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The Role of the  
Renin-Angiotensin-Aldosterone 
System in Cardiovascular Disease: 
Pathogenetic Insights and Clinical 
Implications
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Abstract

Increased attention has been placed on the activation of the renin- 
angiotensin-aldosterone system (RAAS) and pathogenetic mechanisms in cardio-
vascular disease. Multiple studies have presented data to suggest that cardiac and 
arterial stiffness leading to adverse remodeling of both the heart and vasculature 
leads to the various pathological changes seen in coronary artery disease, heart 
failure (with preserved and reduced ejection fractions), hypertension and renal 
disease. Over-activation of the RAAS is felt to contribute to these structural and 
endocrinological changes through its control of the Na+/K+ balance, fluid volume, 
and hemodynamic stability. Subsequently, along these lines, multiple large investi-
gations have shown that RAAS blockade contributes to prevention of both cardio-
vascular and renal disease. We aim to highlight the known role of the activated 
RAAS and provide an updated description of the mechanisms by which activation 
of RAAS promotes and leads to the pathogenesis of cardiovascular disease.

Keywords: cardiovascular disease, coronary artery disease, heart failure, 
hypertension

1. Introduction

Cardiovascular disease is the leading cause of death in men and women in the 
United States and throughout the world [1]. Current efforts are focused on decreas-
ing the burden of death due to atherosclerosis and cardiac disease overall. Increased 
attention has been placed on the activation of the renin-angiotensin-aldosterone 
system (RAAS) and pathogenetic mechanisms in cardiovascular disease. The RAAS 
system effects blood pressure control and electrolyte and fluid balance and there-
fore plays a significant role in cardiovascular hemodynamics [2–4].

Classically, it is known that angiotensinogen is cleaved by renin to form angio-
tensin-I (Ang I), which is then converted to angiotensin-II (Ang II) by angiotensin 
converting enzyme (ACE), however other peptides and products of this axis have 
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been shown to play a role in the development of cardiovascular disease [3, 4]. It is 
thought that two of these products (angiotensin 1-7 and angiotensin 1-9) may have 
counterregulatory effects on the development of atherosclerosis and cardiovascular 
disease [4]. Although the role of angiotensin II is understood more clearly, these 
peptides provide other targets by which the RAAS system can be utilized to prevent 
atherosclerosis.

Overactivation or pathologic activation of the RAAS system, specifically angio-
tensin II, has been shown to play a specific role in endothelial dysfunction, inflam-
mation, intense vasoconstriction, increased vascular and cardiac hypertrophy, 
fibrosis and the development of atherosclerosis [2–5]. Multiple large investigations 
have shown that direct inhibition of the effects of angiotensin II via angiotensin 
converting enzyme inhibitors (ACE-I) and angiotensin-receptor blockers (ARB) 
improve mortality, prevent renal disease and decrease cardiovascular events in this 
subset of patients. Additionally, some studies have shown that utilization of both 
ARB and ACE-I may have cumulative effects on inhibiting the adverse effects of an 
overactivated RAAS system [6, 7].

We aim to highlight the known role of the activated RAAS and provide an 
updated description of the mechanisms by which overactivation of RAAS promotes 
disease and provide a summary of the clinical implications of RAAS inhibition in 
cardiovascular disease.

2. Overview of the RAAS system

The RAAS system has several moving parts, with different organ systems stimu-
lating its activation and suppression. Renin, the active form of prorenin, is secreted 
by the granular cells of the kidney. Although renin’s role is that of an enzyme, 
its means of expression are more hormonal. Renin’s production is stimulated by 
hypotension, hyponatremia, and decreased sympathetic activity. Renin is respon-
sible for cleaving angiotensinogen, a protein produced in the liver. Angiotensinogen 
is regulated via thyroid hormone, steroids, and levels of circulating angiotensin 
II. Angiotensinogen is cleaved into angiotensin I, which is further converted into 
angiotensin II by angiotensin converting enzyme [3, 4].

RAAS key players are composed of renin, angiotensin I & II, and angiotensin 
converting enzyme located in the heart atria, conduction system, valves, ventricles, 
coronary vessels, fibroblasts and myocytes [8, 9]. Ang II is the effector hormone 
playing a pivotal role in the cardiac RAAS and has a widespread effect throughout 
the body, targeting different mechanisms of action.

