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Chapter

Chaotic Dynamics and Complexity
in Real and Physical Systems
Mrinal Kanti Das and Lal Mohan Saha

Abstract

Emergence of chaos and complex behavior in real and physical systems has been
discussed within the framework of nonlinear dynamical systems. The problems
investigated include complexity of Child’s swing dynamics , chaotic neuronal
dynamics (FHN model), complex Food-web dynamics, Financial model (involving
interest rate, investment demand and price index) etc. Proper numerical simula-
tions have been carried out to unravel the complex dynamics of these systems and
significant results obtained are displayed through tables and various plots like
bifurcations, attractors, Lyapunov exponents, topological entropies, correlation
dimensions, recurrence plots etc. The significance of artificial neural network
(ANN) framework for time series generation of some dynamical system is
suggested.

Keywords: chaos, Poincarè map, bifurcation, Lyapunov exponents, topological
entropy, correlation dimension, permutation entropy, neural network

1. Introduction

In this chapter, we investigate the dynamical complexity of several real physical
systems. We present our analysis of various problems considered here and present
results graphically based on actual numerical simulation for various system. We
revisit the analysis of complexity of nonlinear pendulum dynamics and its applica-
tion to unravel the complex oscillations observed in a swing pumped by a child. For
the analysis, we use various tools e.g., phase plot, bifurcation diagram, Poincare
surface of section and maps, Lyapunov exponent (LCE) etc., of theory of nonlinear
dynamical system. Next we consider the problem of prey-predator system with
Allee effect and introduce correlation dimension and topological entropy to charac-
terize the fractal structure and the associated complexity in its dynamics. Further,
beside the normal analysis used to understand the complex neuronal dynamics, say
using Fitzhug-Nagumo model (FHN), recurrence plots (RPs) have been used along
with the phase plot analysis and bifurcation diagram to picturise the transition of
spike occurrence from periodic to quasi-periodic and chaotic oscillations in the
presence of external periodic stimulation. Significance of multi-scale permutation
entropy analysis to characterize nonlinear dynamical complexity of real system is
also suggested while analyzing a financial system involving interest rate, investment
demand and interest rates. Finally, we describe the utility of time series generation
of dynamical variables of chaotic system, such as Lorentz system, using artificial
neural network.
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2. Pendulum motion and dynamics behind a swing

2.1 Pendulum motion

Motion of nonlinear driven pendulum with friction are widely discussed through
numerous literature in Physics and applied Mathematics, (e.g. here, [1–3]). The
nonlinear analysis of driven nonlinear pendulum provides a basis for understanding
the complexity of various nonlinear dynamical systems. Regular and chaotic
motions are observed in such pendulums depending on the numerical values
assigned to the parameters associated in their equations of motion. A swing
dynamics is very similar to that of nonlinear driven pendulum, [4–7]. In the present
text regular and chaotic motion of a pendulum and that of the child’s swing is
discussed mathematically. Numerical results are presented in various forms of
graphics. The equation of motion of a driven pendulum having angular displace-
ment, θ, from vertical with linear damping expressed as

d2θ

dt2
þ k

dθ

dt
þ ω2

0 sin θ ¼ F cos ωtð Þ (1)

where F and ω are respectively the amplitude and frequency of the driving force

and k is the damping coefficient and ω0 ¼
ffiffi

g
L

q

is the natural frequency for free

small-amplitude oscillations. Here g refers to acceleration due to gravity and L the
length of the pendulum. Often it is convenient to express frequency in units of ω0

by setting ω0 ! 1 and rescaling the time unit accordingly. The periodic force
F cosωt is active and influence the motion of the pendulum.

The Eq. (1) can easily be replaced by equation

d2θ

dt2
þ 2β

dθ

dt
þ ω2

0 sin θ ¼ fω2
0 cos ωtð Þ (2)

Here k ¼ 2β, β ¼ γ

m, i.e., ratio of damping coefficient per unit massm, ω2
0 ¼

g
L and

f ¼ F
ω2
0
. One obtains a bifurcation diagram for Eq. (2), shown in Figure 1. Bifurca-

tion scenario indicates a period doubling phenomena followed by chaos. This
implies the pendulum oscillations may be regular or chaotic depending on the
magnitudes of external forcing.

System (1) or (2) are very common structure with very few degrees of freedom.
The simple forced pendulum is periodic in θ when the driving force applied is

Figure 1.
Bifurcation scenario of damped and driven pendulum for values β ¼ 0:75, ω ¼ 2π, ω0 ¼ 3π and
1:06≤ f ≤ 1:09.
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smaller than a certain threshold fC and chaotic when the force f is greater than this
threshold. An interesting case would also be when the driving force becomes com-
parable to the weight.

Keeping fixed values for k ¼ 0:125, ω0 ¼ 1, ω ¼ 2=3 and then varying forcing
amplitude F, following regular (periodic) and chaotic motion of the pendulum is
observed:

Case (a): for a value F ¼ 0:2, a time-series plot, phase plot, surface of section and
Poincaré map, are drawn as shown in Figure 2.

Case (b): for a value F ¼ 0:8, corresponding figures of case (a) are obtained as a
time-series plot, phase plot, surface of section and Poincaré map, are drawn as
shown in Figure 3.

