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Malaria: Problems and Solutions
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Abstract

Malaria is caused by multiple parasitic species of the genus Plasmodium. 
Although P. falciparum accounts for the highest mortality, P. vivax is the most 
geographically dispersed and the most common species outside of Africa. Several 
unique biological features make P. vivax less responsive to conventional control 
measures and allow it to persist even after elimination of P. falciparum. The ability 
of P. vivax to develop in diverse vectors at lower ambient temperatures bestows 
it a greater distribution range and resilience to ecological changes. Its tropism 
for reticulocytes often causes low-density infections below the levels detect-
able by routine diagnostic tests, demanding the development of more sensitive 
diagnostics. P. vivax produces gametocytes early enabling transmission before the 
manifestation of clinical symptoms, thus emphasizing the need for an integrated 
vector control strategy. More importantly, its dormant liver stage which engenders 
relapse is difficult to diagnose and treat. The deployment of available treatments 
for the liver hypnozoites, including primaquine and the recent U.S. Food and Drug 
Administration-approved tafenoquine, requires point-of-care diagnostics to detect 
glucose-6-phosphate dehydrogenase deficiency among endemic human popula-
tions. Here we review the continued challenges to effectively control P. vivax and 
explore integrated technologies and targeted strategies for the elimination of vivax 
malaria.

Keywords: Plasmodium vivax, relapse, transmission, G6PD, CYP2D6, radical cure

1. Introduction

Malaria has been an ancient scourge of humankind and efforts to mitigate the 
harm from malaria have been relentless. In 1955, the World Health Organization 
(WHO) launched the Global Malaria Eradication Program (GMEP), relying heavily 
on two essential tools: chloroquine (CQ ), a safe and effective drug for malaria 
prevention and treatment, and the insecticide DDT for vector control. Despite the 
GMEP’s enormous success in reducing malaria burden in many countries outside 
of sub-Saharan Africa, its failure to sustain the program resulted in malaria resur-
gence and discontinuation of this global campaign in 1969 [1]. The considerable 
gains achieved in many areas were soon lost and the world witnessed a sharp rise 
in malaria incidence in the following two decades. In India, for example, malaria 
prevalence reduced from an estimated 75 million cases to about 100,000 cases 
annually during the GMEP, only to rapidly expand to 6.5 million in 1976 [2, 3]. 
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In recognition of this huge malaria burden, the Roll Back Malaria Partnership 
launched in 1998, marking a renewed attack on this disease resulting in a declining 
incidence of malaria globally. Empowered by a strong political will and enabled 
by financial commitment and new interventions, many national malaria control 
programs (NMCPs) now consider malaria elimination an attainable goal. WHO’s 
“Global Technical Strategy for Malaria 2016-2030” provided goals for the next 
15 years and specific guidelines for achieving these goals. Among them, “eliminat-
ing malaria in at least 35 countries” and “preventing the re-establishment of malaria 
in all countries that are malaria-free” specifically address the tasks to attain and 
sustain malaria elimination. Significant strides have been made toward malaria 
elimination in the past two decades with 19 countries attaining zero indigenous 
cases for 3 years or more between 2000 and 2018. These countries include Sri 
Lanka, Paraguay, and Uzbekistan, which were recently certified as malaria-free [4]. 
Despite these laudable achievements, formidable challenges still lie ahead for many 
endemic nations to achieve malaria elimination.

Of the six Plasmodium species naturally infecting humans, P. falciparum is 
usually considered the most virulent and is associated with the vast majority of 
deaths, while P. vivax is the most geographically widespread. In comparison,  
P. ovale curtisi, P. ovale wallikeri, and P. malariae are much less common, whereas 
the monkey malaria parasite P. knowlesi is primarily associated with zoonotic 
infections [5]. Since malaria elimination is the interruption of local malaria 
transmission (zero indigenous cases) in a defined geographic area, it is time to 
target the elimination of all malaria parasite species simultaneously to set the 
final stage for malaria eradication [6].

At the same time that malaria incidence is continually declining [4], malaria 
epidemiology is rapidly changing [7]. In countries pursuing elimination, structural 
changes in at-risk populations have resulted in malaria becoming geographically 
clustered in hard-to-reach pockets. “Border malaria” has become a shared phenom-
enon and malaria is increasingly an imported disease. Additionally, because of a 
divergent response by each species to control interventions, P. vivax has become 
the predominant parasite in malaria-endemic countries outside of Africa. Most 
pre-elimination countries—such as the members of the Asian Pacific Malaria 
Elimination Network (APMEN, www.apmen.org) — must be ready to face the 
ultimate challenge of eliminating vivax malaria, a potentially long and arduous 
process. In fact, because of the possibility of relapse, the WHO malaria-free certi-
fication requires no cases for three years [1]. Here we review the changing malaria 
epidemiology and discuss the challenges associated with vivax malaria elimination 
and solutions to address them.

