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Abstract

Brassica spp., commonly known as rapeseed-mustard, plays a significant role in 
the Indian economy by providing edible oils, vegetables, condiments and animal feed. 
Globally, India holds second and third position in rapeseed-mustard area under culti-
vation and production, respectively. However, anthropogenically accelerated climate 
change thwarts yield potential of rapeseed-mustard by employing abiotic (drought, 
flood, temperature variation and salinity) and biotic (disease and insects) stresses. 
Various approaches such as molecular breeding, pre-breeding, −omics and biotech-
nological interventions have been used to develop varieties for improved yield and oil 
quality, climate resilient and resistance or tolerance to abiotic and biotic stresses. In 
this context, this chapter highlighted the different cytoplasmic male sterility (CMS) 
sources and their potential use for hybrid development. At the end, this chapter 
also enlisted salient achievement by the government and non-government institutes 
and briefly described the future perspective for improvement of rapeseed-mustard 
in India.

Keywords: rapeseed-mustard, hybrid breeding, oil quality, pre-breeding,  
biotic and abiotic stress

1. Introduction

Brassica spp., commonly known as rapeseed-mustard, plays an important role 
in the Indian economy by providing edible oils, vegetables, condiments and animal 
feed [1]. Nine oilseeds are the primary sources of vegetable oil in India. Among 
them soybean (39%), groundnut (26%) and rapeseed-mustard (24%) contribute 
more than 88% of total oilseeds production in the country. However, rapeseed-
mustard (31%) contributes maximum in terms of edible oil production followed by 
soybean (26%) and groundnut (25%) in the country [2].

Rapeseed-mustard is the third major edible oilseed crop of the world after 
soybean and palm oil. Globally, as per USDA during 2018-2019, it was grown over 
36.6 million hectares and produced 72.4 MT with a productivity of 19.8 q/ha.  
Globally, India accounts 19.8% of total acreage and 9.8% of total production. 



Brassica Breeding and Biotechnology

2

Rapeseed-mustard (8.3 MT) is the third most important annual oilseed crop in 
India, next to soybean (13.6 MT) and groundnut (9.1 MT) [2]. In India, rapeseed-
mustard is widely grown in diverse agro-climatic environments from North-East, 
North-West, Central to Southern states under different conditions such as sole 
crop/mixed crop, early/timely/late, rainfed/irrigated and saline or alkaline soils 
[3]. Based on average of 2014-2015 to 2018-2019 area and production data, major 
rapeseed-mustard growing states are Rajasthan (producing 44.9% of total rape-
seed-mustard from 40.7% area), Madhya Pradesh (producing 11.3% from 11.9% 
area) and Uttar Pradesh (producing 10.6% from 11.2% area). Rapeseed-mustard 
crops in India comprise eight species viz., Indian mustard, toria, black mustard, 
yellow sarson, brown sarson, gobhi sarson, karan rai and taramira (Table 1).

2. Origin

Historically, the cultivation of Brassica spp. has been quoted in numerous ancient 
scriptures and believed to be cultivated on or prior to 5000 BC. It has also been 
reported that mustard crop had cultivated in Channhu-daro of Harrapan ancient 
civilization during 2300-1750 BC [4]. There is ambiguity in the history as the origin 
of B. juncea is concerned. It had been believed that center of origin for B. juncea is 
Middle-East, where putative parents i.e. B. nigra and B. rapa would have crossed 
with each other. Later on, it had been disseminated to other parts of the world 
such as Europe, Asia, and Africa etc. [5]. Today, there are two centers of diversity 
i.e. China and Eastern India based on the prevalence of their wild progenitors and 
relatives. At present, it has been proved that there are two geographical races i.e. 
Chinese and Indian of B. juncea based on molecular and biochemical studies [6].

Species Common name Type of 

Pollination

Chromosome 

No. (2n)

Genome Genome 

size (Mb)

B. juncea (L.) 
Czern.

Indian mustard Often-self 36 AABB ~922

B. carinata A. 
Braun

Karan rai or 
Ethiopian mustard

Often-self 34 BBCC —

B. napus L. Gobhi sarson Self and 
cross

38 AACC ~1130

B. nigra (L.) 
Koch

Black mustard Cross 16 BB ~558

B. oleracea L. Cabbage, 
cauliflower etc.

Cross 18 CC ~630

B. rapa L. var. brown sarson Lotni type: 
Cross

Tora type: 
Self

20 AA ~485

var. toria Cross

var. yellow sarson Self

Eruca sativa Taramira Self 22 EE —

B. alba Rab. 
(Syn. Sinapis 

alba)

White mustard Self 24 SS —

Table 1. 
List of limited and importantly cultivated species of Brassica species.
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In 1935, Nagaharu U [7] proposed a theory known as U’s triangle to show 
genetic relationships based on artificial inter-specific hybridization experiments 
among six species, namely; B. rapa, B. nigra, B. oleracea, B. carinata, B. napus and 
B. juncea. As per theory, three allotetrapolyploid species (B. napus, B. juncea and B. 
carinata) were derived by natural hybridization of three basic diploid species (B. 
rapa, B. nigra and B. oleracea) followed by genome doubling (Figure 1). Nowadays, 
with the accomplishments of genome sequencing of Brassica taxa, this hypothesis 
has been increasingly accepted. Furthermore, it has been scientifically proved that 
allotetraploid B. napus and B. juncea had been derived from their diploid parents 
based on comparative genomic analysis and the results were in accordance with ‘U’ 
triangle [8].

3. Distribution

Brassicas include large number of crops under cultivation. Among them, the 
Indian mustard occupies maximum area (> 90%) and predominantly cultivated 
in North-Western states followed by some nontraditional areas of Central and 
Southern states of the country [1]. The lotni (cross-pollinated) and tora (self-polli-
nated) are two different ecotypes of brown sarson. Earlier one is mainly cultivated 
in temperate regions of the country such as parts of Jammu, Kashmir and hilly 
areas of Himachal Pradesh, whereas later one is cultivated in parts of Eastern Uttar 
Pradesh [3]. However, yellow sarson is predominantly cultivated in parts of  
Bihar, West Bengal and Orissa. Toria is mainly used as short period crop in parts 
of Bihar, West Bengal, Orissa and Assam. Whereas, it is grown as a catch crop in 
Haryana, Himachal Pradesh, Madhya Pradesh, Punjab, Uttarakhand and Western 
Uttar Pradesh. Taramira, relatively more drought tolerant, is cultivated in drier 
parts of Rajasthan, Uttar Pradesh and Haryana. However, karan rai and gobhi 
sarson have limited area under cultivation in India [1].

Figure 1. 
U’s triangle showing genetic relationship among six Brassica species [7].
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4. Breeding approaches in rapeseed-mustard

4.1 Abiotic stresses

Plant stress factors can be elucidated as any adverse condition or substance that 
affects the growth, reproduction, metabolism and development of the plant [3]. 
Acclimatization or hardening refers to exposure of unfavorable environmental 
circumstance to the plant and thereby results into physiological adjustment that 
protects it from injury or impaired growth which is mostly occurred due to envi-
ronmental stresses [9]. There might be fixed genetic changes if plant faces several 
generations under constant stress condition by selective environmental pressure 
and thereby population show adaptation to changed environment. Abiotic factors 
are the main yield-limiting factors for crop plants including rapeseed-mustard. 
The major abiotic factors are- moisture variation (drought and flood), temperature 
variation (heat, cold and frost), salinity and heavy metal that adversely affect the 
metabolic pathways and thereby result into yield penalty.

4.1.1 Drought stress

Globally, rapid climate change under anthropogenic accelerated interventions 
crafts drought a major menace to the agricultural production system and conse-
quently has a great challenge to the global food and nutritional security. Plants 
have different ways to synergies with drought stress such as modifications in plant 
growth, behavior, morphology, and physiology. In Brassica, drought tolerance is 
a complex trait and thereby associated with different traits; and can be evaluated 
by various indicators. Moreover, it is difficult to choose all the exiting indicators at 
a time to use in breeding programs for crop improvement. Drought can adversely 
affect plant growth at various stages from seed germination to reproduction and 
flowering to harvesting, and ultimately results into oil and yield penalty [3]. 
Prolonged drought reduces chlorophyll content mostly due to impaired functioning 
of thylakoid membrane and heavy loss of pigments [10]. In the context, the pattern 
of gene expression of those traits which are associated with osmotic balance, water 
transport, damage repair and oxidative stress will be altered by prolonged drought 
stress (Table 2). Thus, drought is one of the major factors to reduce potential yield 
of crop plants and introgression of traits from wild relatives can be used for the 
development of drought resilient cultivars in rapeseed-mustard.