The plots shown in Figure 3 indicate at a value F ¼ 0:8 the pendulum oscillation
is chaotic and this leads to unpredictability. Pendulum may be whirling irregularly
or overturn or show very irregular oscillations.

As an application of the foregoing analysis, in the following section, we extend
the formalism to discuss the problem of swing oscillation where the length of the
pendulum varies periodically.

2.2 Problem of Swing oscillation

Oscillations of a swing pumped by a child is very familiar to us. Every time the
swing passes through its lowest point the child pumps it over and again. The
dynamics of weightless rod with a point mass sliding along the length mimics like a
pendulum swing whose length varies periodically with time. The motion of the
swing governed by the dynamical system written as [5]:

d

dt
ml2

dθ

dt

� �

þ γl2
dθ

dt
þmgl sin θ ¼ 0 (3)

Figure 2.
Time-series plot, phase plot, surface of section and Poincaré map for periodic motion for F ¼ 0:2.
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where m is the mass, l is the length, θ is the angle made by the swing from the
vertical position and g is the acceleration due to gravity. As the length of the swing
varies periodically with time, one assumes

l ¼ l0 þ aϕ Ω tð Þ (4)

where l0 is the mean length of the swing and is constant, a and Ω are, respec-
tively, the amplitude and frequency of excitation. The function ϕ Ωtð Þ should be a
periodic function of time. Then, by introducing the following dimensionless
parameters and variables

τ ¼ Ω t, ε ¼
a

l0
, Ω0 ¼

ffiffiffiffi

g

l0

r

, ω ¼
Ω0

Ω
, β ¼

γ

mΩ0
,

equation of motion of the swing in dimensionless form written as:

€θ þ
2ε _ϕ τð Þ

1þ εϕ τð Þ
þ βω

� �

_θ þ
ω2

1þ εϕ τð Þ
sin θ ¼ 0 (5)

where :f g in Eq. (5) corresponds to differentiation with respect τ.
Since ϕ τð Þ is a periodic function, we may take ϕ τð Þ ¼ A sin λτð Þ and thus the

foregoing equation may be rewritten as:

€θ þ
2kλ cos λτð Þ

1þ k sin λτð Þ
þ βω

� �

_θ þ
ω2

1þ k sin λτð Þ
sin θ ¼ 0 (6)

where k ¼ εA.
For stability of motion of the swing a linear stability analysis is applied. We may

write Eq. (6) as the following two first order equations:

Figure 3.
Time-series plot, phase plot, surface of section and Poincaré map for periodic motion for F ¼ 0:8.
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_θ ¼ u � f θ, uð Þ

_u ¼ �
2kλ cos λτð Þ

1þ k sin λτð Þ
þ βω

� �

u�
ω2

1þ k sin λτð Þ
sin θ � g θ, uð Þ

(7)

The Jacobian for the above system may be written as,

J ¼

0 1

�
ω2

1þ k sin λτð Þ
cos θ �

2kλ cos λτð Þ

1þ k sin λτð Þ
þ βω

� �

0

@

1

A

When an external periodic force F cos ϑτð Þ is applied to pump the swing, final
form of the equation of motion stands as

€θ þ
2kλ cos λτð Þ

1þ k sin λτð Þ
þ βω

� �

_θ þ
ω2

1þ k sin λτð Þ
sin θ ¼ F cos ϑτð Þ (8)

2.3 Regular and Chaotic motion of the swing

The swing, Eq. (8), oscillates in regular motion for significant contribution of
friction, (i.e. when the frictional coefficient β has sufficiently higher value) and
it is in chaotic motion in case of small friction and higher values of driving force.
Figures 4 and 5 showing the case of regular motion.

When the frictional contribution is insignificant, swing oscillations are chaotic
and unpredictable. Figure 6 stands for such chaotic motion of the swing when β ¼ 0.

Figure 7 show chaotic oscillation when β is not zero but small. Surface of section
and Poincare map shown in this figure are interesting showing typical chaotic
behavior.

We may thus conclude that the swing oscillates smoothly when the frictions are
higher but for no friction or insignificant friction, swing oscillations would be

Figure 4.
A time-series and phase plots and plots of surface of section and Poincaré map for regular motion of the swing
for F ¼ 0:8, β ¼ 0:5, k ¼ 0:1, λ ¼ 0:05, ω ¼ 1, ϑ ¼ 2=3:
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Figure 5.
Regular two periodic motion of the swing when F ¼ 0:9, β ¼ 0:5, k ¼ 0:3, λ ¼ 1, ω ¼ 1, ϑ ¼ 2=3.

Figure 6.
Chaotic oscillation of the swing when F ¼ 0:2, β ¼ 0, k ¼ 0:1, λ ¼ 0:05, ω ¼ 1, ϑ ¼ 2=3.

Figure 7.
Chaotic oscillation of the swing when F ¼ 0:2, β ¼ 0:01, k ¼ 0:1, λ ¼ 0:05, ω ¼ 1, ϑ ¼ 2=3.

6

Advances in Dynamical Systems Theory, Models, Algorithms and Applications



chaotic or unpredictable. In such a case whirling, overturn or any unpredictable
situation may happen.