Ang II acts via the angiotensin receptors mediating the following actions [9, 10]:

1. Cardiovascular system - vasoconstriction, increased blood pressure, increased 
cardiac contractility, vascular and cardiac hypertrophy

2. Renal system - tubular sodium reabsorption, inhibition of renin release

3. Sympathetic nervous system stimulation

4. Aldosterone synthesis through adrenal cortex

5. Cell growth and proliferation, inflammatory response, and oxidative stress.

Angiotensin converting enzyme 2 (ACE 2) is involved in the degradation of 
Ang II to Ang (1-7) and Ang (1-9), which provide a relative vasodilatory effect 
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as outlined in Figure 1. ACE 2 is restricted to vascular endothelial cells, arterial 
smooth muscle cells, myofibroblasts, carotid arteries and renal tubular epithelium 
[8–10]. The effects of Ang II, Ang (1-7) and Ang (1-9) have been uncovered in the 
past several years, specifically their role in hypertension, endothelial damage, and 
cardiovascular disease [5, 6, 9, 12]. The role of Ang (1-7) and Ang (1-9) is further 
outlined in Figure 1 as they pertain to the pathophysiologic changes in the cardio-
vascular system.

3. Pathogenic insights

3.1 Atherosclerosis and endothelial dysfunction

Endothelial dysfunction is thought to be a precursor to atherosclerosis, or the 
thickening and stiffness of vessels. This damage often cultivates in an atheroscle-
rotic plaque, which is a fibrin and cholesterol contained structure that deposits on 
the inner lumen of blood vessels and can impede oxygen delivery to tissues and 
organs. Endothelial damage and inflammation allow for the migration of mono-
cytes and macrophages to the site of injury and the formation of foam cells [13–15]. 
Additionally, stimulation of inflammatory mediators also promotes smooth muscle 
cell (SMC) thickening, stiffness of vessels and forms a fibrous cap on the athero-
sclerotic plaque (Figure 2) [16]. The pathophysiology of plaque development is very 
closely tied to RAAS as Ang II plays a key role in these pathophysiologic changes.

Ang II acts on the AT1 and AT2 receptors (AT1-R and AT2-R) causing arteriolar 
vasoconstriction, and inflammation through generation of reactive oxygen species 

Figure 1. 
Schematic of the RAAS as it pertains to angiotensin II and angiotensin (1-7) (Ang-(1-7)) and their counter-
regulatory effects via angiotensin receptors 1 and 2 (AT1-R and AT2-R respectively) and MAS receptor (MAS) 
[5, 6, 11]. Abbreviations: ACE-I (angiotensin converting enzyme inhibitor), ARB (Angiotensin-II receptor 
blocker), Ang (1-9) (angiotensin 1-9), ACE (angiotensin converting enzyme).
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(ROS), proinflammatory transcription factors such as nuclear factor kB (nf-kB), 
and the proliferation of smooth muscle cells contributing to atherogenesis [17, 18]. 
Activated nf-kB increases inflammatory mediators including interleukin-6 (IL-6), 
monocyte chemoattractant protein-1 (MCP-1) and platelet derived growth factor 
(PDGF), all of which mediate inflammation, endothelial damage and monocyte 
migration and adhesion leading to fibrosis [6, 18].

Ang II induces NF-kappaB (NF-kB) and inflammation through its binding to 
AT1-R. This has been demonstrated extensively as AT1-R blockers have shown to 
significantly decrease inflammation. Induction of NF-kB leads to the expression 
of pro-inflammatory cytokines such as IL-6 and TNF-alpha [19, 20]. Additionally, 
IL-6 itself can activate AT1-R resulting in overexpression and production of reac-
tive oxidative species (ROS) when RAAS is overstimulated [19]. The RAAS is also a 
potent oxidant stimulator, as it activates the NADH/NADPH oxidase signaling path-
way, and thereby produces superoxide anions and other ROS. TNF-alpha impairs 
endothelial nitric oxide (NO) production in coronary arteries thereby causing 
vasoconstriction. Additionally, ACE plays a role in the degradation of bradykinin, 
which depletes NO formation as well [6, 18–20]. Overall, we have a RAAS mediated 
expression of ROS, inflammatory mediators, and depletion of vasodilatory NO.