4.1.2 Salt stress

Recent advances in molecular breeding have been characterized and genetically 
mapped various salt related genes in plants. Gradual increase of the understanding of 
several biochemical, and physiological mechanisms and pathways of salt related genes 
has made it easy to develop genetically improved varieties which are more resilient and 
high yielding under salinity stress. In this context, transgenic approaches have also 
been used to know the effect of salt tolerant genes into the different genetic back-
ground by up-regulating or down-regulating genes under salt stress [33]. The progress 
under salt tolerance is great in major agricultural crops such as wheat, rice, mustard 
and tomato. A large number of gene (s)/QTLs have been mapped as well as cloned 
[33]. As Brassica crops are concerned, there are limited studies on salt regulating 
genes or QTLs across the world. In India, only limited salt tolerant varieties have been 
developed so far such as “CS56” and breeding approaches are not as much successful 
as to other stresses [3]. It is need of the hour to understand the mechanism of salt tol-
erance and to identify stable salt tolerance genotypes from available genetic resources 
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by extensive screening methods to use them in breeding programs. Researchers have 
done excellent work on ion homeostasis and osmolytes regulation by using transgenic 
approach in Brassica crops [34] and identified few candidate genes (Table 2).

Species Gene/s Function Tolerance References

Arabidopsis DREB1A Dehydration response element 
binding protein

Drought, 
salt and 
freezing

[11]

SOS1 Plasma membrane-bound  
Na+/H+ antiports

Salt [12]

AtNHX1 Vacuolar Na+/H+ antiporter Salt [13]

AtHKT1 Na + transporter Salt [14]

FTA Farnesyltransferase Drought [15]

AtFTB β-subunit of 
Farnesyltransferase

Drought [16]

Arthrobacter 

globiformis

codA Choline oxidase Salt [17]

B. rapa BrERF4 Ethylene-responsive factors Drought 
and salt

[18]

BrGI Reduced expression of GI, 
enhanced salt tolerance

Salt [19]

B. napus AtDWF4 Enhanced defense gene 
expression

Drought 
and heat

[20]

BnNHX1and 
BnHKT

Salt-responsive genes Salt [21]

BnLEA4-1 Late-embryogenesis abundant 
proteins in group 4

Salt [22]

BnLAS Transcriptional regulator 
members in GRAS family

Drought [23]

DREB Improving the abiotic stress 
tolerance

Salt [24]

BnSIP1-1 Played roles in ABA synthesis 
and signaling

Salt and 
Osmotic

[25]

AnnBn1 Membrane-binding proteins 
for Ca2+

Drought [26]

B. oleracea var. 
botrytis

APX, SOD Protect from oxidative stress Salt [27]

B. juncea cv. 
varuna

Glyoxalase I 

Lectin

Catalyze the detoxification of 
a highly cytotoxic metabolite 
methylglyoxal to d-lactate

Drought 
and salt

[28]

B. juncea BrECS Glutamylcysteine synthetase Salt [29]

AtLEA4-1 AtLEA4-1 LEA4 protein Salt [30]

Gly I Detoxification of 
methylglyoxal

Salt [31]

AnnBj2 Upregulated expression of 
ABA-dependent (RAB18) and 
ABA independent (DREB2B) 
genes

Salt [32]

Table 2. 
Brief summary of abiotic stress tolerance associated genes and their functions.



Brassica Breeding and Biotechnology

6

Apparently, both drought and salinity stress have few similarities in plants. 
Both stresses are primarily responsible for cellular dehydration, which removes 
water from the cytoplasm into the intercellular space [35]. Based on the functional 
similarity of both the stresses in plants, it can be concluded that plants have almost 
identical mechanism to deal with both stresses. In the present scenario, researchers 
are extensively working on model plant i.e. A. thaliana to understand the genetics 
of salt and drought stress tolerance, which can positively help to develop tolerance 
cultivars in Brassica spp. and will improve agronomically important traits [36].

4.1.3 Heat stress

As the global warming is increasing due to unwarranted human activities, heat 
stress has become a major factor to hamper plant growth and development in agri-
cultural crops including rapeseed-mustard. Early sowing of Indian mustard, have 
various advantages as enlisted by Kaur and coworkers [37] but high temperature 
during the germination stage leads to reduction in the plant emergence and poor 
plant stand. The yield potential of Indian mustard was significantly reduced under 
late sown condition compared to timely sown due to terminal heat stress [38]. The 
reduction in emergence of Indian mustard due to hot soils can lead to substantial 
economic losses [39]. Where irrigation is available and multiple cropping system 
followed, especially in Central and North-Western plain zones, sowing of the 
mustard crop is delayed up to end of November due to late vacation of Kharif crop, 
leads to exposure of the crop to high temperature at maturity.

Rapeseed-mustard is adversely affected by heat stress (35/15 °C) at the early 
stage of flowering. Moreover, yield penalty can be avoided if high temperature 
occurs during early pod formation. In this context, B. rapa is more sensitive to high 
temperature whereas B. juncea and B. napus are equally affected [40]. It has been 
reported that optimal temperature for B. napus is lower than B. juncea and B. rapa 
[41]. Generally, as temperature increased, the number of pods produced by the 
plants increased and seed weight decreased. High temperature has a direct effect 
on the formation of reproductive organs. More research is needed under controlled 
environments to identify the critical temperature, sensitive reproductive organ 
stage, source-sink relationship, and genotypic variations for heat stress tolerance 
and must be verified under natural conditions [42].

4.1.4 Low temperature stress

Freezing injury has adverse effect on plant growth and development, and 
thereby leads to yield penalty. Seed germination is seriously affected by low tem-
perature. Plant stress hormones such as Brassinolide (BR) regulate plant physi-
ological pathways and helps in plant protection to combat low temperature stress 
[43]. Exogenous application of BR increased cold stress tolerance in A. thaliana 
and B. napus [44]. In this context, BR increases chlorophyll content, PS-II, 
antioxidant enzymatic activities and protect photosynthetic membrane system 
from oxidative damage [45]. It has been reported that accumulation of reactive 
oxygen species such as superoxide anion, hydrogen peroxide, singlet oxygen and 
hydroxyl radical is high under cold stress, and thereby causes oxidative stress in 
plants which leads to cell death [46]. The B. rapa has been reported more cold 
tolerance than B. napus. The impact of heat stress is high than cold stress because 
of inactivation of RuBisCO and/or other associated enzymes under heat stress. 
Intriguingly, B. oleracea is cold tolerant due to its acclimatization in cold regions 
of Europe, where summer temperature is also low and crop had domesticated 
since long back.
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Thus, acclimatization, domestication, adaptive trans-generational plasticity and 
genetic adaptation phenomenon can work simultaneously to abiotic stress tolerance 
in Brassica species.

4.2 Biotic stresses

A number of biotic stresses adversely affect the yield potential of rapeseed-
mustard in India. The major diseases are- Alternaria blight (Alternaria brassicae 
and A. brassicicola), white rust (Albugo candida), stem rot (Sclerotinia sclerotiorum), 
Rhizoctonia rot and downy mildew (Peronospora brassicae); and major insect pests 
are- aphid (Lipaphis erysimi), mustard saw fly (Athalia proxima) and painted bug 
(Bagrada hilaris). There are several methods to control insect and disease incidence 
such as application of pesticides, fungicides, biological agents and other non-
chemical techniques. However, the most economic, eco-friendly and cheap way to 
mitigate these menaces are to use of resistant or tolerant cultivars through conven-
tion and molecular breeding approaches.

4.2.1 Alternaria blight

The yield potential of Brassica spp. is adversely affected by Alternaria blight 
[Alternaria brassicae (Berk) Sacc.] disease. The pathogen can affect the host plant at 
all stages of growth and highest disease severity was observed during rainy season. 
The B. juncea and B. rapa are more susceptible than B. carinata and B. napus to 
Alternaria blight. The researchers have reported several sources of disease tolerance 
such as B. juncea cv. Divya, and wild species such as Sinapis alba L., B. maurorum, 
Diplotaxis berthautii and D. erucoides etc. [47]. Higher concentration of phenolic 
compounds (polyphenol peroxidase, oxidase and catalase), low N content, higher 
leaf sugar content, and more leaf wax deposition have been reported to deliver 
resistance to plants against Alternaria blight disease [48]. Pre and post fertiliza-
tion barriers are major concern while using wild relatives and progenitors as donor 
source in rapeseed-mustard breeding programs. However, limited sources of B. 
juncea (PHR 2, RC781, Divya, PAB 9534, and EC 399301) have been reported toler-
ance against this disease and extensively being used in breeding programs [3].