Beside the application of bifurcation diagram, phase plot and Poincare surface of
section technique, we introduce the idea of Lyapunov characteristic exponents
(LCE), correlation dimension and topological entropy which provide further insight
of a complex dynamical system. In the following section, we analyze the complexity
of Prey-predator system using such tools.

3. Complexity in prey-predator system with Allee effect

In recent years many type of predator-prey problems, originated in Biological
sciences, investigated which depend on various environmental and social condi-
tions, [8–11]. Some problems solved by the application of Allee effect, which is an
interesting phenomenon, to some predator-prey systems appear to be very inter-
esting, [12–16]. The Allee effect on prey-predator system is a phenomenon
in biology which characterizes certain correlation between population size or
density and the mean individual fitness of a population or species. In the
following study we investigate the complexity in a predator – prey problem with
the Allee effect.

3.1 Discrete prey-predator model

A model for the prey-predator problem with Allee effect can represented as

Xnþ1 ¼ Xn þ rXn 1� Xnð Þ 1� exp �εXnð Þð Þ � aXnYn

Ynþ1 ¼ Yn þ aYn Xn � Ynð Þ
Yn

μþ Yn

� �

(9)

where Xn and Yn refers to the density of prey and predators. Further, r corre-
spond to the growth rate parameter of the prey population and a the predation
prameter. Here,

• 1� exp �εXnð Þ stands for mate finding Allee effect on prey population, here ε
is defined as the Allee effect constant and the term

•
Yn

μþyn
stands for the Allee effect on predator and here, μ is the Allee effect

constant. Bigger μ means the stronger the Allee effect on predator population.

For assumed values of parameters a ¼ 2:0, r ¼ 2:4, fixed points of system (9)
are obtained, approximately, as P ∗

1 0, 0ð Þ, P ∗
2 1, 0ð Þ, P ∗

3 0:545455, 0:545455ð Þ and
by using stability analysis, we find all are unstable.

3.2 Bifurcation diagrams

The phenomena of bifurcation provide a qualitative change in the behavior of a
system during evolution. Such a change occurs when a particular parameter is
varied while keeping other parameters constant. Bifurcation diagram shows the
splitting of stable solutions within a certain range of values of the parameter. During
the processes of bifurcation, one observes different cycles of evolution which lead-
ing to the chaotic situation. Phenomena like bistability, periodic windows within
chaos etc. may also be observed for some systems. A bifurcation can be taken as a
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tool to analyze the regular, chaotic as well as complexity within the system. For
a ¼ 2:0 and 1:8≤ r≤ 2:4 , Figure 8 shows bifurcation of system (9), where some
interesting phenomena observed that the system is not producing a period doubling
bifurcation scenario which is very common for many nonlinear systems.

3.3 Numerical simulations

Simulation of the foregoing models provides,

3.3.1 Attractors

Keeping parameters a and r fixed viz., a ¼ 2:0, r ¼ 2:4, attractors for different
cases are obtained through numerical technique [16], and shown in Figure 9.

Looking plots of attractor of Figure 9, one finds a chaotic attractor, figure (a),
when Allee effect is not in consideration, for a ¼ 2:0, r ¼ 2:4 . But, the application
of Allee effect to either of the population or to both population, system returned to
regularity, e.g. figures (b), (c) and (d) are no more chaotic. This also follow from
the plots of LCEs given below.

3.3.2 Lyapunov exponents (LCEs)

The phase space dynamics of a nonlinear chaotic physical system is very com-
plex in general. One of the important feature of such a system is its sensitivity to
initial conditions i.e., two very nearby trajectory in phase space show divergence
exponentially. Such divergence are characterized by LCEs. To indicate chaotic and
regular evolution, an appropriate measure is to find Lyapunov exponents (LCEs)
which are obtained for different cases by using appropriate procedure. Plots of
LCEs are shown in Figure 10.

3.3.3 Correlation dimension

Lorenz attractor provides an example of a fractal object with noninteger
dimension. The correlation dimension permits us to quantify the space filling
property and provides the measure of dimensionality of the chaotic attractor. It is
expressed as

Dc ¼
d logC Rð Þ

d log Rð Þ

where C Rð Þ is defined as

C Rð Þ ¼
1

n n� 1ð Þ

X

n

i¼1

X

n

j¼1

Θ R� ∥x i½ � � x j½ �∥ð Þ½ �

corresponds to the correlation sum and is a measure of total number of points
contained within a hypersphere of radius R as a function of R normalized to the
total number of points squared. Using the algorithm [17, 18], the correlation
dimension can be determined from the scaling region found in the plot of
logC Rð Þ as a function of log Rð Þ. For the Lorenz system with parameters
σ ¼ 10, ρ ¼ 28 and b ¼ 8=3, the correlation dimension Dc is found to be 2:069.
The correlation dimension of the chaotic attractor Figure 9(a) is found to be
Dc ¼ 0:571 (Figure 11).
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3.3.4 Topological entropies

As explained in the beginning, topological entropy measures the complexity of
the system. More topological entropy implies system is more complex. Presence of
complexity does not mean the system is chaotic and vice versa. In Figure 12, we
have plots of topological entropy for different cases. In figure (a), topological
entropy increases for r> 2 but bifurcation diagrams and calculations of LCEs indi-
cate the system is regular within 2:0≤ r≤ 2:2. Similar observation can be made
looking at figures (b) and (c). In figure (d) one finds no fluctuations of topological
entropy, it establishes a steady state situation.

