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Chapter

Atomistic Mathematical Theory
for Metaheuristic Structures of
Global Optimization Algorithms in
Evolutionary Machine Learning
for Power Systems
Jonah Lissner

Abstract

Global Optimization in the 4D nonlinear landscape generates kinds and types of
particles, waves and extremals of power sets and singletons. In this chapter these
are demonstrated for ranges of optimal problem-solving solution algorithms. Here,
onts, particles, or atoms, of the ontological blueprint are generated inherently from
the fractional optimization algorithms in Metaheuristic structures of computational
evolutionary development. These stigmergetics are applicable to incremental
machine learning regimes for computational power generation and relay, and
information management systems.

Keywords: metaheuristic, particle swarm optimization, global optimization,
machine learning, evolutionary algorithms, stigmergetics, arrow’s paradox,
atomistics, Fermat’s last theorem, network theory, Hensellian mathematics

1. Introduction

The evolution of Algorithms from a simple route, to complexified paths requires
maps from zones of optimal utilization, to be solved sufficiently, in a given amount
of time.

These algorithms are constructed for the purpose of building and advancing a
continuity for the next location of optimal utilization, in order to realize the impor-
tance to form workable nodes and circuits, that are discrete and exact algorithm
criteria in a time-basis. Therefore, a complete network on a nonlinear surface and
related machine learning epochs is built.

These criteria are based on Fermat’s Theorem proving global extrema locations
either at stationary or bounding points, based ultimately upon the Pythagorean
Theorem, where:

Let N be the set of natural numbers 1, 2, 3, … , let Z be the set of integers 0, �1,
�2, … , and let Q be the set of rational numbers a/b, where a and b are in Z with
b 6¼ 0. In what follows we will call a solution to xn + yn = zn where one or more of x,
y, or z is zero a trivial solution. A solution where all three are non-zero will be called
a non-trivial solution [1].
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2. Materials and methods

2.1 Metaheuristic structural rules for the algorithm building

It is a rule of No Unreasonable Effectiveness of Mathematics in any Science
[Wigner] [2], and therefore a notion that No Unreasonable Effectiveness of
Axiomation in any Science, that 3 Rules of Information Physics [3IP] by Jonah
Lissner exist:

I.Problem of Demarcation.

II.Rule of Information Dichotomy [Gestalt-Inverse Gestalt], and thereby
requiring a kind of.

III.Context-Restricted Deep Structure [CRDS] for the given topology.

Therefore hypothesized to be commutable terms within this 3IP rulebase, The
Three Thermodynamic Rules of Macrodynamics by Jonah Lissner. The 3 General
Rules of Macrodynamics [3GRM] which are established to define Global Optimiza-
tion Algorithm [GOA] challenges:

1.The Rule of the Continuity of Primaries

2.The Rule of Perpetuation of Information Inequalities of Primaries

3.The Rule of Unprovable Ideals, Cardinals or Delimitations of Complex
Adaptive Evolutionary Systems [CAES].

3. Algorithm definition

The Metaheuristic Algorithm is defined by the Author [Jonah Lissner] as.
An ontological mechanism to generate or activate decision paths [algorithms] and

make decision potential to solve [essentially two-state] paradoxes, a computational
physical network and topos, for practical effort or application. Therefore can be
constructed a theoretical or hypothetical guideway from objects and particles to
advance ontological gradations of relevance and value, through a logical progression.

A relevant algorithm to solve for discrete stigmergetics in nonlinear optimiza-
tion challenges for graphing algorithms of power systems has been demonstrated in
Ant Colony Optimization [ACO]:

Here in general formula where

pkxy ¼
ταxy

� �

ηβxy

� �

P

z∈ allowedx
ταxz
� �

η
β
xz

� �

by trail update action τxy  1� ρð Þτxy þ
P

k

Δτkxy.

for given function sets

f xð Þ ¼ λx, for x≥0; (1)

f xð Þ ¼ λx2, for x≥0; (2)
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f xð Þ ¼
sin

πx

2λ

� �

, for 0≤ x≤ λ;

0, else

(

(3)

f xð Þ ¼
πx sin

πx

2λ

� �

, for 0≤ x≤ λ;

0, else

(

: (4)

Evolutionary Game Theory [EGT] challenges in optimization schedules are
therein linked to Ant Colony Optimization [ACO], e.g. Eigenvector centrality
formula