4.2.2 White rust

White rust [Albugo candida (Pers.) Kuntze] is a destructive disease in B. juncea 
and B. rapa; and significantly reduces potential yield up to 60% in mustard [49]. 
Forty-nine races of A. candida have been reported in India based on their infectivity 
on different Brassica spp. and their cultivars [50]. Most of the varieties under Indian 
mustard are susceptible to white rust whereas B. carinata and B. napus demonstrate 
high degree of resistance. Thus, gene introgression from B. carinata and B. napus to 
B. juncea through interspecific hybridization is essential for development of resis-
tant or tolerant cultivars in the country [51]. The varieties bred for disease tolerance 
are- JM-1, JM-2, DMH-1 and Basanti etc.

4.2.3 Sclerotinia rot

In rapeseed-mustard, Sclerotinia rot disease is triggered by Sclerotinia sclerotio-
rum and adversely affects plant growth and development. The disease has turned 
form minor significance to major one since last decade due to change in climatic 
condition. Pre-mature ripening is the cause of the disease. The pathogen has an 
array of alternate host therefore breeding for disease resistant is difficult [3].
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4.2.4 Insect (Aphid)

Mustard aphid (Lipaphis erysimi) is one of the major insect pests in rapeseed-
mustard and adversely affects plant growth, development, and reproduction; 
and thereby results into yield penalty. They are also act as vector for plant viral 
diseases such as turnip mosaic virus. There are several methods to identify 
resistant source for aphid resistance/tolerance in Brassica family such as based on 
seedling survival, aphid fecundity, and aphid infestation index etc. Some geno-
types of B. juncea such as Glossy B-85, RH 7847, and T 6343 were reported more 
tolerant to aphid infestation. B. campestris is more susceptible to aphid infesta-
tion than B. juncea and B. carinata [3].

4.3 Oil quality improvement

The oil quality for human consumption is determined by its fatty acid composi-
tion and concentration. Seed oil with high proportion of unsaturated fatty acid, 
particularly 16 and 18 carbon chain, is considered suitable for human consumption 
as edible oil. Rapeseed-mustard is mostly used as oilseed crop in India and its seed 
contain 35-45% oil content with 92-98% triacylglycerol of fatty acids (C16-C22). 
Seed oil contains lowermost saturated fat and possesses high proportion of essential 
fatty acid such as linoleic (C18:2) and linolenic (C18:3) which are not synthesized 
by human body. Linolenic acid is an essential dietary fatty acid; however, its higher 
concentration reduces shelf-life of oil because of auto-oxidation [3]. Erucic acid 
(C22:1) comprises almost 50% of total seed oil fatty acid in rapeseed-mustard and 
is undesirable for human consumption due to its adverse role in myocardial conduc-
tance and increase the level of blood cholesterol. The level of detrimental saturated 
fatty acid is less in rapeseed-mustard compared to other edible oilseed crops. The 
major constrains in seed oil are- erucic acid and glucosinolates [52]. Therefore, 
reduced concentration of glucosinolates and erucic acids is one of the important 
objectives in quality amelioration of Indian mustard seed oil. It has been reported 
that genetic inheritance of glucosinolates is complex and mostly are aliphatic 
(methionine derived) in nature in B. juncea. Genetic control of total glucosinolates 
in B. juncea has been reported to be under two major genes [53], multiple additive 
alleles at a single locus with maternal effects involved [54], six to seven genes [55] 
and up to five major QTLs [56] based on molecular mapping information.

The rapeseed-mustard varieties with low erucic (<2%) and glucosinolates 
(<30 μ mole/g of defatted cake) are termed as double zero (“00”). The term 
single zero (“0”) is used when variety contains only one factor either low erucic 
(<2%) or glucosinolates (<30 μ mole/g of defatted cake). In this context, several 
efforts have been made to improve oil quality of rapeseed-mustard in India 
since last three decades. In India, first low erucic acid (“0”) variety was LES-39 
(Pusa Karishma) followed by LES-1-27 (Pusa Mustard 21), LET-18 (PM 24), and 
LET-17 (PM-22) in B. juncea, whereas double zero variety was Pusa Double Zero 
Mustard 31 (PDZM-1).

4.4 Hybrid breeding

Rapeseed-mustard exploits high level of heterosis but employ difficulty in 
seed production due to complex flower structure, presence of self-compatibility 
and thereby self-pollination in nature, however crop also enjoyed cross-
pollination (30%) by pollinators such as honey bees. The extent of heterosis was 
reported by Sun [57] in rapeseed-mustard during early forties and was pioneer 
to begin with hybridization for exploitation of hybrid vigor. Subsequently, Ogura 
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[58] had successfully transferred male sterile cytoplasm from radish (Raphanus 
sativus L.) to B. juncea. In this context, several cytoplasmic male sterility systems 
have been reported such as tour [59] in B. napus, oxyrrhina [59], siifolia [60], 
trachystoma [61], moricandia [62], catholica [63], alba [62], lyratus [64], canar-
iense [65], erucoides [66], 126-1 [67] and barthauti [68]. Transgenic male sterility 
(barnase-barstar system) system was also used for exploitation of heterosis and 
development of hybrid varieties [69, 70]. It has been reported that large number 
of sterile cytoplasm is available, however only few can be utilized in heterosis 
due to lack of adequate and efficient fertility restoration system. Therefore, ICAR 
sponsored project (1989) “Promotion of Research and Development Efforts on 
Hybrids in Crops” which aimed for systematic and coordinated efforts for hybrid 
development in rapeseed-mustard in India with two CMS systems (ogu and tour) 
in B. juncea while polima in B. napus.

In India, heterosis was first reported in brown sarson (B. rapa) by Singh and 
Mehta [71]. It has been reported that the extent of heterosis is 13 to 99% in B. 
juncea, 10 to 72% in B. napus, 25 to 110% in B. rapa. Generally, hybridization 
between genetically distinct groups exploits high level heterosis than within group. 
Exploitation of high level of heterosis in plants necessitates large and usable hetero-
sis, effective pollination control mechanism, and profitability of seed production 
[70]. Thus, there is urgent need to improve genetic gain and heterosis in rapeseed-
mustard; genetic variability, in terms of variety, can be tested for 2-3 years across 
the centers in the country through All India Coordinated Research Project [72] and 
by result of high yielding, stress tolerance and stable variety would be produced.

4.4.1 Cytoplasmic male sterility and hybrids

A large number of CMS systems are available in rapeseed-mustard such as 
Raphanus/ogu, tour, oxyrrhina, siifolia, trachystoma, moricandia, catholica, lyratus, 
canariense, erucoides, and barthauti (Table 3). All the CMS sources cannot be 
directly used in hybridization programme due to their negative effects on plant 
growth and development such as chlorosis (ogura, oxyrrhina and moricandia), 
impaired flower opening (tour, trachystoma and lyratus), and also absence of fertility 
restoration. The chlorosis of three systems (ogu, oxyrrhina, moricandia) had been 
cured through somatic hybridization by fusing protoplast of chlorotic sterile and 
normal green plant [74]. The fertility restorer genes (Rfs) were identified in five 
CMS systems viz. trachystoma, moricandia, catholica, canariense and lyratus in their 
respective cytoplasmic donor species and restorer can be isolated simultaneously 
during transfer of sterile cytoplasm.

The success of hybridization programme, by using CMS system, depends upon 
availability of efficient fertility restoration. In rapeseed-mustard, the utmost used 
CMS system in India are-Raphanus/ogu CMS system, B. tournefortii CMS system, 
Moricandia arvensis CMS system, and Erucastrum canariense CMS system. In India, 
the first commercial hybrid PGSH 51 (B. napus) was released in 1994 based on tour 
CMS and yield was increased by 18% over the best hybrid check. The other hybrids 
are as follow- Hyola 401 hybrid (2000) was based on pol CMS system, NRCHB-506 
(2008) on mori cytoplasm, DMH-1 (2008) on 126-1 CMS, and PAC-432 (2009) 
on ogu cytoplasm etc. The genetic engineering techniques had also utilized for the 
development of male sterile system to exploit the heterosis in rapeseed-mustard 
and develop the barnase-barstar male sterile system [69, 70]. Hybrid DMH-11 was 
developed by Delhi University in India which became India’s first transgenic hybrid 
through barnase-barstar system. But DMH-11 was not released for commercial 
cultivation due to resistance from environmental activist in thought of its harm to 
environment.
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4.5 Pre-breeding

Wild progenitors and wild relatives are to be known as repository of valuable 
traits (quality, agronomic, biotic and abiotic stress tolerance) in crop plants but 
cannot be introgressed into the cultivated ones due to linkage drag, and cross-
incompatibility barriers. Pre-breeding helps to identify the useful traits in wild 
germplasm and employ its use in breeding programs. The major objective of pre-
breeding is to introduce new variation into the species of interest with minimum 
linkage drag. Molecular markers would play a great role to accelerate the breeding 
cycle, reduction in cost and time, and increase in the efficiency of introgression in 
pre-breeding programs [75].

