculiar conjuncture of combinatorial catalysis [39]. In this direction, 
Cavalcanti et al. [40] used a three-layer feedforward neural network to predict the 

References Field Case Study Class of 

Neural 

Network

Activation 

Function

Topology*** Software

[18] Phase Equilibrium Vapor–Liquid 

equilibrium 

of NH3/H2O 

and CH4/C2H6 

systems

FF-ANN* Sigmoid 2–13-2 in-house 

software

[20] Transport 

Phenomena

Determination 

of reduced 

boiling point 

from molecular 

weight and 

acentric factor

FF-ANN Sigmoid 2–2–2-1 Matlab

[21] Phase Equilibrium Vapor–liquid 

flash 

calculations

FF-ANN Linear/

Sigmoid

3–10-2 Keras-

Python

[22] Phase Equilibrium Prediction 

of azeotrope 

formation

FF-ANN Sigmoid 16–6-1 in-house 

software

[24] Ionic Liquids Estimation 

of physical 

properties of 

ionic liquids

FF-ANN Tanh 10–15–15-1 Matlab

[25] Molecular 

Thermodynamics

Enhancing 

the High-

Throughput 

Force Field 

Simulation 

(HT-FFS)

FF-ANN Linear/

ELU**

25–16–8-4-3 PyTorch

[26] Molecular 

Thermodynamics

Correlation 

functionals of 

the electronic 

density

Fully 

connected 

neural 

networks

Sigmoid 4–8 neurons 

in each 

hidden layer

TensorFlow

*FN-ANN stands for Feed-Forward Artificial Neural Network.
**ELU stands for Exponential Linear Unit.
***The first and last elements in topology represent the number of neurons in the input and in the output layer, 
respectively. Among them, the number of neurons in the hidden layer(s).

Table 1. 
Current applications of ANNs to thermodynamics and transport phenomena.
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ideal composition of the catalyst in the water-gas-shift reaction and discover useful 
trends through sensitivity analysis. The input variables for ANN were several, while 
the only output variable considered was the conversion of CO. The model for the 
reaction was successfully developed, exhibiting the power of ANNs for predicting 
better catalysts and operating conditions for the process.

Recently, Cavalcanti et al. [8] showed that ANNs are able to predict the variables 
that most influence the conversion of CO in the water-gas-shift reaction, that 
is, temperature and surface area. The results can be used to conduct subsequent 
research in an optimized manner in this area, as it aims at the well-managed use of 
environmental resources, in the sense of selecting efficient catalysts for producing 
hydrogen - a clean energy source.

In the same topic, Garona et al. [41] presented an empiric model for the Fischer-
Tropsch Synthesis (FTS) reaction using ANNs. A database of FTS to light olefins 
was assembled from the literature, and feedforward neural networks were used to 
build more complete models, which helped to predict optimal catalyst composition 
and operating conditions.

It is also noteworthy that ANNs were also used to model the sintering of a 
catalyst in a dry reformer [42]. In particular, the effects of temperature, pressure, 
and catalyst diameter on methane and CO2 conversions, H2/CO ratio, and molar 
percentage of solid carbon deposited on the catalyst (responsible for deactiva-
tion) have been studied. The ANN design activity was automated using a Genetic 
Algorithm (GA) search over the set of possible network topologies. The inclusion 
of the effective number of parameters in the GA objective function led to networks 
that performed well over testing data points.

Another application is in the determination of acidity in zeolites with data from 
FTIR spectroscopy [43]. FF-ANNs were used for analyzing multivariate base on the 
characteristic absorbance of 11 zeolite samples after metal substitution (Zn, Cu, Ga, 
and Ag) in the ~3612 cm−1 region. The developed regression method presented the 
same results of acid sites from other conventional and expensive methodologies.

Thus, in order to formulate a new kind of catalyst, it is essential to identify the cataly-
sis past [44]. Therefore, by using ANNs, it is possible to convert historical data from past 
publications into valuable information, leading to a great acceleration in the develop-
ment of new catalysts with better performances for a given process [8]. Table 2 presents 
a summary of the current applications of neural networks to catalytic processes.

3.3 Process analysis and optimization

The applications of neural networks to the process analysis are increasing. 
Assidjo et al. [45] modeled the drying process of the production of coconut using a 
neural network. The goal is to predict the moisture of dried grated coconut whose 
dynamics are not well known. The authors used a feedforward fully connected 
neural network, whereby the selected architecture was 9–4-1, selected based on the 
minimum error in the test set. The results indicate that the neural network pro-
posed, constructed using industrial plant data, can be used as a predicting method.