Where for G≔ E,Vð Þ with V vertices let A ¼ av, tð Þ, e:g:av, t ¼ 1 or av, t ¼ 0:Therefore xv ¼ 1=l

SigtsetM vð Þxt ¼ 1=l SigtsetG av, t xt ibid½ �:

(5)

It is a basis for optimization schedules that there is an asymmetrical velocity,
mass and gravity of said scope of systems. At various times in the computational
history, particle optimization on the manifolds evolve at a faster rate [or slower
rate] than before. Hence the given incremental and discrete rate of increase, in
valleys and peaks accelerates and stabilizes at a higher positive, null or negative
value and result in extremal mechanics and nonlinear dynamics. An example can be
demonstrated utilizing power faults and extremals on the electrical circuits [3].

These problems of prediction for probability of choice of one object or particle of
a set, for pariwise sets and in algorithms, have been demonstrated in Arrow’s
Impossibility Theorem and for Algorithmic Information Theory [AIT] whence we
can replace voter for global optimization particle and replace group with set:

1. If every voter prefers alternative X over alternative Y, then the group prefers X
over Y.

2.If every voter’s preference between X and Y remains unchanged, then the
group’s preference between X and Y will also remain unchanged (even if
voters’ preferences between other pairs like X and Z, Y and Z, or Z and W
change).

3.There is no “dictator”: no single voter possesses the power to always determine
the group’s preference [4].

Important is Criteria 3, from whence adaptive and efficient algorithms have
space to be constructed as particles on the run-time, for a given Global Optimiza-
tion Algorithm [GOA].

4. Building the algorithm

In a praexological theory [5] this is proposed because of the inherent general
inaccuracy of specific problems, learning rubrics, and Macrodynamic properties of
a given performance landscape, and ultimately inefficient of any algorithmic sys-
tem, given isomorphic [atomistic or non-atomistic] qualities of rulebase, algorith-
mic structure, weights, and variables [6]. These in turn can be represented as
information sets, materiel, work, and symbolic representation and/or power in
specific qualia of Historical Rule of Perpetuation of Information Inequalities set to
various scales and models.
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Clerc has demonstrated a general Metaheuristic algorithm where for f: n ! 

essentially f(a) ≤ f(b). S includes the number of particles in the swarm having
specific position and velocity in the search—space:

for each particle i = 1, … , S do
Initialize the particle’s position with a uniformly distributed random vector: xi
� U(blo, bup)
Initialize the particle’s best known position to its initial position: pi xi
if f(pi) < f(g) then
update the swarm’s best known position: g pi

Initialize the particle’s velocity: vi � U(�|bup-blo|, |bup-blo|)
while a termination criterion is not met do:

for each particle i = 1, … , S do
for each dimension d = 1, … , n do

Pick random numbers: rp, rg � U(0,1)
Update the particle’s velocity: vi,d ω vi,d + φp rp (pi,d-xi,d) + φg rg
(gd-xi,d)

Update the particle’s position: xi xi + vi
if f(xi) < f(pi) then

Update the particle’s best known position: pi xi
if f(pi) < f(g) then

Update the swarm’s best known position:

g pi: 7½ � (6)

5. Results and discussion

5.1 Complex adaptive evolutionary system: thermodynamic landscape

For the purpose of evaluating algorithmic fitness on the given landscape the
following ansatz can be utilized for Particle Swarm Optimization [PSO] for a
decision tree:

For f : Mn> >M and where0M ¼ KH_ t,hð Þ x iE (7)

Where
M = Manifold
0M = Algorithmic Landscape/Manifold, for
KH = potentiated Knowledge History of the Algorithm
t = tradition or procedural process structure [word, string, grammar, memory

mapping, rulebase, database] of the algorithm
h = computational multiplicatives and inequalities of the x iE = Adaptive Land-

scape History of the [Numerical] Object(s) or Particle(s) on the Network.
Lovbjerg and Krink demonstrate for the thermodynamic variables on the Parti-

cle Swarm Optimization [PSO]:

! vi ¼ χ w! viþ φ! 1i p! i� ! xið Þ þ φ! 2i p! g� ! xið Þð Þ (8)

where χ is the constriction coefficient.
Here the Three General Rules of Macrodynamics [3GRM] Macrodynamic

Automata Rules [MAR] are applied to Information Natural Dynamics [IND]
criteria:
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Natural Sets, Natural Kinds, Natural Procedures, Natural Strings, Natural Radi-
cals, Natural Binaries, Natural Radices, in Complex Adaptive Evolutionary System
[CAES]-Multiagent System [MAS] for 4D model variables.