Globally, India (15%) ranked second after China (17%) in terms of repository of 
Brassica germplasm. In India, National Bureau of Plant Genetic Resources (NBPGR) 
has contributed 4095 indigenous and 3401 exotic rapeseed-mustard accessions 
from 1986-2006 [76]. All the efforts have resulted into the collection of a total of 
14,722 accessions of cultivated, wild relatives, wild progenitors and related species 
[3]. There is a wide gap between available germplasm in gene banks and its utiliza-
tion in the breeding programs due to lack of available identified traits. Thus, there 
is urgent need to broaden the plant genetic diversity to combat anthropogenically 
accelerated climate change in the near future.

5. Biotechnological approaches

Rapeseed (B. napus), cultivated in temperate climate, have been believed to 
originate by natural hybridization between B. oleracea and B. rapa. B. napus was 
resynthesized by protoplast fusion of B. oleracea and B. rapa to widen genetic 
diversity and alter oil content. The biotechnical intervention was used either to 

CMS system Discovered by Year Fertility restoration

Raphanus/ogu Ogura [58] 1968 Restorer gene is available in B. juncea

tour Rawat and Anand [59] 1979 Available in B. napus

oxyrrhina Prakash and Chopra [73] 1988 No restoration available

siifolia Rao and coworkers [60] 1994 No restoration available

trachystoma Kirti and coworkers [61] 1995 Single dominant gene available for 
restoration

moricandia Prakash and coworkers 
[62]

1995 Single dominant gene reported for 
restoration

catholica Kirti and coworkers [63] 1995 Reported but not in use

alba Prakash and coworkers 
[62]

1995 Available in B. napus

lyratus Banga and Banga [64] 1997 Reported but not in use

canariense Prakash and coworkers 
[65]

2001 Reported but not in use

erucoides Bhat and coworkers [66] 2006 Reported but not in use

126-1 Sodhi and coworkers [67] 2006 Reported in B. napus

barthauti Bhat and coworkers [68] 2008 Reported but not in use

Table 3. 
Important sources of CMS in rapeseed-mustard for hybrid seed production.
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increase of genetic variability or transfer of desirable traits from other related 
species such wild relatives, wild progenitors or other unrelated crops to improve 
yield potential of crop which were not possible due to conventional or classical 
breeding methods.

5.1 Anther culture

Pollen culture can be used to develop stable homozygous lines by double haploid 
(DH) technique to improve agronomic traits in B. juncea. Improvement in culture 
condition and associated factors, which are limiting factor for embryo production, 
tend to increase efficiency of microspore culture or anther culture in B. juncea [77]. 
It has been reported that microspore culture is more successful than anther culture 
due to better response of genotypes for embryo culture. Microspore culture can be 
used for gene transfer, biochemical studies, and modification of fatty acid profile 
through mutagenesis [77]. The major factors which affect doubled haploid produc-
tion are- isolation of microspore, culture media, embryo selection, plant regenera-
tion, and chromosomal duplication. In India, there is no variety under cultivation 
of this technique.

5.2 Somaclonal variation

Somaclonal variation can be defined as genetic variation in somatic cells due 
to chromosomal rearrangement and regeneration of variable plants from callus 
by plant tissue culture. Furthermore, B. juncea variety Prakash produced multiple 
shoots in cotyledonary callus when high cytokinin and low IAA concentration was 
used in MS media [78]. A large genetic variation has been created in B. juncea by 
tissue culture through induced somaclonal, chemical mutagens, and gamma rays 
induced variation. For example, somaclone- SC-122 was developed with improve-
ment of five traits which were associated with yield improvement [79]. In India, 
Pusa Jai Kisan (Bio-902) was first somaclonal derived variety in 1993 by using 
Varuna as a parent and yield was improved by 17.4% over the parent.

5.3 Protoplast culture

Protoplast, cell without cell wall, culture induces protoclonal variation and cre-
ates stable genetic variability in rapeseed-mustard by using tissue culture technique. 
This technique was used B. juncea cv. RLM-198 by using V-47 media for production 
of somatic embryo and organogenesis. This method can be used for those Brassica 
species where hybridization is not possible and will help to create genetic variability 
for betterment of crop improvement.

5.4 Transgenic plants

In crop species, transgenic plants have been developed by using the recombinant 
DNA technology. It has been widely used to transfer alien gene/chromosomal 
segment to the recipient parent where naturally gene of interest is absent for bet-
terment of mankind. Various direct and indirect methods have been used for gene 
transfer in crop plants including rapeseed-mustard and mostly used direct method 
is Agrobacterium mediated gene transfer for seed yield, seed quality, biotic and 
abiotic stress tolerance and desirable agronomic traits [80]. As earlier mentioned, 
transgenic male sterility system was used for production of hybrids in India. Thus, 
these biotechnological interventions can solve the problems of conventional breed-
ing which are mainly associated with hybridization and selection.
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5.5 -Omics approaches

The world of –omics is vast and covers several disciplines such as genom-
ics (total DNA content of organism), transcriptomics (deals with total RNA 
content), proteomics (deals with total proteins), and metabolomics (total 
metabolites of an individual). Being amphidiploid and tetraploid in nature, both 
B. juncea and B. napus need -omics approaches to understand the trait based 
genetics for improvement of these crops.

5.6 Genomics

Linkage mapping and association studies were used to identify the genomic 
locations of a particular trait of interest. Genomic locations were identified based 
on molecular markers in Brassica spp. For example, Mukherjee and coworkers [81] 
mapped genes governing white rust resistance using BSA in B. juncea. Padmaja 
and coworkers [82] mapped seed coat color gene and identified microsatellite 
markers, Ra2-A11, Na10-A08 and Ni4-F11 linked to seed coat color in B. juncea. 
Furthermore, Liu and coworkers [83] dissected genetic architecture for gluco-
sinolates accumulation in seed and leaves using GWAS in B. napus. Kaur and 
coworkers [84] carried out genome wide association mapping and candidate gene 
analysis for pod shatter resistance in B.juncea. Comparative mapping was also 
used in rapeseed-mustard for different agronomic and quality traits. For example, 
Cai and coworkers [85] identified candidate gene- BnAP2 for seed weight in B. 
napus by using comparative mapping with A. thaliana. Bisht and coworkers [86] 
identified candidate genes, BjuA.GSL-ELONG.a, BjuA.GSL-ELONG.c, BjuA.
GSL-ELONG.d, BjuA.GSL-ALK.a and BjuA.Myb28.a for glucosinolates biosynthe-
sis through comparative mapping among A. thaliana, B. oleracea and B. juncea. 
Genomics has been extensively used for evolutionary studies in Brassica spp. 
Couvreur and coworkers [87] used nad4 intron 1 marker for phylogenetic analysis 
to study temporal diversification and establishment of evolutionary pattern in 
the mustard family. Furthermore, Augustine and coworkers [88] isolated four 
BjuCYB83A1 genes from B. juncea, which involved in glucosinolates synthesis and 
through phylogenetic and divergence analysis they have revealed that these genes 
have evolved via duplication and hybridization of two diploid Brassica genomes i.e. 
B. rapa and B. nigra.

5.7 Transcriptomics

Transcriptomics contributes the comprehensive understanding about the 
gene expression, through which it is easy to allocate gene function and its effect 
on any organism. It has been used for expression studies, gene silencing, and 
genome editing in Brassica spp. for example, Heng and coworkers [89] identified 
orf288 gene associated with male sterility in B. juncea through expression analy-
sis of orf288 transcript. Bhattacharya and coworkers [90] studied down regula-
tion of BjAGPase and seed specific expression of AtWRI1 gene of Arabidopsis 
in order to increase seed lipid content in B. juncea. Savadi and coworkers [91] 
increased seed weight and seed oil content in Indian mustard through seed 
specific overexpression of DGAT1 gene of A. thaliana. Zhao and coworkers [92] 
carried out RNAi mediated gene silencing of mutS homolog1 which results in 
male sterility in B. juncea due to sub-stoichiometric shifting in ORF220. Zheng 
and coworkers [93] carried out gene knockout experiment through CRISPR/Cas9 
in BnaMAX1 homologs of B. napus, which resulted in reduction in plant height 
and increase in branch number.
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5.8 Proteomics

Proteins are the ultimate products which confer the gene function and govern 
the phenotypic expression to an individual. Proteomics approaches such as protein 
expression profiling and comparative proteomics analysis were used to study 
the gene function in Brassica spp. For example, Mihr and coworkers [94] used 
“Tournefortii” CMS system of B. napus to study protein content of mitochondrial 
compartments in male sterile and fertile NILs. Mohammadi and coworkers [95] 
performed comparative proteome analysis in rapeseed seedlings for root traits 
under draught stress and concluded that proteins such as H+ ATPase, HSP 90 and 
EF2 play a key role in draught tolerance. Yousuf and coworkers [96] identified 
salt stress responsive proteins in the shoots of Indian mustard genotypes through 
comparative proteome analysis approach. Yousuf and coworkers [97] studied differ-
ent protein expression profiles of N2 efficient and N2 inefficient Indian mustard in 
response to elevated CO2 and low N2.