Fernandes and Lona [46] applied neural networks to the field of polymerization. 
The authors also highlighted some topologies, the number of data points needed, 
and the concept of stacked neural networks that can enhance the prediction of the 
final model.

Alves and Nascimento [47] used industrial plant data for constructing neural 
networks to detect gross errors; the case study was an isoprene unit facility.

Alves and Nascimento [4] studied the production of high purity isoprene from 
a C5 cut arising from a pyrolysis gasoline unit. The first principle models were 
replaced by neural networks in the final grid search of the optimal parameters for 
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the process. The set of 10 neural networks were defined to represent the whole 
flowsheeting, whereby the number of hidden layers was defined by the minimum 
error in the test set. Lastly, the framework successfully optimized a chemical plant 
under study using neural networks with industrial data.

References Field Case Study Class of 

Neural 

Network

Activation 

Function

Topology** Software

[29] Modeling 

of catalytic 

processes

Catalytic activity 

for n-paraffin 

isomerization

FF-ANN* Sigmoid/

Tanh

4–8–6-3 SNNS neural 

networks 

simulator

[32] Catalyst 

design

Design of 

catalyst for 

propane 

ammoxidation

FF-ANN Sigmoid 6–20–12–2 in-house 

software

[33] Catalyst 

design

Design of a 

catalyst for 

methane 

oxidative 

coupling

FF-ANN Sigmoid 6–20–9-2 in-house 

software

[34] Modeling 

of catalytic 

processes

Analysis of NO 

decomposition 

over Cu/ZSM-5 

zeolite

FF-ANN Sigmoid 4–32-1 in-house 

software

[36] Combinatorial 

catalysis

Modeling 

of catalysts 

for oxidative 

dehydrogenation 

of ethane

FF-ANN Not 

described

13–26–12-6 SNNS neural 

networks 

simulator

[37] Modeling 

of catalytic 

processes

Estimation of 

the reaction rate 

in methanol 

dehydration

FF-ANN Tanh/

Linear

3–6-1 Matlab

[38] Modeling 

of catalytic 

processes

Selective CO 

Oxidation over 

Copper-Based 

Catalysts

FF-ANN Tanh 14–7–7-1 Matlab

[8] Catalyst 

selection

Catalyst 

selection for the 

WGS reaction

FF-ANN Sigmoid 51–12-1 R - neuralnet

[41] Modeling 

of catalytic 

processes

Fischer-Tropsch 

synthesis to 

lower-olefins

FF-ANN Sigmoid 30–15-2 R - neuralnet

[42] Catalyst 

deactivation

Dry reformer 

under catalyst 

sintering

FF-ANN Tanh 3–12–5-6-1 in-house 

software

[43] Determination 

of catalyst 

acidity

Determination 

of acidity 

in metal 

incorporated 

zeolites by FTRI

FF-ANN Tanh 6–10-1 Matlab

*FN-ANN stands for Feed-Forward Artificial Neural Network.
**The first and last elements in topology represent the number of neurons in the input and in the output layer, 
respectively. Among them, the number of neurons in the hidden layer(s).

Table 2. 
Current applications of ANNs to catalytic processes.
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Khezri et al. [15] proposed a hybrid model for optimizing a large-scale gas to 
liquids process. The dataset was constructed using a simulation model of the GTL 
process. Different topologies were compared to select the most promising one; one 
and two hidden layers with different number of neurons were tested. The optimal 
configuration was two hidden layers with 7 and 15 hidden neurons each. The ANN 
was modeled using the information of the tail gas unpurged ratio, recycled tail 
gas to FT ratio, H2O/C in the syngas section, and CO2 removal percentage as input 
features; the outputting was wax production rate. The ANN model was then used 
for optimization purposes.

Wang et al. [16] proposed a framework for predicting the operating trend of 
an industrial process. The framework contains three major steps: (i) multivariate 
correlation analysis, to deal with the correlation between the historical industrial 
data, (ii) clustering, due to nonlinear dense data and unclear operating trend types 
and (iii) a convolutional neural network (CNN), formed by five parts (input layer, 
convolutional layer, ReLU layer, pooling layer, and fully connected layer).

The authors pointed out the importance of the convolutional networks to extract 
important features from the dataset. Moreover, the advantage of such a framework 
was compared with traditional convolutional neural networks and recurrent neural 
networks (RNNs) for a methanol production process.