Figure 9.
Plots of regular and chaotic attractors for a ¼ 2:0 and r ¼ 2:4; (i) plot (a) without Allee effect, (ii) plot (b)
with Allee effect on prey only, ε ¼ 4:5 , (iii) plot (c) Allee effect on predator only mu ¼ 0:1, and (iv) plot (d)
Allee effect on prey as well as on predator, ε ¼ 4:5, μ ¼ 0:1.

Figure 8.
Bifurcation diagram of system (9), (a) Prey densities, (b) Predator densities for a ¼ 2:0 and 1:8≤ r≤ 2:4.
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The results obtained through bifurcation plots, Figure 8, and those of LCEs
plots, Figure 10, show that the Allee effect stabilize the motion from chaos to
regularity. The correlation dimension of the chaotic attractor is obtained as Dc ffi
0:571. Through this study we find the existence of complexity within the system,
even when system behavior is regular, we find significant amount of increase in
topological entropy. This implies the fact that the system may be regular but may
exhibit complexity.

Figure 11.
Plot of correlation integral data.

Figure 10.
Plots of Lyapunov exponents for a ¼ 2:0, r ¼ 2:4 and (i) figure (a) without Allee effect, (ii) figure (b) with
ε ¼ 4:5, μ ¼ 0 , (iii) figure (c) Allee effect on predator only with μ ¼ 0:1 , (iv) Allee effect on both
populations ε ¼ 4:5, μ ¼ 0:1 .
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4. Recurrence plot

Natural system exhibits periodicities and also irregular cyclicities. Usually mea-
sures such as Lyapunov characteristic exponent (LCE), correlation dimension, Kol-
mogorov- Sinai (KS) entropy etc., have been used to characterize the complexity of
observed nonlinear dynamical behavior of a system. But the analysis based on
application of the foregoing tools inherently assumes the system to be noise free and
stationary. An alternative framework based on the idea of recurrence plot was
introduced in [19] for visualization of the dynamical behavior of a system in phase
space and subsequently the formalism has been extended to quantify the recurrence
plots to unravel the observed complexities i.e., regular, quasi-periodic, chaotic
transition etc. For a discrete time series P with N data points such that

P : x1, x2, x3,⋯, xNf g, (10)

where xi, i ¼ 1, 2, ::… ,N refers to observed values at time t1, t1 þ Δt, :… , t1 þ
nΔt. If the system has true dimension m , a sequence of vectors may be constructed
from the time series as:

Xi ¼ xi, xiþτ, xiþ2τ,⋯, xiþ m�1ð Þτ

� �

; i ¼ 1, 2,⋯, n; n ¼ N � m� 1ð Þτ (11)

where τ corresponds to time lag or delay and m - the embedding dimension
of the phase space. By considering the distances in m- dimensional reconstructed
points, we construct a recurrence plot (RP). In fact RP is an n� n symmetrical
array where a dot is marked at a point i, jð Þ if Xi is close to another point Xj.

We may write

Figure 12.
Plots of topological entropies for a ¼ 2:0 and 1:8≤ r≤ 2:6 : (i) figure (a) with no Allee effect, (ii) figure
(b) when ε ¼ 4:5, μ ¼ 0, figure (c) with Allee effect on predator only μ ¼ 0:1 , (iv) when ε ¼ 4:5, μ ¼ 01.
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Ri,j rð Þ ¼ Θ r� ∥Xi �Xj∥
� �

; i, j ¼ 1, 2,⋯, n (12)

where Θ is a Heavyside function, r is a small threshold distance between
neighboring points and ∥:∥ is an Euclidean norm.

A characteristic pattern emerges in RPs which characterizes a dynamical system.
The method of RP is suitable for both stationary and non-stationary dynamical
system. Since a trajectory may return to a point or close to it in phase space, the
deterministic dynamical system shows recurrent behavior and RP therefore exhibits
both horizontal and vertical lines. For a stochastic dynamical system, such lines in
RP are of very small size and in fact appear by chance. Therefore the distribution of
such points appear to be homogeneous. In case of periodic system the RP is filled
with longer diagonal lines. Various measures that quantify RPs are mainly, RR,
DET, ENT, DIV, LAM,TT which refers to density of recurrence points, determin-
ism, divergence, entropy, laminarity and trapping time respectively. For a periodic
system diagonal lines are longer which for chaotic system RP shows broken short
lines. Recently [20] has provided a very useful description of applying RPs and
recurrence quantification analysis to unravel the complex dynamics of general
problem of three species interaction in ecology. In the following section, we extend
the analysis of complexity to the problem associated with neuronal dynamics, an
area of current interest in neuro-bio-science [21]. We however restrict ourselves to
only RPs to supplement the analysis of complexity using phase portrait, bifurcation
diagram etc.