This inflammation mediated cellular injury and production of ROS, activates the 
endothelium and increases expression of intercellular adhesion molecules (ICAM-
1) and vascular cell adhesion molecules (VCAM-1), which promote endothelial 
damage and make cells leaky [9, 21, 22]. The endothelial damage promotes further 
migration of leukocytes, production of inflammatory cytokines and chemokines.

Finally, RAAS promotes thrombosis through Ang II receptors located on human 
platelets. Through these receptors Ang II promotes the release of thromboxane A2 

Figure 2. 
A schematic depicting the dynamic changes involved in the formation of an atherosclerotic plaque [16]. 
Abbreviations: ROS, reactive oxygen species; ICAM-1, intracellular adhesion molecule 1; IFN-c, interferon-
gamma; IL, interleukin; LDL, low-density lipoprotein; M-CSF, macrophage colony-stimulating factor; 
MCP-1, monocyte chemoattractant protein 1; MMP, matrix metalloproteinase; oxLDL, oxidized LDL; SR-A, 
scavenger receptor A; TGF-b, transforming growth factor beta; VCAM-1, vascular adhesion molecule 1; VEGF, 
vascular endothelial growth factor; VSMC, vascular smooth muscle cells. Reproduced with permission from 
Mary Ann Liebert, Inc.
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and platelet derived growth factor, which promote atherosclerotic plaque formation 
and thrombus formation [22, 23]. Ang II involvement in endothelial dysfunction and 
atherosclerotic plaque formation is summarized in Figure 3.

4. Hypertension

Hypertension, defined as a systolic blood pressure greater than 120 and diastolic 
pressure greater than 80, affects a quarter of the world’s population. When the 
etiology of hypertension is unknown, it is termed essential hypertension. When 
the cause of hypertension is known, by way of underlying metabolic, hormonal, 
neurogenic, or cardiovascular dysfunction, it is deemed as secondary hypertension 
[24]. As we have reviewed thus far, RAAS is responsible for maintaining sodium 
concentration in the blood, fluid status, and hemodynamic stability and therefore 
has a significant effect on blood pressure. Overactivation of RAAS can perpetuate 
unwanted elevations in blood pressure.

Increased levels of Ang II and subsequently aldosterone cause increases in vas-
cular tone and hypertension. Aldosterone, a mineralocorticoid, takes its effect by 
binding to mineralocorticoid receptors (MR) and translocating into nucleus. Here, 
it integrates with cellular DNA and induces transcription of genes that regulate 
electrolytes and fluid balance. An over expression of aldosterone causes an elevated 
aldosterone-renin ratio which leads to systemic complications [4].

Patient’s with primary aldosteronism (PA) and increased aldosterone levels 
are at higher risk for cerebrovascular complications. Although PA is not a com-
mon diagnosis, fifteen percent of patients with essential hypertension have higher 
than normal levels of circulating aldosterone. We can conclude that this sub-set 
of essential hypertension patients will have similar end-organ effects of elevated 
aldosterone as do patients with PA [4].

Hypertension itself can cause endovascular injury, which leads to increased 
production of ROS and inflammatory mediators ultimately contributing to athero-
sclerosis [25, 26]. The result of such endothelial injury is worsening cardiovascular 
disease, hypertension, and renal dysfunction. We see this manifest in the kidney 
with proteinuria and collagen deposition. Eventually, healthy kidney parenchyma 
is replaced with fibrotic tissue, leading to even more dysregulation with blood 

Figure 3. 
Summarized effects of Ang II as it is known to cause endothelial damage, inflammation, migration and 
adhesion of monocytes, proliferation of vasculature and platelets and formation of atherosclerotic plaque and 
thrombus [6, 18–23].
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pressure homeostasis. In the cardiovascular system, inflammatory damage from 
overactivation of RAAS and hypertension causes calcifications and fibrosis. As 
such, inhibition of the RAAS system with ACE-I and ARB has become a cornerstone 
in therapy for hypertensive patients, particularly those with evidence of diabetes, 
microalbuminuria and in CAD patients overall [15, 25–28]. The details of some of 
the landmark clinical trials contributing to the guidelines in treatment with ACE-I 
and ARB are further discussed in this chapter.