5.9 Metabolomics

Recent efforts in metabolomics have been directed to improve quality and yield 
of any crop. An integration of metabolomics with other approaches establishes 
an important relevance in crop improvement. However, metabolomics has not 
exploited much in mustard breeding, so it would be an emerging field of research 
for Brassica improvement. Few studies have been carried out in B. juncea. For 
example, Sinha and coworkers [98] performed metabolic engineering of fatty acid 
biosynthesis in order to improve nutritional quality of seed oil in Indian mustard. 
Kortesniemi and coworkers [99] investigated seed metabolomics using NMR in B. 
napus and B. rapa and found that unsaturated fatty acids, sucrose and sinapine were 
most discriminating metabolites.

6. Achievements

In India, 189 rapeseed-mustard varieties (118 Indian mustard; 7 karan rai; 14 
gobhi sarson; 24 toria; 15 yellow sarson; 3 brown sarson; 1 black mustard; 7 taramira) 
were developed and released and some of them are enlisted in Table 4. Several CMS 
based hybrids were developed by government and non-government institutes. A total 
of 7029 accessions comprising toria (508), Indian mustard (4,600), yellow sarson 
(548), gobhi sarson (146), brown sarson (108), karan rai (232), taramira (67), B. 
caudatus (04), R. caudates (01), B. rugose (30), B. nigra (22), S. alba (01), Crambe spp. 
(02), and Lapidium spp. (02) were maintained through appropriate mating system 
at various coordinated centers in the country [100]. As seed oil quality is concerned, 
low glucosinolates content was transferred from agronomically poor exotic genetic 
stock of B. juncea, BJ-1058 to the genetic background of high yielding mustard variet-
ies. Genetics of fatty acid profile and glucosinolates content has been worked out and 
gene pool for high oil content and disease resistance were developed.

7. Future outlook and strategy

To fulfill the demand of edible oil for ever increasing population, constant 
efforts are needed for higher production and productivity by conventional, 
molecular or biotechnological approaches in the country. Genetic variability is the 
prerequisite for crop improvement program. Moreover, there is imperative need to 



Brassica Breeding and Biotechnology

14

diversify the genetic base of varieties by utilization of exotic germplasm as well as 
other wild and related species. In this context, combination of conventional plant 
breeding with biotechnological tools can be used for development of high yielding 
varieties with good oil quality and tolerance against biotic and abiotic stresses. 
Global warming and the climate change are very critical challenges in the near 
future. Efforts to develop climate resilient crop cultivars are the need of the hour. 
Marker assisted selection (MAS), functional genomics, phenomics, proteomics 
and metabolomics are the next step to develop varieties for drought and heat 
tolerance and breeding programs must be reoriented to meet the future challenges. 
Nowadays, omics breeding has emerged as a novel concept in crop improvement 
and upcoming era will be dominated by this approach as it is more robust and rapid 
as compared to conventional breeding.

Conflict of interest

“The authors declare no conflict of interest.”

Stress/situation/condition Recommended varieties

Salinity Indian mustard: CS-54, Pusa Vijay, NRCDR 2, CS 234-4, CS-52, 
Narendra Rai-1, NRCDR 601

High temperature Indian mustard: Urvashi, RGN 13, Pusa Agrani, Kanti, PM 26, PM 27, 
DRMR 1165-40, NRCDR 2, NRCDR 601

High oil content Indian mustard: Narendra Swarna Rai 8

Earliness Indian mustard: Kanti, Narendra Ageti Rai 4, Pusa Agrani, Pusa 
Mahak, DRMR 150-35; Yellow sarson: NRCYS 05-01

Intercropping Indian mustard: RH-30, RH781, Vardan

Non-traditional areas Indian mustard: Pusa Agrani, Pusa Jai kisan, Gujarat Mustard 2, Pusa 
Mahak (for north-east only)

Late sown Indian mustard: Ashirwad, RLM 619, SwaranJyoti, Vardan, Navgold, 
NRCHB 101

Frost tolerance RGN13, RH-781, SwaranJyoti

Drought (Rainfed) Indian mustard: RH-819, RH-781, GM1, Pusa Bahar, Pusa Bold, 
Aravali Mustard, Sej-2, JD-6, Geeta, RGN-48, RL-99-27, Shivani, 
PBR-9
Karan rai: Pusa Aditya, DRMR 150-35, Pusa Swarnim

Irrigated Indian mustard: PM-28, DRMRIJ 31

Low erucic acid /glucosinolates Indian mustard: Pusa Karishma, Pusa Mustard 21, PM 22
Gobhi Sarson: Hyola 401, GSC 5, GSC 6, NUDB 26-11, Teri Uttam 
Jawahar, PM 24

White rust Indian mustard: Basanti, JM 1, JM 2, Maya, Pusa Jagannath

Powdery mildew and Alternaria 
blight

Indian mustard: DRMR 150-35, NRCDR 2, NRCDR 601

Wider adaptability Indian mustard: Pusa Bold

Table 4. 
Improved varieties of Indian mustard for specific environmental conditions.



15

Rapeseed-Mustard Breeding in India: Scenario, Achievements and Research Needs
DOI: http://dx.doi.org/10.5772/intechopen.96319

Author details

Subhash Chand1*, Om Prakash Patidar1, Rajat Chaudhary1, Ranjit Saroj1, 
Kailash Chandra2, Vijay Kamal Meena1, Omkar M. Limbalkar1, Manoj Kumar Patel1, 
Priya P. Pardeshi1 and Prashant Vasisth1

1 Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 
India

2 Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture 
University, Jaipur, Rajasthan, India

*Address all correspondence to: subhashchand5415@gmail.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



16

Brassica Breeding and Biotechnology

[1] Jat RS, Singh VV, Sharma P, Rai PK. 
Oilseed Brassica in India: Demand, 
supply, policy perspective and future 
potential. OCL. 2019; 26: 8

[2] MAFW. Annual report 2018-19 by 
Ministry of Agriculture and Farmers 
Welfare, Government of India. 2019; 
Retrieved from http://agricoop.nic.in/
sites/default/files/AR_2018-19_Final_
for_Print.pdf

[3] Chauhan JS, Singh KH, Singh VV,  
Kumar S. Hundred years of rapeseed- 
mustard breeding in India: accomplish-
ments and future strategies. Indian J 
Agric Sci. 2011; 81 (12):1093-1109

[4] Allchin FR. In the domestication and 
exploitation of plants and animals eds; 
P.J. Ucko and GW Dimbledy, London. 
1969. pp. 323-329

[5] Hemingway JS. Mustard: Brassica spp. 
and Sinapis alba (cruciferae). In Evolution 
of Crop Plants. Simmonds (Ed,), 
Longmans, London. 1979; pp. 56-59

[6] Song KM, Osborn TC, Williams PH.  
Brassica taxonomy based on nuclear  
restriction fragment length polymor-
phisms (RFLPs). Theoretical and Applied 
Genetics. 1988; 75(5): 784-794

[7] Nagaharu U. Genome analysis in 
Brassica with special reference to the 
experimental formation of B. napus and 
peculiar mode of fertilization. Jpn J Bot. 
1935; 7(7): 389-452

[8] Yang J, Liu D, Wang X, Ji C, Cheng F,  
Liu B, Hu Z, Chen S, Pental D, 
Ju Y, Yao P. The genome sequence of 
allopolyploid Brassica juncea and 
analysis of differential homoeolog gene 
expression influencing selection. Nature 
Genetics. 2016; 48(10): 1225-1232

[9] Crisp PA, Ganguly D, Eichten SR, 
Borevitz JO, Pogson BJ.Reconsidering 
plant memory: Intersections between 
stress recovery, RNA turnover, and 

epigenetics. Science Advances. 2016; 
2(2): e1501340

[10] Champolivier L, Merrien A. Effects 
of water stress applied at different 
growth stages to Brassica napus L. var. 
oleiferaon yield, yield components 
and seed quality. European Journal of 
Agronomy. 1996; 5(3-4): 153-160