5. Regular and Chaotic neuronal dynamics

The neuronal communication is known to be mediated by electrical pulses called
spikes. Studies of various spiking patterns reveal nonlinear characteristics of slow-
fast neuronal dynamics. A considerable amount of information regarding neuronal
activity has been obtained by studying the dynamics of spiking pattern [22]. The
phenomenon of tonic firing, mixed mode (bursting and spiking) etc., are typical
responses exhibited by an excitable neuron [23]. Cortical neurons have been
reported to show tonic bursting wherein the neurons periodically switches between
firing state and resting state. The mixed mode firing is observed in mammalian
neocortex [24]. Spike generation in fact depends on the firing threshold and the
stimulus intensity. In recent years, the perception regarding constancy of neuron’s
firing threshold has changed to dynamic [21]. In this work, we first briefly intro-
duce the Fitzhugh-Nagumo model (FHN) that have been proposed for spike gen-
eration like well known Hodgkin-Huxley model. It is however to be noted that FHN
model reproduce the experimental results less accurately. Our interest in FHN
model emanates mainly due to its showing complex spiking pattern even though it
is mathematically simple. The basic FHN model assumes the threshold to be con-
stant. We also study the changes caused in the spiking pattern as a result of time
varying threshold. This study assumes significance as such a model may throw
insight into the model the dynamics of cortisol secretion from hypothalamus [25].
It is to be noted that the neuronal firings may take place at regular interval or
randomly due to inherent mechanism or may be due to its interaction with the
neighborhood neurons or result of exogenous stimulus [26–28].

5.1 Basic dynamics of FHN model

The FHN model describes the interaction between the voltage v across the axon
membrane driven by input current I and the recovery variable w. The recovery
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variable w is the result of mainly the reflecting outward potassium current (Kþ)
that results in hyperpolarization of the axon after each spike occurrence. We may
write the FHN model equation as [28–30]:

dv

dt
¼ αv β � vð Þ v� b0ð Þ � σwþ I

dw

dt
¼ ε v� δwð Þ

(13)

where δ>0 and the parameter α>0 scales the amplitude of the membrane
potential v, and ε is used here to control the recovery variable w with respect to
action potential v. The parameter b0 i.e., 0< b0 < 1ð Þ, corresponds to the threshold
value that controls the excitable behavior of the neuron. Also β and σ are constants
for the system.

In our analysis of Eq. (13), we take β ¼ σ ¼ 1 and for the case of no external
input current, I ¼ 0 the dynamical system (13) has three equilibrium points or fixed
points ve,weð Þ as:

E1 ¼ 0, 0ð Þ,

E2,3 ¼
1þ b0ð Þ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b0ð Þ2 �
4

αδ

r

2
:

It may be noted that if

1� b0ð Þ2 �
4

αδ
<0, (14)

then the system possess E1 as the only equilibrium point.
Further defining

h vð Þ ¼ v 1� vð Þ v� b0ð Þ (15)

the Jacobian matrix J of the system may be written as:

J ¼
αh0 vð Þ �1

ε �εδ

	

	

	

	

	

	

	

	

: (16)

For the equilibrium or fixed points ve,weð Þ, the eigenvalues λ1,2 of the Jacobian
matrix are given by

λ1,2 ¼
� εδ� αb1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εδ� αb1ð Þ2 � 4ε 1� αb1δð Þ
q

2
(17)

where b1 ¼ h0 veð Þ.
Therefore (1) if αb1δ< 1, the equilibrium point ve,weð Þ is asymptotically stable if

αb1 < εδ, a repellor if αb1 > ε, (2) if αb1δ> 1 the equilibrium point is a saddle point
and (3) if αb1δ ¼ 1 then the equilibrium point is stable (unstable) if
αb1 < δε αb1 > δεð Þ.

In case the parameters of the system are such that condition Eq. (14) holds then
using Eq. (17) we find the equilibrium point E1 i.e., origin, to be asymptotically
stable if
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Re � αb0 þ εδð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αb0 þ εδð Þ2 � 4ε αδb0 þ 1ð Þ

q
� �

<0: (18)

Based on Routh’s criteria we may write equivalently

αb0 þ εδ> 0, αδb0 þ 1>0: (19)

Therefore if origin is the only fixed point of the system, then following [30], it is

observed that the system has no limit cycle if b0 �
1
2

� �2
þ 3

4 �
3δε
α
<0. This result

however assumes αb0 þ εδ>0. In case αb0 þ εδ<0, the origin becomes unstable
and the system can be shown to exhibit one stable limit cycle. It is noted here that
on varying the threshold parameter b0, the system may exhibit Andronov-Hopf
bifurcation when αb0 þ εδ ¼ 0 as per Eq. (18) and at this point the origin of the
system becomes unstable causing a bifurcation to at least one stable limit cycle. It is
to be noted that gaps exist in parameter space when origin is the only asymptotically
fixed point and where limit cycles may exists. Interestingly, we numerically show
the existence of bistable behavior [18, 30] in terms of occurrence of double cycle
bifurcation by taking ε ¼ 0:015, δ ¼ 3:5, α ¼ 1:0 and allowing the threshold value
b0 <0 i.e., �0:044(Figure 13).