5. Ischemic heart disease

Coronary artery disease (CAD) or Ischemic heart disease (IHD), develops when 
there is a limitation of blood flow within the coronaries. It occurs due to the gradual 
buildup of atherosclerotic plaque within the wall of arteries leading to reduced oxygen 
delivery to cardiac myocytes. It comprises a clinical spectrum based on the degree of 
luminal narrowing and the activation of the atherosclerotic plaque [13, 14]. The RAAS 
plays a vital role in the pathogenesis of CAD. Evidence supports that RAAS controls 
atherosclerosis through intracellular signaling pathways by mediating endothelial 
function, inflammation, fibrinolytic balance, growth, lipid-glucose metabolism, and 
its vasoconstrictor function.

Ang II has growth promoting effects by regulating growth of vascular smooth 
muscle cells and activating the growth associated kinase pathways. In states of 
ischemia, there is increased vascular endothelial growth factor (VEGF) expression. 
In vascular smooth muscle cells, transforming growth factor B1, platelet derived 
growth factor causes fibrosis and cellular hypertrophy. These angiogenic factors 
lead to the formation of new cells, fibrin, and collagen deposition leading to growth 
of the plaque and thickening of vessels [20, 21].

RAAS plays a role in altering the fibrinolytic balance as well by inhibiting fibri-
nolysis and enhancing thrombosis. Within the vessels, Ang II stimulates the release 
of plasminogen activator inhibitor - I (PAI-I) thereby reducing the fibrinolytic 
activity. It activates tissue factor which acts as a cofactor for factor VII, potentiating 
the coagulation cascade [22, 23]. The above mechanism increases the thrombogenic 
activity.

Ang II overexpression causes endothelial inflammation and activation of 
cytokine cascade thereby causing progression of atherosclerotic plaque. The silent 
plaque ruptures when the inflammation overwhelms the stable fibrous cap causing 
thrombosis and acute ischemia [13, 14].

6. Heart failure

Heart failure is a clinical syndrome categorized based on clinical signs and 
symptoms and further subclassified by echocardiography findings. As per the 
American College of Cardiology, left ventricular ejection fraction (LVEF) of ≥50% 
is defined as heart failure with preserved ejection fraction (HFpEF), LVEF 41-49% 
as heart failure with mid-range ejection fraction (HFmrEF), LVEF≤40% as heart 
failure with reduced ejection fraction (HFrEF). HFrEF particularly occurs after an 
inciting event like myocardial injury, arrhythmias, cardiomyopathies, substance 
abuse, infections or genetic diseases which put the heart in a state of stress leading 
to contractile dysfunction and cellular remodeling [29]. The circulatory changes 
arising from heart failure are sensed by the peripheral baroreceptors and chemo-
receptors, thereby activating a sequalae of compensatory neurohormonal mecha-
nisms. The compensatory mechanisms include activation of sympathetic nervous 
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system (SNS) and RAAS. RAAS plays an integral role in cardiac contractility, 
homeostatic control of blood pressure and electrolyte-fluid balance [30, 31].

In an adult with normal circulation, the baroreceptors located in the carotid 
sinus and aortic arch balance the sympathetic and parasympathetic outflow from 
the central nervous system. Alterations in the cardiac output change the effective 
arterial blood volume resulting in inhibition of parasympathetic response and a 
reflux increase in the sympathetic vascular tone. The increased sympathetic activity 
leads to vasoconstriction of the renal afferent arteriole and decreases blood flow to 
the kidney [29, 32]. This activates renin secretion and thereby RAAS.

Renin is secreted in response to 4 main stimuli [10, 33]:

1. Decreased renal perfusion pressure sensed by baroreceptor cells in the arterial 
vessel wall

2. Decreased intracellular chloride levels (altered NaCl delivery)

3. Sympathetic nerve stimulation via beta-1 adrenergic receptors

4. Negative feedback by a direct action of Ang II

The pathophysiology of heart failure allows for decreased renal perfusion and 
increased sympathetic response, both of which cause an overactivation of the 
RAAS [34]. The overstimulation of RAAS in heart failure is further depicted in 
Figure 4.

In pathological states like pressure or volume overload, cardiac tissues exhibit 
elevated levels of renin and Ang II levels leading to cardiac hypertrophy, myocardial 
fibrosis, hypertensive heart disease and chronic heart failure through mechanics 
explained earlier. Additionally, post-infarction levels of ACE-2 have been shown to be 
elevated, which may explain a counter-regulatory mechanism to protect against the 
Ang-II mediated myocardial damage. When this natural counter-regulatory mecha-
nism is lost in ACE-2 knockout animal models the levels of dilated cardiomyopathy 
were much more pronounced. Several trials have also looked at specific levels of 
plasma renin and HFrEF and have found that those with elevated levels had an associ-
ated worse outcome than their counterparts. In patients with advanced heart failure, 
baseline levels of plasma renin and plasma aldosterone are persistently high, which 
further exemplifies the role of RAAS in cardiac remodeling and heart failure [35–37].