2. Geographic distribution and epidemiology of vivax malaria

Outside of Africa, P. vivax is the most common parasite causing malaria. It 
accounts for 75, 50, and 29% of the malaria burden in the Americas, SE Asia, and 
the East Mediterranean, respectively [4]. The parasite’s ability to complete its spo-
rogonic development in mosquitoes at ambient temperatures as low as 16 °C and to 
lie dormant for seasonal transmission has extended its geographical range deep into 
the temperate zones. There is considerable spatial heterogeneity in P. vivax distribu-
tion at the global and local scales. SE Asia carries more than half of the global P. 
vivax burden (Table 1). In the Asian continent, India, Cambodia, and Myanmar 
have higher endogenous P. vivax burden, and transmission is concentrated along 
international borders [8]. Similarly, the southern part of South America has a 
relatively low burden with Paraguay and Argentina recently achieving malaria-free 
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status, whereas the northern part of the continent has a substantial P. vivax burden 
(Figure 1). In Africa, until recently, P. vivax was documented only in the Horn 
of Africa, and considered extremely rare or “absent” in Central and West Africa 
because of the dominance of the Duffy-negative blood group [10], a required recep-
tor for erythrocyte invasion by P. vivax [11]. Increasing reports of P. vivax in Duffy-
negative individuals suggests its capability to exploit Duffy-independent invasion 
pathways [12, 13]. In the last decade, the growing evidence of P. vivax transmission 
in all regions of Africa, including acute and asymptomatic cases, infected vectors, 
serological indicators, and infected international travelers, indicates more P. vivax 
transmission than previously thought [14, 15]. Although malaria control programs 
in Africa are justifiably focused on P. falciparum (given the striking morbidity and 
mortality associated with this species), P. vivax is becoming an emerging concern 
for malaria elimination from African nations.

Throughout history, P. vivax has shown extreme resilience to control measures 
[16], and in many areas where P. falciparum and P. vivax co-exist, P. vivax is becom-
ing predominant [17, 18]. With this shift in species predominance come changes 
in the at-risk populations. In areas of P. falciparum and P. vivax sympatry, clinical 
episodes of vivax malaria rapidly decrease around 12 months of age, whereas  
P. falciparum cases continue to rise until about 3 years of age [19, 20]. Since expo-
sure undoubtedly plays a role in the acquisition and maintenance of immunity, 
P. vivax recurrence may allow for repeated exposure from fewer infection events 
which may contribute to this age discrepancy. Additionally, primaquine (PQ ) is not 
commonly given to children below 5 years, while chloroquine (CQ ) underdosing 
is not unusual [21], resulting in repeated P. vivax attacks in young children. Recent 
studies in SE Asia showed that school-aged children had significantly increased 

Africa America Eastern 

Mediterranean

SE Asia Western 

Pacific

Total

P. vivax 704 700 1,414 3,947 690 7,500

All 213,000 929 4,900 7,900 1,980 228,000

Table 1. 
Estimated cases of P. vivax and all malaria (×1,000) by WHO region [4].

Figure 1. 
Global distribution of P. vivax malaria. Shading represents incidence in cases per 1000 people per year [8, 9]. 
Very low incidence areas are shaded in gray.
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odds of acquiring P. vivax infections [18, 22]. Because PQ is contraindicated for 
pregnant women, radical treatment of P. vivax remains difficult in this group. 
Consequentially, relapsing episodes of malaria during pregnancy can lead to con-
genital malaria [23–25]. Certain occupations such as soldiers and forest workers are 
also more vulnerable to malaria infections [18, 26]. A better understanding of local 
malaria epidemiology will be essential for implementing targeted control measures.

3. Morbidity of vivax malaria

Biologically, P. vivax exhibits key differences from P. falciparum influencing 
its transmission, presentation and outcome [27]. Historically, P. vivax malaria 
has been mistakenly described as “benign tertian malaria”. In fact, P. vivax infec-
tion causes a full spectrum of disease symptoms ranging from uncomplicated 
febrile illness to severe and fatal malaria. Severe P. vivax malaria is often associ-
ated with severe anemia, a common complication, as well as thrombocytopenia, 
acute respiratory distress, hepatic dysfunction, renal failure, seizures or coma, 
and shock [28, 29]. Severe anemia is the most common complication associated 
with P. vivax malaria [30–32]. P. vivax has a strong preference for CD71high reticu-
locytes [33] and aggravates anemia by targeting cells immediately after replace-
ment [34, 35]. Recurrent P. vivax parasitemia further elevates the risk of severe 
anemia [36]. Although the risk of thrombocytopenia is prevalent in all forms of 
malaria, evidence suggests that it is more common in P. vivax than P. falciparum 
patients [37, 38]. In pregnant women, P. vivax infection is associated with a 
higher risk of anemia, abortion and low birth weight [39, 40]. Furthermore, the 
presence of co-morbidities may exacerbate P. vivax infections resulting in severe 
and life-threatening complications.