For the case of I 6¼ 0, the equilibrium points may be one, two or three and their
stability may be analyzed following the foregoing analysis. Taking the parameter
values: a ¼ 0:06, b0 ¼ 0:50, ε ¼ 14, as in [29], the phase portrait were obtained
using numerical integration of the system, Eq. (13), for different I values
(Figure 14). The appearance of limit cycle behavior is due to supercritical Hopf
bifurcation and as a consequence of loss of stability of the unique equilibrium point
that exist for I<4:2 [29]. Figure 14 also suggest that the amplitude of limit cycles
first increases and subsequently decreases with increase in values of I. At around
I � 12:45 the second bifurcation occurs and system is led to a stable equilibrium.
[29] has provided a detailed discussion on the richness of various bifurcation event
as I is varied.

Figure 13.
Phase portrait of FHN system showing bistability between limit cycle and stable fixed point.
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5.2 FHN neuron in the presence of external periodic electrical stimulation

Chaotic systems exhibit complexity and are sensitively dependent on initial
condition of the system under investigation and also unpredictable. Chaos as a
nonlinear phenomenon has attracted researchers from different disciplines e.g.,
physics, biology, ecology, neurobioscience etc. In this section, we investigate the
effect of periodic electrical stimulation on the dynamics of an FHN system, Eq. (13).

The basic equation that governs the dynamics of FHN system in the presence of
external periodic stimulation, I tð Þ, may be written as:

dv

dt
¼ αv β � vð Þ v� b0ð Þ � σwþ I tð Þ,

dw

dt
¼ ε v� δwð Þ:

(20)

Here, we take the external periodic stimulation as given by I tð Þ ¼ I0
2πν


 �

cos 2πνtð Þ,

where I0, ν refers to the amplitude and frequency of the input stimulus. Further,
we present the simulation results of the system, Eq. (20), by taking α ¼ 10, β ¼
1, b0 ¼ 0:10, δ ¼ 0:25, ε ¼ 1, and σ ¼ 1 and varying both I0 and ν. The variation
of both amplitude and frequency of the external periodic stimulus is found to result
in the membrane potential v exhibiting regular or chaotic temporal behavior. The
regular or periodic neuron spiking could be classified as p : q phase-locking, where p
and q corresponds to the number of spikes and number of periodic stimuli per unit
response period. For instance Figures 15 and 16 illustrates respectively the response
of the neuronal spiking corresponding to 1 : 1 and 1 : 2 phase locked rhythm.

The response of the single FHN neuron to external periodic response could also
be chaotic for certain values of the amplitude I0 and frequency ν of driving stimulus
i.e., i.e., I0 ¼ 0:183, ν ¼ 0:1931, as shown in Figure 17.

The observed dynamical transition from regular/periodic to chaotic of mem-
brane potential v with increase in amplitude and frequency of external could be

Figure 14.
Phase portrait of FHN system showing limit cycle for 4:2≤ I≤ 12:45. að Þ I ¼ 4:23, bð Þ I ¼ 4:8, cð Þ I ¼ 5:5,
dð Þ I ¼ 6:8, eð Þ I ¼ 7:5, fð Þ I ¼ 9:5, gð Þ I ¼ 11:75, hð Þ I ¼ 12:42, and ið Þ I ¼ 12:45.
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further seen by constructing the RPs. The construction of RP, discussed earlier in
section 4, involves the reconstruction of phase space using a time series of a
dynamical variable, say the membrane potential v, based on the information
regarding the delay parameter τ and the embedding dimension m. The delay
parameter τ for the time series of v could be obtained using the method of mutual
information (MI) [31] and the embedding dimension m may be determined using
the algorithm of [32, 33]. The time series of Figures 15–17 for the membrane
potential v have been used to construct the RP shown in Figure 18. The change in
spiking patterns caused by external periodic stimulation from regular to chaotic is
well indicated in RP of almost equally spaced diagonal lines to irregularly occurring
broken diagonal lines of varying length.

5.3 FHN neuron with time varying threshold

The dynamics of cortisol secretion from hypothalamus could be modeled using
FHN system with time varying threshold [25]. Complexities of spike dynamics of
FHN neuron has been earlier investigated in [34] incorporating the time varying

Figure 15.
1 : 1 phase locking rhythm of spiking neuron. (a) Time series of membrane potential with I0 ¼ 0:1, ν ¼ 0:05.
(b) v�w phase portrait with same parameters as in (a).

Figure 16.
1 : 1 phase locking rhythm of spiking neuron. (a) Time series of membrane potential with
I0 ¼ 0:1, ν ¼ 0:1015. (b) v� w phase portrait with same parameters as in (a).
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Figure 17.
1 : 1phase locking rhythm of spiking neuron. (a)Time series ofmembrane potentialwith I0 ¼ 0:183, ν ¼ 0:1931.
(b) v� w phase portrait with same parameters as in (a).

Figure 18.
RP of of the membrane potential with (a) 1 : 1 phase locking rhythm, (b) 1 : 2 phase locking and (c) chaotic
rhythm.
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threshold. Models of observed tonic firing and spike bursting were simulated by
considering both periodic and noisy form of the threshold variation. The effect of a
mixed mode threshold on the spiking FHN system was also investigated. Here we
present results of bifurcation analysis of different states of neuronal firing of FHN
neuron by considering a discrete form of the system [34, 35]. Following [34], the
discrete form of the FHN system may be written as:

vnþ1 ¼ vn þ Δα �vn vn � 1ð Þ vn � bnð Þ � wþ I½ � (21)

wnþ1 ¼ wn þ Δ vn � δwnð Þ (22)

where Δ refers to the integral step size and is treated here as a bifurcation
parameter.