Figure 4. 
The regulatory effects of RAAS as it pertains to heart failure mechanics [34]. Reproduced with permission from 
McGraw Hill LLC.



Renin-Angiotensin Aldosterone System

8

Innovative studies have discovered that a particular breakdown product of Ang 
1-7, also known as Alamandine, has shown to prevent ventricular and vascular 
remodeling in animal models [11]. Studies of by-products offer areas of potential 
research as we grow to understand the intricacies of the molecular pathways that 
play a role in the development of heart failure.

7. Clinical implications

The overactivation of RAAS and its effects on the pathophysiology of hyperten-
sion, vascular stiffness, ischemia, thrombosis, and left ventricular (LV) remodeling 
has been well documented. As such, several medications that impede the harmful 
effects of the overactivation of RAAS have been shown to prevent the negative 
clinical outcomes. Here we review some of the landmark clinical trials that have 
contributed to the current guidelines and recommendations for the treatment of 
hypertension, ischemic heart disease and heart failure (Table 1).

In the treatment of hypertension, the patient’s specific co-morbidities must be 
considered prior to initiating therapy including, race, diabetes, kidney function and 
other high-risk pre-existing conditions that may predispose to CV outcomes. One 
landmark trial, the AASK trial (2002), studied African Americans with hyperten-
sion and kidney disease and compared intensive blood pressure control versus 
conservative blood pressure control with ACE-I, metoprolol, and amlodipine. The 
two groups had no difference in the progression to CKD, however patients on ACE-I 
had less chronic kidney disease events and death, which solidified the use of ACE-I 
in patients with CKD [38].

The mainstay of treatment in patients with heart failure and CAD is blockade 
of the RAAS. Multiple trials highlighted in Table 1 have been performed showing 
improvement in cardiovascular (CV) outcomes and reduced CV mortality.

The first trial to demonstrate improved CV outcomes with HFrEF is the 
CONSENSUS (1987) trial conducted among New York Heart Association (NYHA) 
Class IV HF and cardiomegaly patients which compared enalapril and placebo. 
Six-month mortality with enalapril was 26% as opposed to 44% with placebo [39]. 
The SOLVD (1991) treatment trial chose patients with HF and LVEF ≤35%, NYHA 
II-IV, with similar randomization, showing mortality reduction by 16% due to 
reduction of death in patients on enalapril versus placebo. This study also showed 
a decrease in CV related hospitalizations [40]. Further research with the V-HeFT II 
(1991) trial showed that ACE-I was superior in improving survival to vasodilators 
such as isosorbide dinitrate and hydralazine [41]. Additionally, use of ACE-I as a 
disease modifying drug was established post-MI in the SAVE trial (1992), which is 
further discussed in Table 1 [42].

Additional studies looked to compare the effects of ACE-I versus ARB. These 
trials were the VALIANT (2003) trial and the OPTIMAAL (2002) trial. The 
VALIANT trial showed that valsartan was as effective as captopril in improving 
survival among patients with HF and/or LV disfunction in the post-MI period [43]. 
The OPTIMAAL trial compared losartan and captopril in high-risk patients after 
acute myocardial infarction with LV-dysfunction and heart failure and found no 
difference in mortality outcomes [44]. Similar studies in patients with HFpEF were 
conducted, including the CHARM-Preserved trial (2003) and the I-PRESERVE trial 
(2008). CHARM- Preserved showed that candesartan modestly reduced HF-related 
hospitalizations however had no effect on mortality [45]. I-PRESERVE used 
Irbesartan in HFpEF patients and similarly found no reduction in mortality [46].

The thought that the addition of an ARB to an ACE inhibitor could inhibit RAAS 
more significantly was established. This was compared in two large significant 
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Trial Name 

(Date)

Primary/

Secondary Outcomes

Inclusion

Criteria

Intervention Number of Patients / 

Follow-up Time

Results

AASK Trial 

(2002) [38]

Rate of eGFR change, 

progression of CKD or 

all-cause mortality

AA, Age 18-70, DBP >95 mmHg, HTN 

renal Disease, eGFR 20-65

BP control – 

with ramipril, 

amlodipine or 

metoprolol

1,094/4 years No difference in progression of CKD. 