[11] Kasuga M, Liu Q , Miura S,  
Yamaguchi-Shinozaki K, Shinozaki K.  
Improving plant drought, salt, and 
freezing tolerance by gene transfer of 
a single stress-inducible transcription 
factor. Nat Biotechnol. 1999; 
17(3): 287-291

[12] Shi H, Ishitani M, Kim C, Zhu JK. 
The Arabidopsis thaliana salt tolerance 
gene SOS1 encodes a putative Na+/
H+antiporter. Proceedings of the 
national academy of sciences. 2000;97 
(12): 6896-6901

[13] Zhang HX, Hodson JN, Williams JP, 
Blumwald E. Engineering salt-tolerant 
Brassica plants: characterization of 
yield and seed oil quality in transgenic 
plants with increased vacuolar sodium 
accumulation. Proceedings of the 
National Academy of Sciences. 2001; 
98(22): 12832-12836

[14] Berthomieu P, Conéjéro G, 
Nublat A, Brackenbury WJ, Lambert C, 
Savio C, Uozumi N, Oiki S, Yamada K, 
Cellier F, Gosti F. Functional analysis of 
AtHKT1 in Arabidopsis shows that Na+ 
recirculation by the phloem is crucial for 
salt tolerance. The EMBO Journal. 2003; 
22(9): 2004-2014

[15] Wang Y, Ying J, Kuzma M, 
Chalifoux M, Sample A, McArthur C, 
Uchacz T, Sarvas C, Wan J, Dennis DT, 
McCourt P. Molecular tailoring of 
farnesylation for plant drought 
tolerance and yield protection. The 
Plant Journal. 2005; 43(3): 413-424

References



17

Rapeseed-Mustard Breeding in India: Scenario, Achievements and Research Needs
DOI: http://dx.doi.org/10.5772/intechopen.96319

[16] Wang Y, Beaith M, Chalifoux M, 
Ying J, Uchacz T, Sarvas C, Griffiths R, 
Kuzma M, Wan J, Huang Y. Shoot-
specific down-regulation of protein 
farnesyltransferase (α-subunit) for yield 
protection against drought in canola. 
Molecular Plant. 2009; 2(1): 191-200

[17] Wang QB, Xu W, Xue QZ, Su WA. 
Transgenic Brassica chinensis plants 
expressing a bacterial codA gene 
exhibit enhanced tolerance to extreme 
temperature and high salinity. Journal 
of Zhejiang University Science B. 2010; 
11(11): 851-861

[18] Seo YJ, Park JB, Cho YJ, 
Jung C, Seo HS, Park SK, Nahm BH, 
Song JT. Overexpression of the ethylene-
responsive factor gene BrERF4 from 
Brassica rapa increases tolerance to 
salt and drought in Arabidopsis plants. 
Molecules and Cells. 2010; 30(3): 271-277

[19] Kim JA, Jung HE, Hong JK, 
Hermand V, McClung CR, Lee YH, 
Kim JY, Lee SI, Jeong MJ, Kim J, Yun D. 
Reduction of GIGANTEA expression in 
transgenic Brassica rapa enhances salt 
tolerance. Plant cell reports. 2016; 35(9): 
1943-1954

[20] Maqbool S, Zhong H, El-Maghraby Y, 
Ahmad A, Chai B, Wang W, Sabzikar R, 
Sticklen M. Competence of oat (Avena 
sativa L.) shoot apical meristems for 
integrative transformation, inherited 
expression, and osmotic tolerance 
of transgenic lines containing hva1. 
Theoretical and Applied Genetics. 2002; 
105(2-3): 201-218

[21] Agarwal PK, Agarwal P, Reddy MK, 
Sopory SK. Role of DREB transcription 
factors in abiotic and biotic stress 
tolerance in plants. Plant Cell Reports. 
2006; 25 (12): 1263-1274

[22] Dalal M, Tayal D, Chinnusamy V, 
Bansal KC. Abiotic stress and ABA-
inducible Group 4 LEA from Brassica 
napus plays a key role in salt and drought 
tolerance. Journal of Biotechnology. 
2009; 139 (2): 137-145

[23] Yang M, Yang Q , Fu T, Zhou Y. 
Overexpression of the Brassica napus 
BnLAS gene in Arabidopsis affects plant 
development and increases drought 
tolerance. Plant Cell Reports. 2011; 
30(3): 373-388

[24] Lata C, Prasad M. Role of DREBs in 
regulation of abiotic stress responses in 
plants. Journal of Experimental Botany. 
2011; 62(14): 4731-4748

[25] Luo J, Tang S, Mei F, Peng X, 
Li J, Li X, Yan X, Zeng X, Liu F, Wu Y, 
Wu G. BnSIP1-1, a trihelix family gene, 
mediates abiotic stress tolerance 
and ABA signaling in Brassica napus. 
Frontiers in Plant Science. 2017; 8: 44

[26] Xiao QS, Zhang XK, Xu BB, 
Cheng Y, Zheng PY, Lu GY. Cloning and 
expression pattern of AnnBn1 gene in 
Brassica napus. Chinese journal of oil 
crop sciences. 2012; 34: 123-128

[27] Ali N, Zada A, Ali M, 
Hussain Z. Isolation and identification 
of Agrobacterium tumefaciens from the 
galls of peach tree. Journal of Pure and 
Applied Agriculture. 2016; 1(1): 39-48

[28] Shinwari ZK, Nakashima K,  
Miura S, Kasuga M, Seki M, 
Yamaguchi-Shinozaki K, Shinozaki K. 
An Arabidopsis gene family encoding 
DRE/CRT binding proteins involved 
in low-temperature-responsive gene 
expression. Biochemical and biophysical 
research communications. 1998; 250 
(1):161-170

[29] Bae MJ, Kim YS, Kim IS, Choe YH, 
Lee EJ, Kim YH, Park HM, Yoon HS. 
Transgenic rice overexpressing the 
Brassica juncea gamma-glutamylcysteine 
synthetase gene enhances tolerance to 
abiotic stress and improves grain yield 
under paddy field conditions. Molecular 
breeding. 2013; 31 (4): 931-945

[30] Saha B, Mishra S, Awasthi JP, 
Sahoo L, Panda SK. Enhanced drought 
and salinity tolerance in transgenic 



Brassica Breeding and Biotechnology

18

mustard [Brassica juncea (L.) 
Czern&Coss.]overexpressing Arabidopsis 
group 4 late embryogenesis abundant 
gene (AtLEA4-1). Environmental and 
Experimental Botany. 2016; 128: 99-111

[31] Rajwanshi R, Kumar D, Yusuf MA, 
DebRoy S, Sarin NB. Stress-inducible 
overexpression of glyoxalase I 
is preferable to its constitutive 
overexpression for abiotic stress 
tolerance in transgenic Brassica juncea. 
Molecular Breeding. 2016; 36 (6):76

[32] Ahmed I, Yadav D, Shukla P,  
Vineeth TV, Sharma PC, Kirti PB. 
Constitutive expression of Brassica 
juncea annexin, AnnBj2 confers 
salt tolerance and glucose and ABA 
insensitivity in mustard transgenic 
plants. Plant Science. 2017; 265: 12-28

[33] Ren ZH, Gao JP, Li LG, Cai XL, 
Huang W, Chao DY, Zhu MZ, Wang ZY, 
Luan S, Lin HX. A rice quantitative trait 
locus for salt tolerance encodes a sodium 
transporter. Nature Genetics. 2005; 
37(10): 1141-1146

[34] Zhang JZ, Creelman RA, Zhu JK.  
From laboratory to field. Using 
information from Arabidopsis to engineer 
salt, cold, and drought tolerance in crops. 
Plant physiology. 2004; 135(2): 615-621

[35] Farooq S, Farooq-E-Azam. 
Co-Existence of Salt and Drought 
Tolerance in Triticeae. Hereditas. 2001; 
135(2-3): 205-210

[36] Rozema J, Flowers T. Crops for 
a salinized world. Science. 2008: 
1478-1480.

[37] Kaur P, Ghai N, Sangha MK. 
Induction of thermotolerance through 
heat acclimation and salicylic acid in 
Brassica species. African Journal of 
Biotechnology. 2009; 8 (4).