In case of mixed mode threshold variation, the membrane potential v exhibits a
complex behavior as shown in bifurcation diagram (Figure 19a). It is readily
observed that the temporal behavior is chaotic in the region 0:42≤Δ≤0:68. There-
after windows of regular and chaotic regimes are observe till Δ ¼ 0:8 for I ¼ 0. A
slight increase in I changes the dynamics to a more complex behavior as shown in

Figure 19.
Bifurcation of membrane potential. (a) I = 0; (b) I = 1.

Figure 20.
Phase portrait showing quasiperiodic behavior for (a) I = 0 and chaotic behavior for (b) I = 1.
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Figure 19b wherein windows of quasi-periodic behavior that sets sets in say at
δ � 0:68 for I ¼ 0 (Figure 20a) make a transition to chaos as shown in Figure 20b.

In the following section, we study the complex dynamics in economics, an area
actively pursued by researchers, by introducing another measure called ’multi-scale
permutation entropy’ by considering a nonlinear financial model.

6. Chaotic dynamics in finance model

In mainstream economics, economic dynamics has assume great importance in
recent years in view of the availability of market and other data. Economic dynam-
ics has therefore influenced both micro- and macroeconomics. Therefore lot of
research output has poured in explaining irregular micro-economic fluctuation,
erratic business cycles, irregular growth and aperiodic behavior of economic data
etc. Nonlinear systems provides an alternative simple and deterministic framework
that easily can explain aperiodic or chaotic behaviors of various financial systems.
One of the important features of nonlinear system is that the irregular/chaotic
behavior supports an endogenous mechanism for the observed complexity in eco-
nomic time series. As a result nonlinear dynamic framework has been applied to
economic modeling and several examples are available in [36–46].

In the present work we revisit the synthetic chaotic financial model discussed in
[45, 46] which is based on interest rate, investment demand and price index as
dynamical variables. We numerically explored and analyze the complexity of the
model using the multiscale entropy (MPE) frame work. In this section, we briefly
describe the chaotic financial model and its basic characteristics. We also outlines
the procedure of MPE for analyzing the complexity of the finance model.

6.1 Chaotic financial model

We consider a dynamic finance model composed of three coupled first order
differential equation. This model describes the temporal evolution of the state vari-
ables viz. the interest rate X, the investment demand Y and the price index Z. The
model is described as [39]:

dX

dt
¼ Z þ Y � að ÞX,

dY

dt
¼ 1� bY � X2,

dZ

dt
¼ �X � cZ:

(23)

Here a, b and c are positive constants and represent the saving amount, cost per
investment and elasticity of demand of the commercial markets. First equation
appears, representing the changes in X, as a result of contradiction in the invest-
ment market and structural adjustment from the goods prices. Second equation
representing the changes in Y appears due to proportionality to the rate of invest-
ment and also to an inversion of the cost of investment and interest rate. The third
equation emerges due to contradiction between supply and demand in commercial
markets which is influenced by interest rates.

Eq. (23) has been numerically integrated using fourth-order Runge-Kutta
method to obtain the time series of the dynamic variables X,Y and Z, shown in
Figure 21 with a ¼ 3:0, b ¼ 0:1, c ¼ 1:0 and initial condition X0, Y0, Z0ð Þ ¼
2, 3, 2ð Þ. Similar choice of the parameter were made in [45].
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The representation of two dimensional phase portrait X, Yð Þ and the attractor
are shown in Figure 22. Obviously they represent chaotic dynamics of the temporal
behavior shown in Figure 22.

6.2 Complexity analysis using multiscale permutation entropy (MPE) method

The multiscale permutation method involves two steps. A “coarse graining” is
applied first to a time series Xi, i ¼ 1,N to construct a consecutive coarse-grained
time series. The coarse-grained process involves averaging a successively increasing
number of data points in non-over lapping windows. The elements of each of the

coarse grained time series y
sð Þ
j is computed as,

Figure 21.
Temporal evolution of Finance model.

Figure 22.
(a) Phase portrait of Finance model, (b) 3-D attractor of the Finance model.
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y
sð Þ
j ¼

1

s

X

js

i¼ j�1ð Þτþ1

Xi (24)

where 1≤ i≤N=s and s defines the scale factor. Each time series length is of size
that is an integral multiple of N=s. For s ¼ 1, the coarse-grained time series is just
the original time series.

The second step involves the computation of permutation entropy [47] for
each of the coarse-grained time series. For a coarse-grained time series y j we first

consider the series of vector of length m, and obtain Sm nð Þ ¼ yn, ynþ1,⋯, ynþm�1


 �

,

1≤ n≤ N=sð Þ �mþ 1. Subsequently, Sm nð Þ is arranged in an increasing order viz.,

ynþ j1þ1 ≤ ynþ j2þ1 ≤⋯≤ ynþ jnþ1

h i

. For m different numbers, there will be m! possible

order patterns/structures Π which are termed as permutations. If f Πð Þ denotes the
frequency of order pattern Π, then the relative frequency and hence the probability
p ¼ f Πð Þ= N=s�mþ 1ð Þ. The permutation entropy H mð Þ therefore is given by

H mð Þ ¼ �
X

m!