Use of ACE-I associated with fewer CKD 

events or death

CONSENSUS 

(1987) [39]

6 Month Mortality NYHA IV HFrEF, optimal treatment 

with at least diuretic and digitalis or 

other medications (nitrates, prazosin, 

hydralazine)

Enalapril VS 

placebo

253/6-20 months 

(about 1 and a half 

years)

Six-month mortality with enalapril was 

26% as opposed to 44% with placebo

SOLVD  

(1991) [40]

All-cause mortality, CV 

death, Death due to MI, 

Death due to stroke

HF, LVEF <35%, Receiving conventional 

therapy without ACE-I

Enalapril VS 

placebo

2,569/3.5 years Enalapril reduces 4-year mortality by 

16% and reduces HF hospitalizations

V-HeFT II  

(1991) [41]

2-year mortality, 

hemodynamic effects, 

EF, exercise tolerance, 

adherence

Men ages 18-75, reduced exercise 

tolerance, cardiac dysfunction, receiving 

optimal and stable therapy

Enalapril. VS 

ISDN/

hydralazine

804 men/2.5 years Enalapril improved survival compared to 

combination of ISDN and hydralazine

SAVE (1992) [42] All-cause mortality Age over 21 years, MI in prior 3 days, new 

onset LVEF less than 40%, absence of 

overt signs of CHF

Captopril VS 

placebo

2,231/42 months 

(about 3 and a half 

years)

In patients with acute MI complicated by 

low EF, captopril led to 19% reduction in 

all-cause mortality

VALIANT  

(2003) [43]

All-cause mortality Age > 18 years, Acute MI within prior 

10 days complicated by HF, LVEF 

<35% on echocardiogram or < 40% on 

radionucleotide ventriculography

Valsartan VS 

valsartan + 

captopril VS 

captopril

14,703/ 24 months 

(about 2 years)

Valsartan was as effective as captopril in 

improving survival

OPTIMAAL 

(2002) [44]

All-cause mortality 50 years of age or older with confirmed 

acute MI and HF in acute phase or a 

new Q-wave anterior infarction or 

reinfarction

Losartan VS 

captopril

5,477/2.7 years No significant change in mortality 

between the two drugs, however losartan 

was better tolerated

CHARM-

Preserved  

(2003) [45]

Cardiovascular death or 

HF admission

LVEF>40%, NYHA class II-IV symptoms 

for at least 4 weeks, history of at least one 

cardiac hospitalization

Candesartan VS 

placebo

3,020/3 years Candesartan modestly reduced the rate 

of HF-related hospitalizations. No effect 

on CV mortality
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Trial Name 

(Date)

Primary/

Secondary Outcomes

Inclusion

Criteria

Intervention Number of Patients / 

Follow-up Time

Results

I-PRESERVE 

(2008) [46]

Death from any cause, 

hospitalization for CV 

disease

40 years of age or older and had NYHA 

class II-IV and an EF of at least 45%

Irbesartan VS 

placebo

4,128/49 months Irbesartan did not improve mortality in 

patients with HFpEF

CHARM added 

(2003) [47]

CV mortality or HF 

hospitalizations

Age > 18 years, LVEF<40% in prior 

6 months, NYHA II-IV, treatment with 

stable ACE-I dose for >30 days

Candesartan VS 

placebo

2,548/ 41 months Addition of candesartan reduced CV 

mortality of HF hospitalization

VAL-HeFT  

(2001) [48]

All-cause mortality, 

cardiac arrest with 

resuscitation, HF 

hospitalization

Age > 18 years, NYHA II-IV, receipt of 

a fixed dose of medical therapy (ACE, 

digoxin, diuretics, and/or BB) for 

>2 weeks, EF < 40%

Valsartan VS 

placebo

5,010/23 months 

(about 2 years)

In a time where HF management 

included ACE but not BB, addition of 

ARB decreased HF hospitalizations

ON TARGET 

(2008) [49]

CV mortality, MI, stroke, 

HF hospitalization

Age over 55 years with CAD, PAD, CV 

disease or high-risk DM

Telmisartan VS 

Ramipril VS 

Telmisartan and 

Ramipril

25,620/56 months 

(about 4 and a half 

years)

Patients with CV disease or DM with 

complications telmisartan was as good 

as Ramipril in preventing death, MI, and 

stroke. The combination of both however 

had no increase in benefit and was 

associated with more adverse events.