4. Relapse

One distinctive feature of P. vivax that enables the parasite to evade conventional 
control measures designed for P. falciparum is the formation of a dormant liver 
stage, termed hypnozoite [41]. Hypnozoites persist in a non-dividing fashion within 
the liver where they may be awakened weeks and months later causing relapse. 
Recent detections of P. vivax parasites in the bone marrow and spleen have raised 
the possibility that the extravascular merozoites might be an additional source 
of recurrence in addition to the relapse from hypnozoite activation [42, 43]. Two 
latency forms of P. vivax strains are recognized. The long-latency strains (e.g., 
the St. Elizabeth strain) prevalent in temperate zones have either a ~ 9-month 
latency period or a 2-week incubation time for the primary infection followed by 
a ~ 9-month interval before the relapse, allowing for parasite survival through the 
long winter season when mosquito vectors are absent [44, 45]. In contrast, for the 
short-latency tropical strains (e.g., the Chesson strain) from SE Asia and Oceania, 
relapses typically occur ~3 weeks after the primary infection [46]. Some areas, such 
as the Greater Mekong subregion host both types of strains [46, 47]. Besides, the 
sporozoite inoculation load can impact the latency period. The ratio of hypnozo-
ites to sporozoites could vary by strain, and parasites with higher proportions of 
hypnozoites may be more inclined toward frequent relapses [48, 49]. Mechanisms 
of hypnozoite reactivation are elusive and may involve external stimuli such as 
drugs, another malaria infection, or other infectious diseases [50]. A meta-analysis 
of P. falciparum drug efficacy trials reveals a high risk of P. vivax parasitemia after 
treatment of falciparum malaria [51].
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Relapse increases the morbidity associated with P. vivax infections. Relapses 
can contribute to 50–80% of the overall vivax infections in high transmission areas 
[52–55]; sometimes occurring repeatedly from the same infection, such as a case 
from Eritrea where one patient’s three episodes of vivax malaria were caused by 
meiotic siblings suggesting the same infection event [56]. Additionally, P. vivax is 
frequently found in highly polyclonal infections, even in areas with relatively low 
malaria endemicity. One study from Cambodia found that around half of polyclonal 
infections might have resulted from relapse [57]. Long-distance parasite migration 
and introduction also favor hypnozoites. When introduced by an asymptomatic 
human host to an area with suitable Anopheles vector species, relapsed parasites 
could spark autochthonous infections and establish new transmission foci, as 
observed in Greece [58].

5. Diagnosis

Accurate and timely diagnosis of malaria by species is essential for the delivery 
of appropriate treatments. In clinical settings, acute vivax malaria is diagnosed 
by microscopy or rapid diagnostic tests (RDTs). Routine microscopy has a limit 
of detection (LOD) of around 50 parasites/μl of blood [59, 60]. Specific training 
is required, as misidentification of the infecting species is fairly common [59, 61]. 
RDTs are a fast, affordable and efficient method for malaria diagnosis with a LOD 
of ~200 parasites/μl, but the sensitivity varies among brands [62]. The tropism 
of P. vivax for reticulocytes can result in parasite densities much lower than the 
LODs of the conventional diagnostic methods. Recently, the creation of ultra-
sensitive RDTs has lowered the LOD for P. falciparum infection [63, 64] but one 
targeting P. vivax is still lacking.

In malaria elimination settings, malaria prevalence is often assessed through 
active case detection in the form of cross-sectional surveillance. Most available 
clinical diagnostic tools are inadequate for detecting P. vivax asymptomatic res-
ervoirs with very low parasitemia. Molecular methods although sensitive to low-
density infections and useful in epidemiological surveillance are not feasible in field 
applications [19]. The presence of microscopically subpatent infections in endemic 
populations may render a mass screening and treatment-based strategy ineffective 
if screening is based on low-sensitivity tools [65].

Hypnozoites pose a significant challenge for the elimination of vivax malaria 
because they defy detection by any diagnostic methods. Recently, a screen for 
IgG responses to a panel of 342 P. vivax antigens in longitudinal clinical cohorts 
established that antibody responses to eight proteins detected P. vivax infections in 
the previous 9 months with 80% sensitivity and specificity [66]. Modeling demon-
strates that treating a serologically positive population could potentially reduce P. 
vivax prevalence by 59–69%. While this new development still awaits prospective 
evaluation, it offers a promising surrogate marker for hypnozoite detection and 
treatment.

6. Chemotherapy and drug resistance

Most antimalarial drugs in use are blood schizontocides that kill asexual blood-
stage parasites, which are associated with clinical symptoms. The ability of P. vivax 
(and also P. ovale spp.) to form liver hypnozoites capable of causing relapses requires 
the addition of a hypnozoitocide to prevent relapses. For the radical cure of P. vivax 
malaria, CQ and PQ have been the companion therapies of choice for the treatment 



Current Topics and Emerging Issues in Malaria Elimination

6

of uncomplicated vivax malaria since the 1950s. Due to the development of CQ 
resistance in the island of New Guinea, CQ was abandoned and replaced with an 
artemisinin combination therapy (ACT) there [67].

6.1 Treatment of P. vivax blood-stage infections

For the treatment of blood-stage uncomplicated P. vivax malaria, WHO recom-
mends the use of either an ACT or CQ in areas where parasites remain CQ sensitive 
(CQS) or an ACT in areas where P. vivax is known to be CQ resistant (CQR) [68]. 
ACTs are contraindicated in pregnant women in their first trimester; thus for this 
patient population, uncomplicated vivax malaria is treated with either CQ for CQS 
malaria or quinine for CQR malaria. WHO recommends parenteral therapy for 
severe malaria with either artesunate, artemether, or quinine (listed here in the 
order of preference) for at least 24 h regardless of the causative Plasmodium species 
[68]. No additional drugs are needed to block transmission (as compared to the 
recommended low-dose PQ for blocking the transmission of P. falciparum) because 
P. vivax gametocytes are sensitive to most antimalarial drugs.