Cai et al. [48] analyzed an industrial process using data-driven models. The case 
study was the industrial reverse osmosis concentrate (ROC) treatment with the 
fluidized bed reactor Fenton (FBR-Fenton) process. Prior to modeling, a statisti-
cal analysis was carried out to determine the most relevant features as input (Fe2+ 
dosage, H2O2 dosage, pH, and HRT). Two approaches were studied, ANN and 
linear regression. The former showed more accurate predictions, consisting in one 
input layer (4 neurons), 4 hidden layers (10 neurons each) and one output layer (2 
neurons) using ReLU as an activation function, due to the least computationally 
dense mechanism and also a general approximation for most scenarios [11].

The crystallization process and the quality of the products was studied by Lin 
et al. [49]. The authors used a Raman spectrum as input for a two-layer back propa-
gation neural network with four hidden neurons to predict the solution concentra-
tion and slurry density simultaneously. They also compared the output prediction 
of the neural network with other algorithm predictions (characteristic peaks 
regression, principal component regression, partial least-squares regression), and 
the results indicated the superior prediction characteristics of the neural network 
due to its inner nonlinear nature.

Chemical process synthesis is a complex scheme, which comprises process mod-
eling and design, and combinatorial defiance. There are two major approaches: the 
traditional sequential form and the optimization-based synthesis using superstruc-
ture models. In the former category, the problem is solved in sequential scheme, by 
decomposition whereby there is a hierarchy of elements that can be depicted by an 
Onion Diagram (reactor, separation, heat recovery and utility) [50].

The latter category considers the full integration between decisions at the single 
step, i.e. determine the optimal structure and operating conditions simultaneously. 
Therefore, this approach contemplates all possible complex interactions between 
the engineering choices, including equipment (potentially selected in the optimized 
flowsheet), the interconnection and operating conditions formulated as an optimi-
zation problem [51–53].

There is a diversity of proposed methodologies to represent a general process 
superstructure [54–56]. However, due to the inner complexity of the superstruc-
ture (Figure 1), the large-scale non-convex Mixed-Integer Nonlinear Programs 
(MINLP) require effective approaches to solve them.
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The use of simplified models or surrogates at the unit operation level is advanta-
geous because they are present in any process simulator. Additionally, surrogates 
can be used to represent an entire subsystem consisting of a definite number of 
units. Artificial Neural Networks (ANNs) may be used to generate the surrogate 
models, due to their fitting characteristics [57].

In order to circumvent the solution problem of a superstructure, Henao and 
Maravelias [58] proposed a framework to replace complex unit models (based on 
first-principle) with surrogate models, developed using artificial neural networks. 
The authors proposed simpler surrogate models for pumps, compressors and flash 
vessels. The authors used two case studies (Absorption-based CO2 capture system 
and maleic anhydride process superstructure) to validate the proposed framework. 
The results indicate the possibility of using neural networks embedded in a rigorous 
optimization procedure.

Savage et al. [59] proposed a hybrid machine learning-based framework to 
optimize the chemical process (the CryoMan Cascade cycle system was used as a 
case study). The authors compared different surrogate models algorithms (ANN 
and Kriging Partial Least Squares); the results indicated a reduction in the time 
needed for the optimization when compared with the rigorous model. Moreover, 
they found that a single large ANN was unable to capture the high nonlinearity 
of the process under study based on the final accuracy. Therefore, the authors broke 
the surrogate model into a series of parallel sub-models, revealing to have increased 
the final accuracy.

According to Klemes et al. [60], despite the substantial level of maturity of the 
process modeling, the nature of connections of the problem still allows improve-
ments. Nascimento et al. [61] also presented alternatives for the optimization 
of industrial facilities using neural networks and compared them with indus-
trial data.

Table 3 presents a summary of the current applications of neural networks to 
process analysis and optimization.

3.4 Process safety and control

One of the most common applications of ANNs to the area of process safety 
and control is in fault detection and diagnosis. These systems are built to identify 
habitual process behavior and recognize atypical variations in the chemical plant 
that can lead to an accident [64]. Generally, deep neural networks – ANNs that 
contain several hidden layers – are used to extract spatial and temporal aspects of 
the data for this purpose [65]. Their inputs are the sensors responsible for the vari-
able measurement, and their outputs of the kind of faults (e.g., tube plugging, valve 
blockage, catalyst deactivation, among others) [66].