RALES  

(1991) [50]

All-cause mortality NYHA IV within 6 months to enrollment, 

NYHA III or IV at the time of enrolment, 

treatment with ACE and a loop diuretic, 

LVEF <35%

Spironolactone VS 

placebo

1,663/2 years Spironolactone led to 30% reduction in 

all-cause mortality without significant 

side-effects

TOPCAT  

(2014) [51]

CV mortality, aborted 

cardiac arrest, or HF 

hospitalization

Age > 50 years, LVEF >45%, SBP <140 

or < 160 if on 3 anti-hypertensives, 

serum potassium <5, elevated BNP in 

last 60 days, or HF hospitalization in last 

12 months

Spironolactone VS 

placebo

3,445/3 years Spironolactone did not reduce CV 

mortality however did result in a small 

reduction in HF hospitalizations

EMPHASIS-HF 

Trial (2011) [52]

CV death or 

hospitalization, all-cause 

mortality, fatal or non-

fatal MI

Age > 55 years, NYHA II, EF < 30%, 

treatment with ACE, ARB or both, 

treatment with BB, CV hospitalization in 

last 6 months

Eplerenone VS 

placebo

2,737/21 months 

(about 2 years)

Eplerenone reduces the risk of death and 

hospitalization in patients with low EF 

and NYHA II



11 T
he R

ole of the R
enin-A

ngiotensin-A
ldosterone System

 in C
ardiovascular D

isease…
D

O
I: http://dx.doi.org/10.5772/intechopen.96415

Trial Name 

(Date)

Primary/

Secondary Outcomes

Inclusion

Criteria

Intervention Number of Patients / 

Follow-up Time

Results

PARADIGM-HF 

Trial (2014) [53]

CV mortality or HF 

hospitalization

Age > 18 years, NYHA class II-IV, EF 

<35%, if no HF hospitalizations in last 

year BNP >150 pg./mL, ACE, or ARB and 

BB with stable dose, If HF hospitalization 

in last year BNP >100 pg./mL

ARNI VS enalapril 8,399/27 months 

(about 2 and a half 

years)

ARNI reduces CV mortality or HF 

hospitalizations when compared 

to enalapril. Also reduces all-cause 

mortality

PARAGON-HF 

Trial (2019) [54]

HF hospitalizations and 

CV mortality, change in 

NYHA class at 8 months, 

all-cause mortality

>50 years of age, LVEF>45%, NYHA 

II-IV, and at least one of the following: 

HF hospitalization with NT-proBNP>200 

(no AFIB) or > 600 (AFIB) or 

NT-proBNP>300 (no AFIB) or > 900 

(Afib) on screening visit ECG

ARNI VS valsartan 

alone

4,822/35 months 

(about 3 years)

ARNI did not lower hospitalizations or 

death from CV causes, however there was 

a modest improvement in NYHA class 

and a slower decline in renal function 

than what was seen in valsartan alone

PIONEER-HF 

Trial (2019) [55]

Time-averaged change in 

NT-proBNP concentration 

from baseline through 

weeks 4-8

Age > 18 years, LVEF<40%, NT-proBNP 

of 1600 pg./mL or more, or BNP of 

400 pg./mL or more, receiving diagnosis 

of acute decompensated HF up to10 days 

after presentation

ARNI versus 

enalapril

881/2 years ARNI decreased NT-proBNP compared 

to enalapril therapy without significant 

change in rate of adverse events

ALTITUDE Trial 

(2012) [56]

Death from CV causes, 

nonfatal MI, nonfatal 

stroke, ESRD, death 

attributable to kidney 

failure, or the need for 

RRT

35 years or older with type 2 diabetes 

and evidence of microalbuminuria, 

macroalbuminuria, or cardiovascular 

disease

Aliskiren VS 

placebo

8,561/32 months 

(about 2 and a half 

years)

The addition of aliskiren to standard 

therapy in patients with type 2 diabetes 

who are at elevated risk for CV and renal 

events is potentially harmful

Summarized landmark clinical trials depicting the benefits of RAAS inhibition in cardiac and renal patients. Abbreviations: CKD: Chronic kidney disease, AA: African American, SBP: systolic blood 
pressure, DBP: diastolic blood pressure, CV: cardiovascular, EF: ejection fraction, LV: left ventricular, MI: Myocardial infarct, ESRD: End stage renal disease, RRT: renal replacement therapy.