[38] Patidar OP, Yadava DK, Singh N,  
Saini N, Vasudev S and Yashpal. 
Deciphering selection criteria for 

Indian mustard (Brassica juncea L.) 
encountering high temperature stress 
during post-reproductive phase. 
International Journal of Chemical 
Studies. 2020: 8 (4): 2497-2502

[39] Azharudheen TM, Yadava DK,  
Singh N, Vasudev S, Prabhu KV. 
Screening Indian mustard [Brassica 
juncea (L.) Czern and Coss)] germplasm 
for seedling thermo-tolerance using a 
new screening protocol. African Journal 
of Agricultural Research. 2013; 8 (38): 
4755-4760

[40] Angadi SV, Cutforth HW, Miller PR, 
McConkey BG, Entz MH, Brandt SA, 
Volkmar KM. Response of three Brassica 
species to high temperature stress 
during reproductive growth. Canadian 
Journal of Plant Science. 2000; 80 
(4): 693-701

[41] Young LW, Wilen RW, 
Bonham-Smith PC. High temperature 
stress of Brassica napus during flowering 
reduces micro-and megagametophyte 
fertility, induces fruit abortion, and 
disrupts seed production. Journal of 
Experimental Botany. 2004; 55 (396):  
485-495

[42] Kumar S, Sairam RK, Prabhu KV. 
Physiological traits for high temperature 
stress tolerance in Brassica juncea. Indian 
Journal of Plant Physiology. 2013; 18 
(1): 89-93

[43] Chen Z, Wang Z, Yang Y, Li M, Xu B. 
Abscisic acid and brassinolide combined 
application synergistically enhances 
drought tolerance and photosynthesis of 
tall fescue under water stress. Scientia 
Horticulturae. 2018; 228: 1-9

[44] Kagale S, Divi UK, Krochko JE, 
Keller WA, Krishna P. Brassinosteroid 
confers tolerance in Arabidopsis thaliana 
and Brassica napus to a range of abiotic 
stresses. Planta. 2007; 225 (2): 353-364

[45] Zhang F, Lu K, Gu Y, Zhang L, 
Li W, Li Z. Effects of low-temperature 



19

Rapeseed-Mustard Breeding in India: Scenario, Achievements and Research Needs
DOI: http://dx.doi.org/10.5772/intechopen.96319

stress and brassinolide application on 
the photosynthesis and leaf structure of 
tung tree seedlings. Frontiers in Plant 
Science. 2020; 10: 1767

[46] Marcec MJ, Gilroy S, Poovaiah BW, 
Tanaka K. Mutual interplay of Ca2+ and 
ROS signaling in plant immune response. 
Plant Science. 2019; 283: 343-354

[47] Sharma G, Kumar VD, Haque A, 
Bhat SR, Prakash S, Chopra VL. Brassica 
coenospecies: a rich reservoir for 
genetic resistance to leaf spot caused by 
Alternaria brassicae. Euphytica. 2002; 
125 (3): 411-417

[48] Kumar GO, Chakravarty NV. A 
simple weather based forewarning 
model for white rust in Brassica. Journal 
of Agrometeorology. 2008; 10 (1): 75-80

[49] Dev D, Tewari AK, Upadhyay P,  
Daniel GR. Identification and 
nomenclature of Albugo candida 
pathotypes of Indian origin causing 
white rust disease of rapeseed-mustard. 
European Journal of Plant Pathology. 
2020; 158 (4): 987-1004

[50] Chauhan SK, Sharma JB. Inheritance 
of white rust resistance in Indian mustard 
incorporated from Brassica napus. 
Indian J. Genet. 2001; 61 (3): 250-252

[51] Ramos MJ, Fernández CM, Casas A, 
Rodríguez L, Pérez Á. Influence of 
fatty acid composition of raw materials 
on biodiesel properties. Bioresource 
Technology. 2009; 100 (1): 261-268

[52] Yoshie-Stark Y, Wada Y, Wäsche A. 
Chemical composition, functional 
properties, and bioactivities of rapeseed 
protein isolates. Food Chemistry. 2008; 
107 (1): 32-39

[53] Love HK, Rakow G, Raney JP, 
Downey RK. Development of low 
glucosinolate mustard. Canadian Journal 
of Plant Science. 1990; 70 (2): 419-424

[54] Love HK, Rakow G, Raney JP,  
Downey RK. Genetic control of 

2-propenyl and 3-butenyl glucosinolate 
synthesis in mustard. Canadian Journal 
of Plant Science. 1990; 70(2): 425-429

[55] Sodhi YS, Mukhopadhyay A, 
Arumugam N, Verma JK, Gupta V, 
Pental D, Pradhan AK. Genetic analysis 
of total glucosinolate in crosses involving 
a high glucosinolate Indian variety and a 
low glucosinolate line of Brassica juncea. 
Plant breeding. 2002; 121 (6): 508-511

[56] Mahmood T, Ekuere U, Yeh F,  
Good AG, Stringam GR. Molecular 
mapping of seed aliphatic glucosinolates 
in Brassica juncea. Genome. 2003; 46 (5): 
753-760.

[57] Sun FJ. Hybrid vigor in Brassica.J 
AgricAssoc China. 1943; 175: 35-58

[58] Ogura H. Studies on the new male 
sterility in Japanese radish, with special 
references on the utilization of this 
sterility towards the practical raising 
of hybrid seeds.Mem. Fac. Agric. 
Kagoshima Univ. 1968; 6: 40-75

[59] Rawat DS, Anand IJ. Male sterility 
in Indian mustard. Indian J Genet Plant 
Breed. 1979; 39: 412-414

[60] Rao GU, Batra-Sarup V, Prakash S, 
Shivanna KR. Development of a New 
Cytoplasmic Male-Sterility System 
in Brassica juncea through Wide 
Hybridization. Plant breeding. 1994; 112 
(2): 171-174

[61] Kirti PB, Mohapatra T, Khanna H,  
Prakash S, Chopra VL. Diplotaxis 
catholica+ Brassica juncea somatic 
hybrids: molecular and cytogenetic 
characterization. Plant cell reports. 
1995; 14 (9): 593-597

[62] Prakash S, Kirti PB, Chopra VL. 
Cytoplasmic male sterility (CMS) 
systems other than ogu and polima in 
Brassica: current status. In Proc 9th Int 
Rapeseed Conf. 1995; 1: 44-48

[63] Kirti PB. Development of a stable 
cytoplasmic male sterile line of Brassica 



Brassica Breeding and Biotechnology

20

juncea from somatic hybrid Trachystoma 
ballii+ Brassica juncea. Plant Breed.. 
1995; 114: 434-438

[64] Banga SS, Banga SK. Enarthrocarpus 
lyratus cytoplasm causes male sterility 
in oilseed rape. In International 
Symposium on Heterosis in Crops, 
Mexico City. 1997; 17-22

[65] Prakash S, Ahuja I, Upreti HC, 
Kumar VD, Bhat SR, Kirti PB, Chopra VL. 
Expression of male sterility in alloplasmic 
Brassica juncea with Eruca strumcanariense 
cytoplasm and the development of 
a fertility restoration system. Plant 
Breeding. 2001; 120 (6): 479-482

[66] Bhat SR, Vijayan P, Ashutosh, 
Dwivedi KK, Prakash S. Diplotaxis 
erucoides-induced cytoplasmic male 
sterility in Brassica juncea is rescued by 
the Moricandia arvensis restorer: genetic 
and molecular analyses. Plant breeding. 
2006; 125 (2): 150-155

[67] Sodhi YS, Chandra A, Verma JK, 
Arumugam N, Mukhopadhyay A, 
Gupta V, Pental D, Pradhan AK. A new 
cytoplasmic male sterility system for 
hybrid seed production in Indian oilseed 
mustard Brassica juncea.Theoretical and 
Applied Genetics. 2006; 114 (1): 93

[68] Bhat SR, Kumar P, Prakash S. An 
improved cytoplasmic male sterile 
(Diplotaxis berthautii) Brassica juncea: 
identification of restorer and molecular 
characterization. Euphytica. 2008; 
159(1-2): 145-152

[69] Jagannath A, Arumugam N, 
Gupta V, Pradhan A, Burma PK, Pental D. 
Development of transgenic barstar lines 
and identification of a male sterile 
(barnase)/restorer (barstar) combination 
for heterosis breeding in Indian oilseed 
mustard (Brassica juncea). Current 
Science. 2002; 82 (1): 46-51

[70] Chand S, Patidar OM, Meena VK, 
Shiv A. Barnase-barstar system: an 
indelible technique to produce hybrid 

seeds in self-pollinated crops. 
International Journal of Farm Sciences. 
2018; 8 (2): 109-113

[71] Singh D, Mehta R. Studies on 
breeding brown sarson. I. Comparison 
of F1’s and their parents. Indian J. Genet. 
Pl. Breed. 1954; 14: 74-77