6.1.1 Chloroquine and unified treatment with ACTs

CQ remains the mainstay treatment for P. vivax malaria in most endemic coun-
tries. If low-grade or sporadic CQ resistance is identified, optimizing the treatment 
regimen can improve the therapeutic efficacy of CQ. A recent meta-analysis of CQ 
efficacy studies indicates underdosing (<25 mg of CQ/kg) among a substantial 
proportion (>30%) of patients [21]. Increasing the recommended dose to 30 mg/kg,  
especially in children under 5 years, could reduce the risk of early recurrence by 
more than 40% if CQ is used alone. The safety and tolerability of the increased CQ 
dose are substantiated by earlier studies where CQ doses of 50 mg/kg were used 
to treat CQR P. falciparum [69]. In addition to underdosing, there is accumulating 
evidence of emerging CQR parasites in endemic sites [70, 71]. A meta-analysis of 
129 clinical trials on CQ efficacy identified CQR P. vivax parasites in most vivax-
endemic areas, though the prevalence of resistance varied geographically [72]. The 
epicenter of CQR P. vivax is located on the island of New Guinea, where the CQR 
parasite was first reported in 1989 [73]. Reports of high rates of recurrent parasit-
emia within 28 days in subsequent years [74–76]—consistent with the WHO defini-
tion for RI resistance [77]—led to the ultimate withdrawal of CQ from treating 
vivax malaria in New Guinea [67]. ACTs have shown high efficacy as a treatment 
replacement of CQ for uncomplicated vivax malaria in many endemic sites [78–80]. 
Dihydroartemisinin-piperaquine treatment had a significantly lower risk of P. vivax 
recurrence at day 42 than artemether-lumefantrine [81]. These higher rates of recur-
rence are probably due to different pharmacokinetic profiles of the partner drugs: 
lumefantrine has a much shorter half-life (~4 days) than piperaquine (28–35 days) 
and thus offers less protection against early relapse and/or reinfection. This can 
be mitigated by the inclusion of PQ in the treatment [81]. In areas co-endemic for 
both P. vivax and P. falciparum, the deployment of a unified ACT-based strategy for 
both parasites provides several advantages [78]. First, the excellent clinical efficacy 
of ACTs against vivax malaria makes them highly suitable for areas of known or 
suspected CQR vivax. Second, it offers operational ease in routine practice where 
species misdiagnosis is a frequent issue [18]. The World Malaria Report 2020 indi-
cated an increasing number of countries adopting ACTs as first-line therapy for P. 
vivax [82]. The reluctance to change the treatment may be due to the perceived ease 
of treating vivax malaria and the economic burden associated with the switch to a 
much more expensive drug.
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6.1.2 Chloroquine resistance

To ensure the high efficacy of first-line therapy, close monitoring is essential. 
For P. falciparum malaria, this is typically done by clinical efficacy studies, in vitro 
drug assays, and molecular surveillance of resistance-conferring genetic mark-
ers. Surveillance for P. vivax resistance relies heavily on in vivo assessment of the 
schizontocidal therapy, conducted through follow-ups of recurrent P. vivax para-
sitemia after initial treatment for 28 days. Extending the follow-up to 42 days will 
allow the identification of late recrudescence [21]. After the standard treatment 
with CQ (3-day regimen of 25 mg/kg CQ base), the blood concentration of the 
active drugs (CQ and desethyl CQ ) reaches the minimum inhibitory concentration 
(MIC, ~100 ng/ml) around 28 days, and thus recurrent parasitemia before day 28, 
regardless of the origin of the parasites (recrudescence, relapse or new infection), is 
likely due to CQR parasites [83]. Given that drug resistance is defined as the growth 
of the parasite in the presence of the drug above the MIC, CQ resistance must be 
confirmed by measurement of residual blood CQ and desethyl CQ levels on the day 
of recurrence.

Ex vivo measurement of drug sensitivity has been conducted in many endemic 
regions, but it is not ideal for routinely monitoring antimalarial drug resistance in 
P. vivax because of the difficulties in setting up the ex vivo assays [84, 85]. Since 
a long-term in vitro culture system is not available for P. vivax, ex vivo assays are 
restricted to one-time assays using fresh field isolates, making further validation of 
results difficult. The P. vivax tropism for reticulocytes means that reinvasion does 
not happen frequently under field conditions. As a result, ex vivo drug exposure is 
limited to one intraerythrocytic cycle. The most commonly used method to quan-
tify parasite growth is the modified Rieckman’s microtest that compares schizont 
maturation rates [86, 87]. Another method quantifies the production of lactate 
dehydrogenase by the parasites [88]. Unlike P. falciparum clinical samples where 
parasites are all at the ring stage, P. vivax clinical isolates contain mixed stages with 
various degrees of synchronicity. Since P. vivax trophozoites are highly tolerant to 
CQ [89, 90], ex vivo assays for CQ need to be done using isolates with no less than 
80% ring stages. Despite the variability of assay results between labs, ex vivo assays 
can complement in vivo studies to follow temporal changes of drug sensitivities in 
an endemic area [91].