Figure 1. 
Simple superstructure representation compared with different separation processes.
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However, determining the various hyperparameters of deep neural networks 
demands a considerable amount of time, which is not suitable for fast online 
process applications. Based on this, Peng et al. [67] applied a method to reduce the 
training time of these complex types of network architecture: the Broad Learning 

References Field Case Study Class of 

Neural 

Network

Activation 

Function

Topology**** Software

[45] Process 

Analysis

Grated 

coconut 

industry

FF-ANN* Tanh 9–4-1 Matlab

[16] Industrial 

Process 

Operating 

(Predictive 

Control)

Methanol 

production

CNN** ReLu 5 convolution 

layers, 36 filters, 

and 3 pooling 

layers

Caffe

[62] Process 

Analysis

Fluidized bed 

reactor Fenton 

process

FF-ANN ReLu 4–10–

10 − 10 − 10 − 2

R - Keras

[14] Predictive 

Control

non- 

isothermal 

continuous 

stirred tank 

reactors

RNN*** Tanh 2 hidden layers 

with 30 neurons 

in each layer

Python-

Keras

[15] Process 

Optimization

Large scale 

gas to liquids 

process

FF-ANN Sigmoid 4–7–15-1 Matlab

[4] Process 

Optimization

Isoprene 

Process

FF-ANN Sigmoid 10 neural 

networks (all 

with one hidden 

layer)

in-house 

software

[58] Process 

Synthesis

Absorption-

based CO2 

capture 

and Maleic 

Anhydride 

process

FF-ANN Tanh Several neural 

networks (all 

with one hidden 

layer)

Matlab

[59] Process 

Synthesis

CryoMan 

Cascade cycle 

system

FF-ANN Not 

Described

Not Described Python-

PyTorch

[63] Process 

Analysis

Thermo-

catalytic 

methane 

decomposition

FF-ANN Sigmoid 6–9-1 Matlab

[49] Process 

Analysis

Crystallization 

process

FF-ANN Not 

Described

two-layer neural 

network with 

four hidden 

neurons

Matlab

*FN-ANN stands for Feed-Forward Artificial Neural Network.
**CNN stands for Convolutional Neural Network.
***RNN stands for Recurrent Neural Network.
****The first and last elements in topology represent the number of neurons in the input and in the output layer, 
respectively. Among them, the number of neurons in the hidden layer(s).

Table 3. 
Current applications of neural networks to process analysis and optimization.
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System (BLS). It uses an incremental learning procedure and enlarges the network 
in width, making a quick training stage possible. They successfully employed this 
strategy in a batch fermentation process for fault detection utilizing the Affinity 
Propagation (AP) algorithm in a Long Short-Term Memory (LSTM) deep neural 
network to cluster distinct stage data.

Another use is in developing models to control the process quality through 
variables that do not have online sensors. On the one hand, variables such as 
pressure, temperature, and mass flow rate can be easily measured by manometers, 
thermocouples, and mass flow controllers, respectively. On the other hand, the 
online measurement of a variable such as pH in the process is a challenge since no 
large-scale equipment exists for this, depending on an offline laboratory analysis. 
Therefore, ANNs can be used to develop these so-called soft-sensors to predict qual-
ity parameters from a large volume of industrial data, improving the process control 
quality [68].

Finally, ANNs are also used to replace complex phenomenological models in 
Model Predictive Control (MPC) architectures and Real-Time Optimization (RTO) 
strategies [69]. Both applications depend on the model accuracy and the velocity of 
solving the model equations to drive the controlled variable to the desired set-point. 
The former is related to dynamic processes and the latter to steady-state opera-
tions [69]. Since ANNs have a lower computational response than first-principle 
models, they are a suitable alternative to make these control strategies possible and 
efficient.

A successful application of this kind of substitution can be found elsewhere 
[70], in which an ANN is used to replace a very detailed computational fluid 
dynamic (CFD) model that represents the synthesis of phthalic anhydride in 
a fixed-bed catalytic reactor for an MPC structure. Moreover, a hybrid model 
approach (first-principles combined with ANN) was employed in an MPC by 
Zhang et al. [69] to drive a reaction process in a continuous stirred tank reactor 
(CSTR) to optimal operating conditions. They represented the reaction rates by 
neural networks instead of using the nonlinear Arrhenius Law to describe the 
reaction phenomenon. Indeed, this well-known equation was used to generate the 
dataset for training the network under numerous variations in temperature and 
reactant concentrations. The MPC acted to stabilize the chemical process, driving it 
to the lowest total cost conditions.