Π¼1

p Πð Þ ln Πð Þ: (25)

The maximum value of H mð Þ is log m!ð Þ thus showing all permutations to have
equal probability. Also, the time series is termed as regular if minimum value of
H mð Þ is zero. Therefore H mð Þ the permutation entropy provide a quantitative
measure of dynamical complexity of a time series as it refers to its local structures. It
may be noted that the permutation entropy depends on the chosen value of m. For
m< 3 , there will be very few distinct states and the foregoing scheme does not work
satisfactorily. In the present analysis we have considered sufficiently large time
series and chosen m ¼ 6 to estimate the complexity measure MPE.

For the financial model, Eq. (23), we have simulated the permutation entropy as
a function of the scale s for m ¼ 6. The simulated results have been shown in
Figure 23awhere we observe a saturation behavior with increased value of the scale
factor s. It is also observed that the permutation entropy at any scale s for the
interest rate X time series is higher than the investment demand time series Y which

Figure 23.
Multiscale permutation of (a) Financial model time series, (b) Rossler model.
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is further higher than that of the price index Z time series. Therefore we may
conclude that the complexity measure relation for the considered financial model
time series can be expressed as MPEX >MPEY >MPEZ. The behavior of the com-
plexity measure of the considered finance model has been found to be quite similar
to that of chaotic Rossler attractor [with parameters a ¼ 0:15; b ¼ 0:20; c ¼ 10:0]
(Figure 23b).

The simulation results for the multi-scale permutation entropy, MPE, presented
for the financial model and the Rossler chaotic model exhibit long term correlation
of the respective time series of a dynamical variable. Such inference is made in view
of the increasing trend ofMPEwith scale factor s for a givenm. In case of a standard
financial model, the efficacy of such model could be made on comparing the MPE
trend of resulting simulated time series for interest rate (X), investment demand
(Y) and that of price index (Z) with the availability of the real time series data for
the corresponding dynamical variables. Finally, we introduce the idea of generation
of time series of a nonlinear chaotic dynamical system, say a Lorenz system, using
artificial neural network.

7. Time series generation using artificial neural network (ANN)

A large class of different architecture have been used in neural network for
various application. Among these application an issue relates the approximation of a

nonlinear mapping f xð Þwith the network fANN xð Þ, x∈RK where K corresponds to
the size of te input. Besides the Radial Basis Function (RBF), a Multi Layer
Perceptron (MLP) has been used extensively in function approximation. A MLP
neural network comprises an input layer, several hidden layers and an output layer as
shown in Figure 24.

An MLP comprises inputs xi, i ¼ 1, 2,⋯,K to the neurons gets multiplied with
weights wki and summed up along with the bias θi. The resulting ni is then acts as an
input to the activation function g which could be chosen as a sigmoid function or a

Figure 24.
A multilayer perceptron network.
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tanh function. The output at node i is given by yi ¼ g
PK

j¼1wjix jþθi

h i

. Figure 24

illustrates a typical MLP network where the output is given by

yi ¼ g
X

3

j¼1

w2
ji g

X

K

k¼1

w1
kjxk þ θ1j

 !

þ θ2j

" #

: (26)

Several algorithms are available to determine the network parameters e.g.,

weights (wk
jiÞ) and biases(θkj). Such algorithms are termed as teaching or learning

algorithms. The basic procedure involving the learning algorithm of an MLP net-
work are: (a) Define the network structure, selecting the activation function and
initializing the weights and biases, (b) providing the error estimates and number of
epochs for training algorithm before running the training algorithm, (c) the output
is simulated using input data to the network and compared with the given output,
and (d) finally validating the result with independent data.

In this work, using the inputs as x, y and z time series from Lorenz system
exhibiting chaotic dynamics and using the newff , train and simMATLAB commands
[31], we simulated each of these time series. In our simulation we take the learning
parameters viz., net:trainParam:show ¼ 50; net:trainParam:lr ¼ 0:05;
net:trainParam:epochs ¼ 1000; net:trainParam:goal ¼ 1e�3, and use 100 neurons
and 3 output layers [48]. Figure 25 shows theMLP network generated time series of
Lorenz variables and the corresponding deviations from the input time series.

8. Conclusion

In this chapter, we have applied phase portrait, bifurcation diagram, Poincare
surface of section, LCEs, correlation dimension, topological entropy and multi-scale

Figure 25.
Neural network generated Lorenz time series (black, red, brown) and respective deviation from input time series
(blue).
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permutation entropy method to unravel the complexity of various physical systems
e.g., nonlinear forced pendulum, child’s swing problem, prey-predator system,
periodically stimulated FHN neuron model and nonlinear financial model. Impor-
tant characterization of transition from regular to chaotic dynamics have been made
using the foregoing methods. Finally artificial neural network based on multi-layer
perceptron network have been shown to satisfactorily generate the time series of
dynamical variable of chaotic system such as Lorenz system.
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