Molecular surveillance of putative CQR markers in P. vivax populations, 
though conducted in multiple endemic sites, is hindered by the lack of under-
standing of the genetic basis of resistance [71]. Initial studies focused on the 
orthologs of the pfcrt and pfmdr1, the main determinants of CQ resistance in 
P. falciparum. Most studies fail to show a strong correlation between pvcrt-o 
mutations and the CQR phenotype. Some studies from the Brazilian Amazon 
indicated an association of CQ resistance with higher expression level and gene 
amplification of pvcrt-o [92, 93], whereas such a link was not validated in Papua 
Indonesia with high-grade CQ resistance [94]. The relationship between the 
upregulation of pvcrt-o expression and CQ resistance was recently supported by 
a genetic cross of P. vivax strains [95]. There are also considerable controversies 
about the main pfmdr1 mutations Y976F and F1076L as potentially conferring 
CQ resistance [96–99], suggesting that pvmdr1 may not be a major determinant 
for CQ resistance in P. vivax. Population genomics studies of P. vivax popula-
tions from areas with drastically different CQ resistance have identified genomic 
sites under strong selection [100, 101], but their significance in mediating drug 
resistance remains to be determined. When using Plasmodium knowlesi as an in 
vitro model, some of the markers did not seem to change the drug sensitivity 
phenotypes in transgenic parasites [102].
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6.2 Treatment of P. vivax liver stages

6.2.1 Primaquine and tafenoquine in anti-relapse therapy

Relapses from hypnozoite reactivation are preventable by anti-relapse therapy 
with 8-aminoquinoline drugs. For the prevention of relapse, WHO recommends 
a dose of 0.25–0.5 mg/kg body weight of PQ daily for 14 days [68]. A high dose 
(0.5 mg/kg/day) is needed for tropical, frequently relapsing P. vivax strains such as 
the Chesson strain that is prevalent in East Asia and Oceania, whereas a lower dose 
(0.25 mg/kg/day) is recommended for temperate strains. Many nations adopt low-
dose PQ for fear of possible harm to unscreened patients with glucose-6-phosphate 
dehydrogenase (G6PD) deficiency, but suboptimal dosing may fail to prevent 
relapses in many endemic sites [46, 103]. Conversely, the high dose requires more 
detailed clinical investigations to document its efficacy [104].

The 14-day PQ treatment regimen is inevitably associated with poor adherence, 
which seriously compromises its public health benefit. It is estimated that the effec-
tiveness of unsupervised PQ regimens in vivax patients from Papua, Indonesia, 
could be as low as 12% [105]. Unfortunately, a shortened 5-day regimen of 15 mg 
daily PQ did not efficaciously prevent relapse [106, 107]. However, a 7-day high PQ 
dose (1.0 mg/kg/day) regimen in Asia and Africa recently performed comparably 
to the 14-day PQ regimen (0.5 mg/kg/day), providing a possible solution to poor 
adherence [108, 109]. In 2018, another 8-aminoquinoline, tafenoquine (TQ ), 
was approved by the U.S. Food and Drug Administration for radical cure of vivax 
malaria and malaria prophylaxis [110, 111]. TQ, administered as a single 300 mg 
dose, showed similar tolerability and efficacy to PQ in preventing relapse in vivax 
malaria [112, 113]. While TQ appears to be the best choice for travel medicine in 
people with normal G6PD activity, further clinical studies are needed before seeing 
its deployment in endemic regions.

In patients with known G6PD deficiency, PQ may be given at 0.75 mg/kg for 
eight weeks [68], but this should be under close medical supervision with ready 
access to blood transfusion services. This dosing regimen leverages the “total dose 
effect”, discovered in the relapsing monkey malaria parasite P. cynomolgi [114]—it 
posits the same efficacious dose of PQ can be delivered in a range of schedules to 
achieve the same therapeutic effect. For the temperate and tropical strains, the total 
dose equals 210 and 420 mg PQ, respectively [115]. This regimen was tested in those 
carrying the G6PD A- variant experimentally infected with the Chesson strain and 
found to be safe and efficacious [116]. A recent trial of this regimen found that 
5/18 (27.7%) G6PD deficient patients experienced >25% fractional drops in their 
hemoglobin concentrations, including one patient requiring transfusion [117, 118]. 
This study precludes the use of unsupervised weekly PQ in Cambodia (and perhaps 
other parts of the Greater Mekong subregion), where the regional prevalence of 
Viangchan (a class II G6PD variant) and other hemoglobinopathies such as hemo-
globin E and β-thalassemia may predispose G6PD deficient patients to a greater risk 
of acute hemolytic anemia (AHA) when treated with PQ.