These variables should each contain criteria:
Time-Complexity, Particle-Value, Particle-Weighting in Fuzzy set theory,

Gravity of System, <<> > Nanodynamics of System variables [TC-PV-PW-GS-
NDS]

Set approximate to

f : Omega set Rn> >R with the global minima f ∗ and the set of all global minimizers X ∗ in

Omega to find the minimum best set in the function series of xð Þ

(9)

for system conditions, system boundaries, number and density of particles in the
total Information Natural Dynamics [IND] of the Global Optimization Algorithm
[GOA]. These are applied to algorithmic manifold for the candidate solution on the
given search spaces. It can be argued that given the extremes of information dis-
equilibrium applied to macrodynamic disequilibrium models, there are inevitably
generated extremals of various degrees of power, in the incremental Information
Dynamics.

5.2 Complex adaptive evolutionary system: weighting

These differentiable functions can be further defined c.f. Dense heterarchy in
Complex Systems Algorithms of a coupled oscillators, where in general formula.

dx

dt
¼ P tð Þ þ μ Q t, μð Þð Þxþ f tð Þ, (10)

Here in a differential equation we can demonstrate.

u nð Þ ¼ f t, u, u0, … , u n�1ð Þ
� �

, n≥ 2, (11)

These can be demonstrated in Particle Swarm Optimization [PSO], and
Macrodynamic models of Meta-optimization of Particle Swarm Optimization [PSO]
[7], c.f.

vi t þ 1ð Þ ¼ w � vi tð Þ þ n1�r1� pi � xi tð Þ
� �

þ n2�r2� pbest � xi tð Þ
� �

(12)

for each set of given epoch or evolutionary landscape scenario prediction in
analytical and expectation weighting parameter formula algorithm optimization
[Meissner, et al., ibid].

5.3 Complex adaptive evolutionary system: thermodynamics

Regarding bounding definitions, Chaitin demonstrated in Algorithmic Informa-
tion Theory [AIT] algorithmic decomposition given Boltzmann-Shannon entropy,
where in general formula to set the integral.

H Xð Þ ¼
X

i

P xið ÞI xið Þ ¼ �
X

i

P xið Þ log bP xið Þ,

and
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lim
p!0þ

p log pð Þ ¼ 0:

For Information Natural Dynamics [IND] pairwise comparison, the genesis and
stigmergetic evolutionary dynamics of the A-group agent H_A c.f. for

f : 
n !  for xi ∈

n and vi ∈
n (13)

in Particle Swarm Optimization [PSO].
The variables include function space, gradient, vector and weighting and addi-

tionally the stigmergy of the given Macrosystem and subsystem autonomics such as
in a Pairwise Breakout Model [PBM].

In associated Fuzzy set logic to determine power externals and singelton
mechanics in atomistic Natural Dynamic System [NDS] operations, are often
utilized border-pairs or extremals for multi-pair Multilayer Perception-Learning
Classification Algorithms [MLP-LCM] [7].

Examples of particle Monadicity in Algorithmic Information Theory [AIT]
whence the formula

F : L Að ÞN> >L Að Þwhere the n‐tuple R1, … ,RNð Þ∈L Að ÞN (14)

indicate the possibilites and types of information physical mechanics for possible
variables of the landscape extremals as particles within the min-max parameters
[8]. A particle-discrete control function of the node degrees on the evolutionary
landscape can therefore be defined where essentially

f t ið Þ : P kð Þn> >Kj Integral o t k t’ð ÞKp Sig dj tð Þ=dt: (15)

To quantify, Primary extrema of n-arity or n-Adicity [Jonah Lissner] are therefore
defined by the Author [Jonah Lissner] for alternatives of pair choices [as monoidal
algorithmic circuits in the Complex Adaptive Evolutionary System [CAES]] which
can be fractional off the prime polynomial root modulos, from the initial power
conditions and therefore generate the discrete information inequalities. These can be
demonstrated in Hensellian numbers, and secondly, derivable fractional functions,
inherent in any given complex topos of an complex adaptive evolutionary system [9].