Wu et al. [14] proposed a hybrid machine-learning model that incorporates 
first principles into a recurrent neural network. The authors studied two models, a 
partially-connected RNN model and a weight-constrained RNN model and applied 
them to a chemical process containing two well-mixed, non- isothermal continuous 
stirred tank reactors in series. The two proposed models outperformed a Lyapunov-
based model predictive controller based on prediction accuracy, smoother state 
trajectories and economic advantages.

It is worth mentioning that ANNs are being used to build detectors to 
prevent cyber-attacks against process plants [71]. Nowadays, with highly 
automated systems for controlling chemical plants with real-time operation, 
breaches in cyber-secure failures can exist, which may cause accidents and 
economic losses. With this in mind, Chen et al. [71] developed a feedback-MPC 
control architecture with an ANN-detector that can identify the probabilities 
of cyber-attacks in networked sensors. Therefore, the applicability of ANNs 
in these safety and control strategies is very significant for the integrability of 
industrial plants.

Table 4 shows a summary of the current applications of neural networks to the 
area of process safety and control.



Deep Learning Applications

12

4. Future works

Today, ANNs are one of the most found subjects in the scientific literature of 
Chemical and Process Engineering; and their use tends to continue growing. This 
can be explained by the launch of Industry 4.0, in which these data-driven models 
play an essential role in the implementation of some type of intelligent systems in 
processes [72]. Thus, to remain relevant in this current scenario, companies need 
specialized professionals on their team. For this reason, this topic has been intro-
duced into the curriculum of most Chemical Engineering degree programs [73].

Indeed, the continuous availability of large volumes of stored data in industrial 
processes will lead to the development of new ANN approaches for process model-
ing and data interpretation. These models will deliver more direct relationships 
between cause and effect variables for process optimization and control through 
MPC strategies. Therefore, the automation of entire plant units will conduct to 
intelligent processes, capable of making decisions for safer operation, and with a 
reliable protection system against cyber-attacks.

Another subarea worth mentioning for future developments is the design of 
new materials. The use of ANNs has led to a decrease in the number of lengthy and 

References Field Case Study Class of 

Neural 

Network

Activation 

Function

Topology**** Software

[67] Fault 

Detection

Penicillin 

fermentation 

process

LSTM*** Sigmoid 10–20–15-2 Matlab

[68] Soft 

Sensors

pH control 

in a chemical 

process

RNN** Tanh 5–14–1 Not 

described

[69] Surrogate 

model in 

MPC and 

RTO

Reaction 

process in a 

CSTR

FF-ANN* Tanh 3–10-1 Matlab

[70] Surrogate 

model 

from 

CFD in 

MPC

Phthalic 

anhydride 

synthesis in 

a fixed-bed 

catalytic 

reactor

RNN ReLu 3–64–64–1 Keras

[14] Hybrid 

model in 

a MPC

Two-

consecutive 

CSTRs

RNN Tanh 2–30–30-4 IPOPT-

Python

[71] Cyber 

Security

MPC 

integrated 

with 

cyber-secure 

feedback 

controller

FF-ANN Tanh 4–12–10-9 Matlab

*FN-ANN stands for Feed-Forward Artificial Neural Network.
**RNN stands for Recurrent Neural Network.
***LSTM stands for Long Short-Term Memory.
****The first and last elements in topology represent the number of neurons in the input and in the output layer, 
respectively. Among them, the number of neurons in the hidden layer(s).

Table 4. 
Current applications of ANNs to process safety and control.
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costly laboratory experiments for analyzing the performance of polymers, ceram-
ics, glasses, and mainly, catalysts. Therefore, it is possible to convert data from 
past publications and from high-throughput (HT) experiments into information, 
leading to a surprising acceleration in developing new materials with better perfor-
mances for a given process.

5. Conclusions and perspectives

This chapter presented the ANNs and their Chemical and Process Engineering 
applications, showing how they have become a powerful tool for modeling chemical 
processes. This analysis also showed their increasing application, helping to under-
stand and analyze process data features for future research in thermodynamics, 
transport phenomena, kinetics and catalysis, process analysis and optimization, 
and process safety and control.

The prospective availability of large volumes of data with good quality will make 
ANNs one of the most used methods to represent a process, estimate thermody-
namic properties, develop new catalysts, replace complex phenomenological mod-
els, and improve control and safety strategies. Moreover, in real chemical processes, 
a particular part of the inputs affect only a section of the outputs. Therefore, the 
knowledge of first principles embedded in a data driven machine learning model is 
a challenge for the next studies.
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