6.2.2 G6PD deficiency and point-of-care testing

The root problem of PQ and TQ is hemolytic toxicity in patients with G6PD 
deficiency [115, 119, 120]. The G6PD gene is extraordinarily polymorphic with at 
least 217 known mutations, and their effects on the stability and catalytic efficiency 
of the enzyme vary greatly [121–123]. The residual enzyme activity varies from 
5–10% of the normal levels in the G6PD A- variant from Africa to less than 1% 
of the normal levels in the G6PD Mediterranean variant. As a result, the clinical 
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spectrum of PQ toxicity can range from relatively mild and self-limiting in G6PD 
A- individuals to severe AHA in the G6PD Mediterranean individuals, while most 
variants from Southeast Asia (the Mahidol, Viangchan, and Canton variants) typi-
cally have intermediate levels of enzyme activity [124]. Evidence supporting protec-
tive advantages of the G6PD A- against P. falciparum [125–128] and G6PD Mahidol 
against P. vivax [129, 130] is consistent with the wide geographic distribution of 
G6PD deficiency and its overlap with malaria distribution [124]. G6PD deficiency 
affects around 8% of the global population, but its distribution is geographically 
heterogeneous and can range from 3 to 30% in tropical areas [131–133]. G6PD is 
X-linked; thus, male hemizygotes and female homozygotes have full expression 
of the G6PD deficiency, whereas heterozygous females display varying degrees of 
G6PD activity due to random X-chromosome inactivation (lyonization) resulting 
in red cell mosaicism. As a result, the male population displays two distinctive 
phenotypes, whereas the female population shows a full spectrum of G6PD activity, 
which has significant ramifications for the treatment with the 8-aminoquinoline 
drugs [134]. Because of this, cases of severe AHA have been identified in female 
heterozygotes receiving the high daily dose of PQ (1.0 mg/kg) even though these 
subjects tested as G6PD normal after screening with the qualitative fluorescent 
spot test (FST) [108, 109, 135]. Furthermore, even in vivax patients with a class III 
G6PD variant (e.g., the Mahidol variant considered mildly deficient), a low-dose 
PQ treatment (15 mg/kg/day) for three days could lead to AHA, requiring blood 
transfusions or even renal failure [117, 136, 137]. Therefore, for the goal of malaria 
elimination in areas with P. vivax, the deployment of point-of-care G6PD deficiency 
diagnostics is urgent [138]. Currently, FST is the most common method to screen 
for G6PD deficiency, which has minimum lab requirements of cold chain and 
electricity as well as trained personnel. The CareStart™ G6PD RDT (Access Bio) 
is a point-of-care screen for G6PD deficiency, but the cost (~15 USD) is prohibi-
tive for large-scale implementation in low-resource endemic areas [139]. Of note, 
qualitative screening with the FST or RDT can detect G6PD deficiency below 30% 
of normal activity, but cannot reliably diagnose female heterozygotes with an 
intermediate deficiency (30–70% normal activity). Fortunately, rapidly eliminating 
PQ with its half-life of 6 h can be prescribed to patients with G6PD activity above 
30% of normal activity [111]. However, TQ has a long half-life of 14 days, and the 
recommended threshold of G6PD activity is set at 70% of normal activity. Thus, for 
rolling out TQ in endemic areas, more stringent screening of G6PD activity with 
quantitative tests is needed [111, 140]. A recent cost-effectiveness analysis suggests 
that TQ may be deployed in endemic areas outside sub-Saharan Africa using a 
gender-specific strategy where G6PD-normal females can be prescribed a low-dose 
PQ for 14 days [141]. This approach again centers on the availability of a qualitative 
G6PD test.

6.2.3 Host cytochrome P450 (CYP) 2D6 activity

Another problem identified recently is that PQ efficacy depends on the host 
activity of the hepatic cytochrome P450 (CYP) 2D6. Failures of PQ to radically cure 
have been linked to reduced activity of CYP2D6 [142], which mediates activation 
of PQ to its active metabolite(s) [143, 144]. Follow-up studies in Indonesia have 
established CYP2D6-dependent metabolism of PQ as a key determinant of the 
efficacy against relapse [145]. Studies in Brazil similarly identified an association of 
the diplotype-based CYP2D6 activity score of ≤1.0 with increased risks of P. vivax 
recurrence within 180 days after PQ treatment [146, 147]. There are also cases of 
patients with impaired CYP2D6 activity suffering from multiple relapse attacks 
despite receiving adequate anti-relapse therapy with PQ [148, 149]. Even for the 
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single-low-dose PQ used as a transmission-reducing strategy for P. falciparum, the 
genetic variation in CYP2D6 affects the pharmacokinetics of PQ [150], and CYP2D6 
poor/intermediate metabolism is associated with prolonged gametocyte carriage 
[151]. Thus, it is important to determine the extent to which reduced CYP2D6 
 activity is responsible for PQ failures in the radical cure of vivax malaria [152].

CYP2D6 is involved in the metabolism of as many as 25% of drugs in clinical use 
and is also highly polymorphic [153, 154]. Over 150 CYP2D6 allelic variants have 
been found and grouped into four phenotypic classes of non-functional, low, normal, 
and increased metabolizers, with respective activity scores of 0, 0.5, 1.0, and 2.0 per 
allele, corresponding to diplotype activity scores of 0, 0.5, 1.0, 1.5, 2.0, and > 2.0 
[155]. Individuals with diplotype activity scores of ≤1.0 are considered to be poor PQ 
metabolizers [156]. The proportion of poor PQ metabolizers varies geographically. In 
the Brazilian Amazon, ~25% of the population was found to have reduced CYP2D6 
activity [146, 147]. In Cambodia, 52 and 1% of subjects were found to have interme-
diate and poor metabolism, respectively [157]. Most surveys are based on genotyping 
results, whereas direct measurement of the CYP2D6 activity using CYP2D6 substrate 
metabolism (dextromethorphan to dextrorphan conversion) could more accurately 
determine the phenotype [145]. While CYP2D6 genotypes are not routinely screened 
in malaria-endemic areas, knowledge of the extent of this problem will help plan for 
vivax elimination.