[72] Chand S, Chandra K, Khatik CL. 
Varietal Release, Notification and 
Denotification System in India. In Plant 
Breeding-Current and Future Views. 
2020. IntechOpen

[73] Prakash S, Chopra VL. Synthesis of 
alloplasmic Brassica campestris as a new 
source of cytoplasmic male sterility. 
Plant breeding. 1988; 101 (3): 253

[74] Kirti PB, Narasimhulu SB, 
Mohapatra T, Prakash S, Chopra VL. 
Correction of chlorophyll deficiency 
in alloplasmic male sterile Brassica 
juncea through recombination between 
chloroplast genomes. Genetics Research. 
1993; 62 (1): 11-14

[75] Kumawat G, Kumawat CK,  
Chandra K, Pandey S, Chand S, 
Mishra UN, Lenka D, Sharma R. Insights 
into Marker Assisted Selection and Its 
Applications in Plant Breeding. In Plant 
Breeding-Current and Future Views. 
2020; IntechOpen

[76] Sharma SK and Singh R. Genetic 
resources of oilseed crops in India. 
In: Hegde DM (Ed).Changing Global 
Vegetable Oils Scenario: Issues and 
Challenges before India. Indian Society 
of Oilseed Research, DOR, Hyderabad. 
2007; 1-16

[77] Watts A, Sankaranarayanan S, 
Raipuria RK, Watts A. Production 
and Application of Doubled Haploid 
in Brassica Improvement. In Brassica 
Improvement Springer, Cham. 2020;  
67-84

[78] Jain RK, Sharma DR, Chowdhury JB. 
High frequency regeneration and 



21

Rapeseed-Mustard Breeding in India: Scenario, Achievements and Research Needs
DOI: http://dx.doi.org/10.5772/intechopen.96319

heritable somaclonal variation in Brassica 
juncea. Euphytica. 1989; 40 (1-2): 75-81

[79] Anuradha G, Narasimhulu SB,  
Arunachalam V, Chopra VL. A 
comparative evaluation of somaclonal, 
gamma ray and EMS induced variation 
in Brassica juncea. Journal of Plant 
Biochemistry and Biotechnology. 1992; 1 
(2): 105-108

[80] Walden R, Koncz C, Schell J. The 
use of gene vectors in plant molecular 
biology. Methods Mol. Cell. Biol. 1990; 
1: 175-194

[81] Mukherjee AK, Mohapatra T,  
Varshney A, Sharma R, Sharma RP. 
Molecular mapping of a locus 
controlling resistance to Albugo candida 
in Indian mustard. Plant Breeding. 2001; 
120 (6): 483-497

[82] Padmaja KL, Arumugam N, 
Gupta V, Mukhopadhyay A, Sodhi YS, 
Pental D, Pradhan AK. Mapping and 
tagging of seed coat colour and the 
identification of microsatellite markers 
for marker-assisted manipulation of the 
trait in Brassica juncea. Theoretical and 
Applied Genetics. 2005; 111 (1): 8-14

[83] Liu S, Huang H, Yi X, Zhang Y,  
Yang Q , Zhang C, Fan C, Zhou Y. 
Dissection of genetic architecture for 
glucosinolate accumulations in leaves and 
seeds of Brassica napus by genome-wide 
association study. Plant Biotechnology 
Journal. 2020; 18 (6): 1472-1484

[84] Kaur J, Akhatar J, Goyal A, 
Kaur N, Kaur S, Mittal M, Kumar N, 
Sharma H, Banga S, Banga SS. Genome 
wide association mapping and candidate 
gene analysis for pod shatter resistance in 
Brassica juncea and its progenitor species. 
Molecular Biology Reports. 2020; 1-2

[85] Cai G, Yang Q , Yang Q , Zhao Z,  
Chen H, Wu J, Fan C, Zhou Y. 
Identification of candidate genes of 
QTLs for seed weight in Brassica napus 
through comparative mapping among 

Arabidopsis and Brassica species. BMC 
genetics. 2012; 13 (1): 105

[86] Bisht NC, Gupta V, Ramchiary N,  
Sodhi YS, Mukhopadhyay A, 
Arumugam N, Pental D, Pradhan AK. 
Fine mapping of loci involved with 
glucosinolate biosynthesis in oilseed 
mustard (Brassica juncea) using genomic 
information from allied species. 
Theoretical and Applied Genetics. 2009; 
118 (3): 413-421

[87] Couvreur TL, Franzke A,  
Al-Shehbaz IA, Bakker FT, Koch MA,  
Mummenhoff K. Molecular 
phylogenetics, temporal diversification, 
and principles of evolution in the 
mustard family (Brassicaceae). 
MolBiolEvol. 2010; 27 (1): 55-71

[88] Augustine R, Majee M, Pradhan AK, 
Bisht NC. Genomic origin, expression 
differentiation and regulation of 
multiple genes encoding CYP83A1, 
a key enzyme for core glucosinolate 
biosynthesis, from the allotetraploid 
Brassica juncea. Planta. 2015; 241 
(3): 651-665

[89] Heng S, Gao J, Wei C, Chen F, 
Li X, Wen J, Yi B, Ma C, Tu J, Fu T, 
Shen J. Transcript levels of orf288 are 
associated with the hau cytoplasmic 
male sterility system and altered nuclear 
gene expression in Brassica juncea. 
Journal of experimental botany. 2018; 
69 (3): 455-466

[90] Bhattacharya S, Das N, Maiti MK. 
Cumulative effect of heterologous 
AtWRI1 gene expression and 
endogenous BjAGPase gene silencing 
increases seed lipid content in Indian 
mustard Brassica juncea. Plant Physiology 
and Biochemistry. 2016; 107: 204-213

[91] Savadi S, Naresh V, Kumar V, 
Bhat SR. Seed-specific overexpression of 
Arabidopsi s DGAT1 in Indian mustard 
(Brassica juncea) increases seed oil 
content and seed weight. Botany. 2016; 
94 (3): 177-184



Brassica Breeding and Biotechnology

22

[92] Zhao N, Xu X, Wamboldt Y, 
Mackenzie SA, Yang X, Hu Z, Yang J, 
Zhang M. MutS HOMOLOG1 silencing 
mediates ORF220 substoichiometric 
shifting and causes male sterility in 
Brassica juncea. Journal of experimental 
botany. 2016; 67 (1): 435-444

[93] Zheng M, Zhang L, Tang M, 
Liu J, Liu H, Yang H, Fan S, Terzaghi W, 
Wang H, Hua W. Knockout of two 
Bna MAX 1 homologs by CRISPR/
Cas9-targeted mutagenesis improves 
plant architecture and increases 
yield in rapeseed (Brassica napus L.). 
Plant biotechnology journal. 2020; 18 
(3): 644-654

[94] Mihr C, Baumgärtner M, 
Dieterich JH, Schmitz UK, Braun HP. 
Proteomic approach for investigation 
of cytoplasmic male sterility (CMS) in 
Brassica.Journal of plant physiology. 2001; 
158 (6): 787-794

[95] Mohammadi PP, Moieni A, 
Komatsu S. Comparative proteome 
analysis of drought-sensitive and 
drought-tolerant rapeseed roots and 
their hybrid F1 line under drought stress.
Amino Acids. 2012; 43 (5): 2137-2152

[96] Yousuf PY, Ahmad A, Ganie AH,  
Iqbal M. Salt stress-induced 
modulations in the shoot proteome 
of Brassica juncea genotypes. 
Environmental Science and Pollution 
Research. 2016a; 23 (3): 2391-2401

[97] Yousuf PY, Ganie AH, Khan I, 
Qureshi MI, Ibrahim MM, Sarwat M, 
Iqbal M, Ahmad A. Nitrogen-efficient 
and nitrogen-inefficient Indian mustard 
showed differential expression pattern 
of proteins in response to elevated CO2 
and low nitrogen. Frontiers in plant 
science. 2016b; 7: 1074

[98] Sinha S, Jha JK, Maiti MK, Basu A, 
Mukhopadhyay UK, Sen SK. Metabolic 
engineering of fatty acid biosynthesis 
in Indian mustard (Brassica juncea) 
improves nutritional quality of seed oil. 

Plant Biotechnology Reports. 2007; 1 
(4): 185-197

[99] Kortesniemi M, Vuorinen AL, 
Sinkkonen J, Yang B, Rajala A, Kallio H. 
NMR metabolomics of ripened and 
developing oilseed rape (Brassica napus) 
and turnip rape (Brassica rapa). Food 
chemistry. 2015; 172: 63-70

[100] ICAR-Directorate of Rapeseed-
Mustard Research, https://www.drmr.
res.in accessed on 07.01.2021