Nagata defined thusly: A local ring R with maximal ideal m is called Henselian
if Hensel’s lemma holds. This means that if P is a monic polynomial in R[x], then
any factorization of its image P in (R/m)[x] into a product of coprime monic
polynomials can be lifted to a factorization in R[x] [10].

5.4 Complex adaptive evolutionary system: networks

The network of circuits then form the basis for Complex Network Systems
[CNS] from Simple networks L∝ logN and adaptive complex or dynamic systems
and increasingly complex or quantum probability mechanics.

Scale-free or Barbasi-Albert Models are utilized to advance the mechanics and
hypotheses for Complex Network Systems [CNS] e.g. for

P kð Þ � k�3

and

pi ¼
ki

P

jk j
,
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exist for give node degree correlations and links at network computations for a
generic clustering law of

C kð Þ ¼ k�1: (16)

It can be determined in scale-free network nodes.

L∝ log logN for P kð Þ � k�γ:

where

s Gð Þ ¼
X

u, vð Þ∈E

deg uð Þ � deg vð Þ:,

and dynamically

P kð Þ � k�γ with γ ¼ 1þ
μ

a
∞

:

where.

p xi, x j

� �

¼
δxix j

1þ δxix j
:

6. Conclusion

These Metaheuristics for Global Optimization Algorithms [GOA] are for pur-
pose of achievement of the theoretical completion between two and more nodes on
the network landscape, and ultimately the given requirements for the applied elec-
trical grid. This theory can be utilized to derive, add, multiply, subtract, or divide
units designated as necessary to accurately define the parameters for control of the
electrical grid, and for control of network extremals.

Some theoretical requirements for Power System applications and machine
learning algorithm libraries for solving heuristic challenge for power requirements
and control on manifolds have been demonstrated:

1.In the definition for innovation in Global Optimization Algorithms [GOA] for
Machine Learning in Power Systems the Path-decision or Algorithm is the
activated object [ontesis] and Algorithmic network is the kind or type of
systemic algorithmic operation of object-getting and technology-building
[telesis], due to computational physical plasticity conditions and relevant
criteria.

2.Furthermore the network theory meaning of Path-decision or Algorithm and
the computational landscape itself as a network, can be defined discretely in
terms of multiple avenues and nodes for algorithms of Boolean systems, [e.g.
st-connectivity] whence it has progressed in weight, mass and velocity of the
defined Ontology.

3.Path-decision or Algorithm programmes in Computational Sciences, by modules
of Alphanumeric Symbols/Characters as Power Systems of Algorithms, [PSA]-
Information Natural Dynamics [IND] or in a macrodynamic method, Systems
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of Utilizationmay develop, for the purpose of heuristic advancements based on
computational physical references, functions and operations on specific
topologies and as treated as given Computational sequences.

It is proposed from 3 Rules of Information Physics [3IP] and The 3 General Rules
of Macrodynamics [3GRM] for Unprovable Ideals, Cardinals or Delimitations of
Optimization from origins in The Rule of Perpetuation of Information Inequalities of
Primaries. These criteria are the basis to utilize previous methodologies of reasoning
for contemporary and future new evolutionary algorithmic landscapes in the
accretive methods.

This Metatheory develops theoretical agreement for the computational physical
basis for a General Global Optimization Field Theory [GGOFT], given the algorith-
mic requirements of minima and maxima of a set of functions for a given compu-
tational surface, to determine roots, stationary and turning points, points of
inflection, convexity, and concavity for atomistic qualities of evolutionary land-
scape extremals and their subsequent geometric values and derivations [11].

Therefore in this dialectic, the Onts or Particles in Complex Adaptive Evolution-
ary System [CAES] and Dynamic Global Workspace Theory-Intelligent Computa-
tional System Organization [DGWT-ICSO], can be understood as network
gateways in conjunction with nonlinear surfaces, described by Epistemes, or Seman-
tical value for given Formulae, Algorithms, Landscape. Their purpose is to build and
attempt to game-solve more complex and efficient, workable algorithmic structures
for the machine learning algorithm challenges to incremental Global Optimization
Algorithm [GOA] regimes [12].
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