6.2.4 Primaquine resistance

PQ-resistant P. vivax hypnozoites have never been unequivocally demonstrated. 
PQ efficacy studies are complicated to conduct and possibly one reason PQ resistant 
parasites have not been identified. PQ alone has excellent anti-relapse activity 
[158], but co-administration of a schizontocide (e.g., quinine, CQ, or an ACT) has 
been shown to significantly potentiate PQ’s anti-relapse activity [159]. This effect 
has been recently verified using an in vitro P. cynomolgi hepatic system, wherein 
CQ could enhance PQ’s activity against schizonts and hypnozoites by ~18-fold 
[160]. Any therapeutic failures of PQ in P. vivax radical cure could plausibly result 
from reasons other than PQ resistance. For example, treatment may fail because 
of improper PQ dose, short duration of treatment, or poor adherence to the treat-
ment regimen [80, 161, 162]. Further, with the current genotyping strategy, it is not 
possible to reliably determine whether a recurrent infection after day 28 is due to 
relapse or reinfection. In endemic areas, patients can harbor multiple genotypically 
different hypnozoites and a relapse infection may be from reactivation of a heter-
ologous hypnozoite clone [163, 164]. Likewise, a genotype different from that of 
the primary infection may be from either relapse or reinfection. PQ efficacy studies 
require longer follow-up, making it difficult to exclude the possibility of reinfection 
in endemic areas. In studies where the possibility of reinfection can be excluded 
[158, 165], PQ failure requires further scrutiny, especially with the newly identified 
CYP2D6 effect. In 21 Indonesian patients who experienced therapeutic failure of 
PQ against P. vivax relapse, 20 were classified as CYP2D6 impaired, whereas only 
one with normal CYP2D6 activity and adequate PQ exposure may represent true 
resistance to PQ [145]. Ultimately, PQ resistance may still be rare in most endemic 
areas, though continued surveillance is recommended.

7. Vector control

P. vivax produces transmissible gametocytes early in infection before the devel-
opment of clinical symptoms [166–168], allowing ready transmission through 
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mosquito vectors with more efficient transmission in certain species [169, 170]. 
There are 71 Anopheles species/species complexes that are potential vectors for vivax 
malaria [171], and vector control is a critical component for integrated control 
of vivax malaria [172]. Long-lasting insecticide-treated nets (LLINs) and indoor 
residual spraying (IRS) are the key vector-based malaria interventions that are 
highly effective in sub-Saharan Africa [173, 174]. However, these measures are either 
under-utilized with low coverage or less effective in certain regions [82, 175]. Since 
many vector species exhibit early evening and outdoor biting preferences, LLINs 
and IRS alone are not sufficient for interrupting malaria transmission [176]. In 
malaria elimination settings, residual transmission often occurs in a forested habitat 
that lacks core mosquito control coverage [177, 178], requiring targeted vector con-
trol efforts for special populations. Further, the emergence and spread of insecticide 
resistance compromising the efficacy of mosquito control measures needs continual 
monitoring [179–181]. Successful malaria elimination programs in various regions 
of the world have all included vector control as one of their pillar strategies [16]. 
Thus, novel vector control approaches are desperately needed including larval 
control strategies [182, 183], incorporation of ivermectin in the mass drug admin-
istration (MDA) program to reduce the life span of mosquitoes [184, 185], topical 
and spatial repellents [186, 187], genetically manipulated mosquitoes for population 
replacement [188], and next-generation LLINs and IRS [189].

8. Technologies and strategies for supporting elimination

8.1 Experience gleaned from successful stories

Despite the unique challenges posed by P. vivax, elimination is achievable with 
integrated control measures. There are nearly 40 countries and territories that have 
been WHO certified as malaria-free, with 10 of those achieving certification since 
the turn of the century. Although they all used a combination of strategies includ-
ing vector control, case management, and mass drug administration, different 
regions emphasized specific sets of tools at different stages of elimination. The 
Maldives, the first country in SE Asia to reach malaria-free status, relied heavily 
on vector control [190]. For Sri Lanka’s battle against malaria, strong surveillance, 
case detection, and patient isolation with treatment were key to its highly targeted 
elimination strategy [191]. Sri Lanka had anti-relapse treatment as a component of 
its elimination plan, especially for highly mobile military members, engendering 
the elimination of P. vivax almost simultaneously with P. falciparum [191]. In the 
republics of the former Soviet Union, preventive therapy and MDA with PQ, sea-
sonal CQ chemoprophylaxis, and IRS, were instrumental for malaria elimination 
[16, 192]. China eliminated indigenous malaria cases in 2017 after the declaration 
of the National Malaria Elimination Action Plan in 2010 [193]. In the final stage of 
malaria elimination, China adopted targeted MDA to eliminate vivax transmission 
in central provinces and developed a rigorous 1–3-7 malaria surveillance strategy 
[194, 195].

8.2 Strategies for vivax elimination

Management of clinical vivax malaria. Accurate diagnosis using sensitive 
methods is critical for proper treatment of vivax cases. More sensitive diagnostics 
such as the uRDTs under development may fill such a need. For the treatment of 
blood stages, a unified treatment with ACTs is highly recommended. The deploy-
ment of point-of-care diagnostics for G6PD deficiency will ensure the wider 
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prescription of the anti-relapse drug PQ. For those patients with G6PD deficiency, 
monthly presumptive treatment or prophylaxis with a drug with a long half-life 
such as naphthoquine may be adopted, as it has proven to be safe and 100% effec-
tive for preventing relapse malaria parasite [196, 197].