Table 1. 
Trials documenting improvement in cardiovascular outcomes and reduced cardiovascular mortality with renin-angiotensin-aldosterone system inhibition.



Renin-Angiotensin Aldosterone System

12

trials. The CHARM-added trial compared symptomatic HF patients with LVEF 
≤40% who were already on an ACE inhibitor with either addition of candesartan 
or placebo. This trial showed a reduction in CV mortality and HF hospitalizations; 
however, it was accompanied by a significant increase in hyperkalemic events [47]. 
The Val-HeFT (2001) compared patients with symptomatic HF, LVEF <40% with 
LV dilatation and on ACE inhibitors by adding either valsartan or placebo. There was 
no effect on mortality however, there was a 23% reduction in HF hospitalization in 
the treatment group [48]. Finally, the ONTARGET trial (2008) compared ramipril 
to telmisartan to a combination of both in patients with CV disease or diabetes with 
complications and found that the combination of telmisartan plus ramipril had no 
increase in benefit and was associated with more adverse events [49].

Several trials looking at the effects of aldosterone antagonists and heart failure 
patients were conducted with overall favorable results. Patients benefit from 
reduced sympathetic stimulation and alleviate fluid overload from sodium and 
water retention through aldosterone blockade. The RALES trial (1999) studied the 
role of spironolactone in patients with LVEF≤35% and NYHA class III-IV, which 
showed that Spironolactone, along with ACE-I (as most patients were already on 
ACE-I) showed a 11% reduction in CV mortality compared to placebo [50]. The 
TOPCAT trial (2014) done in patients with HFpEF and controlled blood pressures 
to receive spironolactone or placebo. This study conversely showed that spirono-
lactone did not reduce CV mortality however did result in a small reduction in 
HF hospitalizations [51]. Another trial, the EMPHASIS-HF trial (2011), looked at 
Eplerenone versus placebo in HF patients, NYHA class II, showed that Eplerenone 
reduced the risk of death and hospitalizations in patients with HF [52].

A newer group of RAAS inhibition medications combining an ARB and nepri-
lysin inhibitor (ARNI) was studied in 2014 in the PARADIGM-HF trial. Neprilysins 
are key enzymes in the degradation of natriuretic peptides. They increase endog-
enous natriuretic peptide levels including bradykinin, thereby promoting vasodila-
tion and natriuresis. Neprilysins were initially attempted with an ACE inhibitor 
combination however this led to incidences of angioedema given increased levels of 
bradykinin. PARADIGM - HF trial was conducted in patients with symptomatic HF 
and LVEF ≤40% assigned to enalapril alone or valsartan-sacubitril combination. 
This showed significant reduction in CV mortality, all-cause mortality, and HF 
hospitalizations with no increase in angioedema events [53]. The PARAGON-HF 
trial (2019) studied ARNI versus valsartan alone in HFpEF patients with EF > 45% 
and NYHA II to IV and showed that ARNI did not lower hospitalizations or death 
from CV causes, however there was a modest improvement in NYHA class and a 
slower decline in renal function than what was seen in valsartan alone [54]. The 
PIONEER-HF trial (2019) showed that initiated of ARNI versus enalapril in acute 
diastolic heart failure patients allowed for significant reductions in HF biomarker, 
NT-proBNP, without significant change in adverse effects [55].

Direct renin inhibitors have been attempted with the goal of reducing renin and 
thereby the entire RAAS cascade. The ALTITUDE trial (2012) added aliskiren to 
patients with diabetes type 2 in order to prevent kidney disease and CV outcomes. 
These patients were on ACE-I however the addition of aliskiren led to an increase in 
CV mortality, hypotension, and adverse hyperkalemic events. The trial was stopped 
early due to higher mortality findings [56].

8. Summary and conclusions

RAAS is a complex and evolving pathway that has been implicated in the patho-
genesis of endothelial damage, atherosclerosis, and cardiac remodeling. Inhibition 
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