Targeted MDA. As mass screenings and treatment-based strategies are inef-
fective for the final elimination phase [65], residual transmission requires targeted 
MDA to eliminate asymptomatic and submicroscopic parasite reservoirs. For the 
success of MDA, better knowledge of malaria epidemiology and strong community 
engagement are needed. In areas such as the Greater Mekong subregion, G6PD 
deficiency and CYP2D6 poor metabolizers are prevalent and may account for 30% 
of the population. In addition, point-of-care diagnostics for G6PD deficiency are 
not available, which seriously undermines the feasibility of PQ-based MDA [156]. 
In these regions, periodic MDA with an ACT or prophylaxis drug combination with 
a long eliminating half-life may be an effective alternative [196–199]. Incorporation 
of ivermectin in the MDA program can reduce the life span of adult mosquitoes and 
in turn, the transmission of the parasite [184, 185].

Vector control. Traditional control methods such as LLIN and IRS need to be 
implemented with high coverage. This can be supplemented with novel vector control 
approaches such as larval control [183]. Topical and spatial repellents [186, 187] may 
be used for populations at higher risk of outdoor transmission.

Surveillance system. The establishment of a stringent malaria surveillance 
system in the NMCPs that allows timely responses to new malaria incidence plays 
a crucial role in malaria elimination. This has proved highly important for many, 
if not all, successful malaria elimination stories. Within this system, training and 
capacity building are necessary to establish a malaria control network responding 
effectively to emerging malaria cases.

8.3 Sustaining elimination

With increased international and cross-border travel, imported malaria cases 
re-introduce malaria in countries where malaria has been eliminated [193, 200], 
potentially leading to local transmission [58]. Weakening malaria control programs 
have been linked to almost all resurgence events such as one that occurred in central 
China [201], and resource concerns are a large contributing factor [202]. Targeted 
elimination programs (including regular screening and extensive vector manage-
ment) can be costly, and there remains a concern that countries who have achieved 
elimination status may be tempted to reduce their targeted vigilance in order to 
prioritize funding for other endeavors [203]. However, vector control programs are 
vital to multiple infectious disease programs, which makes them key components 
of an integrated response. Additionally, countries should continue to train medical 
workers for the diagnosis and treatment of malaria and remain vigilant to malaria 
re-introduction from international travelers or mobile communities. Experience 
from the malaria program in South Korea demonstrated the significance of good 
case management practice combined with stringent surveillance for reducing the 
resurgent malaria threat [204]. In many malaria-free nations, chemoprophylaxis is 
suggested for international travelers [191, 205], and introduced cases are met with 
an investigation to eliminate the possibility of endemic spread [206].

9. Conclusions

Several unique biological characters of the P. vivax parasite are responsible 
for its wide distribution and persistence in the face of escalating control efforts. 
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Table 2 summarizes the challenges in controlling and eliminating vivax malaria 
and potential solutions. Because of the geographical variation of the vivax malaria 
situation, different endemic countries are likely to emphasize one or a few control 
strategies. As an infectious disease involving the human-parasite-vector triad, it 
requires integrated approaches targeting all components of these interactions for 
the ultimate elimination of vivax malaria.

Acknowledgements

We thank the National Institute of Allergy and Infectious Diseases, NIH, for 
financial support (U19AI089672).

Problems Solutions

Relapse from reactivation of dormant hypnozoites; 

long-latency strains allow for parasite survival 

beyond winter season

Treatment of hypnozoite stage; sustained vector 

control to prevent transmission

Anti-relapse treatment with PQ or TQ increases 

risk of acute hemolytic anemia in G6PD deficient 

patients with varying degrees in male vs. female

Deployment of point-of-care G6PD RDTs and 

gender-sensitive treatment strategies that account 

for differing phenotypic presentation of G6PD 

deficiency.

Impaired activity of CYP2D6 is associated with 

poor PQ efficacy

Screening for impairment in CYP2D6 activity in 

regions of PQ treatment failure can inform targeted 

treatment strategy

Lack of radical treatment for patients with 

G6PD deficiency, low CYP2D6 activity, and PQ 

contraindication

Prophylaxis with a safe drug with a long half-life 

(e.g., naphthoquine)

Suboptimal dosing in CQ treatment of 

uncomplicated malaria

Standardizing dose to 30 mg/kg, especially 

in children under five years can prevent early 

recurrence

CQ resistance in many endemic sites Treatment with ACTs

Lack of RDTs for detecting asymptomatic 

reservoirs with low parasitemia

Detecting antibodies to specific P. vivax proteins 

followed by treatment may reduce P. vivax 

prevalence

Residual transmission from asymptomatic and 

submicroscopic parasite reservoirs

Targeted MDA following epidemiological assessment 

and community engagement

Vector control strategies such as LLINs and IRS 

have low coverage, decreased adherence and 

limited efficacy in some regions

Increasing coverage of LLINs and IRS. Implementing 

novel vector control approaches to decrease mosquito 

density, lifespan, and outdoor transmission

Single vertical strategy to eliminate malaria 

remains unsuccessful

Combined strategies of strong surveillance, early 

case detection, patient isolation with treatment, 

sustained vector control.

Table 2. 
Summary of the problems and solutions in eliminating P. vivax malaria.
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