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Chapter

The Orange Peel: An Outstanding
Source of Chemical Resources

Gianfranco Fontana

Abstract

Citrus sinensis (L.) Osbeck is a very common cultivar belonging to the Rutaceae
family. It is largely diffused in several areas of the world characterized by mild to
warm climate conditions. Its abundant worldwide production (up to 10” Tons. per
year) and consumption both as the edible part of the fruit and as several types of
derivative products imply the production of a huge amount of waste, such as the
fruit pomace. Several ways of recycling this material have been developed in recent
years: employment as fertilizer, fodder ingredient, and even cloth material. How-
ever, the chemical added value of Citrus sinensis peel has been underestimated
despite the diversified and significant content of useful chemicals, such as
polyphenols, polymethoxylated phenols, glycosylated flavonoids, volatile and
non-volatile terpenoids, pectins, enzymes, etc. This work aims to highlight the
outstanding chemical potential of Citrus sinensis peel.

Keywords: biological activity, Citrus sinensis, essential oil, flavonoids, orange peels,
polymethoxyphenols

1. Introduction

Citrus sinensis (CS) (L.) Osbeck is a perennial species growing in warm climate
areas of the world and largely employed as food in form of fresh fruit, with a global
production of ca. 6.7X10 tons. per year (TPY) in 2016 [1], or as a processed
derivative (ca. 1.85x10” TPY) such as juice, marmalade, flavor, fragrance and
coloring additive, pectin.

CS is an evergreen tree, 3 to 9 mts. high with sparingly barbed branches, alter-
nate leaves with toothed blades differently shaped, oval or elliptical, connected to
the stem by winged-petioles. Axillary flowers are present singly or in whorls of 6
and possess 5 white petals and up to about 25 yellow colored stamens. The pericarp
of CS has a spherical or oval shape of 6-10 cm diameter with the color changing
from green to yellow-orange during the ripening; the endocarp containing juice sac
glands is enclosed within a wrinkled epicarp or exocarp or flavedo containing a
great number of essential oil glands protected by a waxy epidermis. Below the
flavedo is the albedo, also called mesocarp, a white filamentary tissue composed of
tubular-like cells.

The principal industrial application of CS is the production of frozen concen-
trated juice. The procedure of juice extraction eventually accompanied by the
extraction of the essential oil, implies the generation of a major “by-product”
constituted by a pomace, mainly containing peels, accounting for up to around 60%
w/w of the original fruit mass processed [2]. This huge amount of biomass does pose
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serious environmental concerns because of its high level of total organic carbon
(TOC) and biological oxygen demand (BOD) that make disposal procedures rather
complex and demanding from both the legal and industrial points of view. This is
because there is an increasing trend to modify the way of approaching this problem
by reconsidering the post-production orange pomace more like a by-product rather
than a waste. In the last years, many producers have subjected this material to
processings involving partial acidic fermentation, drying, and packaging to biolog-
ically and chemically stabilize the biomass before its application as animal feed in
zootechnics, soil conditioners in agriculture, or the manufacturing of compost and
biogas [2].

Beyond the standard workup of the Citrus sinensis peel (CSP) waste, new per-
spectives have been being opened in the context of the high chemical added value of
the CSP [3-5] also by the complete knowledge of the rich metabolomics profile of
this species. The use of CS peel has been proposed for a variety of purposes that
include the production of antioxidant-enriched dietary supplements in veterinary
[6], the preparation of human dietary supplements, and nutraceuticals such as citric
acid [7] and flavonoids [8, 9]. The extract of CS peel is the source of a huge variety
of phytochemicals and has been investigated on several applications including its
chemotherapeutic and chemopreventive potential for several relevant human
pathologies, such as cancer [10, 11] and obesity [12]. The extraction procedures
vary in function of the main components that have to be obtained: from the simple
cold pressing of pomace and the extraction with water to obtain highly hydroxyl-
ated compounds to the employment of mixtures organic protic solvent/water and
finally low polar organic solvents such as Chloroform and Ethyl acetate to obtain
polymethoxylated phenols (PMF, see below). New extraction technologies such as
ultrasounds and microwaves may help to obtain better extraction yields.

In the following sections, the chemical structures and the biological effects of
these compounds will be discussed.

2. The chemistry of Citrus sinensis peel
2.1 Essential oils

The essential oil (EO) is mainly obtained from the CS peel as a major by-product
of the juice production process by a cold-pressing method that can provide the
intact blend of compounds without losing the lighter, more volatile, components of
the complex mixture that can be lost in the standard EO extraction procedure that is
the hydrodistillation. The last one is mainly used in small scale applications, for
example in research laboratories.

The chemical composition of CSP EO [13-15] is reported in Table 1. As it can be
seen, the major component is D-Limonene, accompanied by several minor compo-
nents belonging to the classes of monoterpene alkenes, oxygenated monoterpenes
including alcohol aldehydes and esters, sesquiterpenes as well as linear alkanes and
aldehydes. This rather complex blend accounts for the numerous deal of biological
activities reported for the CSP EO [14-16], which include anthelmintic, anti-
aflatoxigenic [17], antibacterial [18-20], anticarcinogenic, antifungal [21], antioxidant
[17], anti-tumor [22], anxiolytic [23], food preservative [24], hepatocarcinogenesis
suppressant, insecticidal and larvicidal [25], pain relief and relaxant [26]. It can be
argued that the main effects are due to the presence of the major component Limo-
nene that showed several bioactivities when tested as pure compound [27]. However,
it is possible that synergistic effects due to the combination of Limonene with other
minor components may be speculated and should have to be demonstrated.
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Comp. Comp. name % Compound. Comp. name %
1 Aromadendrene 0.01 21 B-Linalool 0.4-5.6
2 8-Amorphene 0.05 22 p-Myrcene 1.3-3.3
3 D-Cadinene 0.01-0.03 23 Neral 0.1-1.3
4 8-3-Carene 0.18 24 Neryl acetate 0.02
5 pB-Citral 0.12-0.15 25 Nonanal 0-0.1
6 L-(+)-Citronellal 0.01-0.1 26 Nootkatone 0.01
7 Citronellyl acetate 0.01 27 cis-B-Ocimene 0.03-0.26
8 a-Copaene 0.04 28 Octanal 0.02-0.8
9 a-Cubebene 0.02-0.26 29 Perillaldehyde 0.03
10 B-Cubebene 0.03 30 a-Phellandrene 0.02-0.07
11 Decanal 0.04-0.4 31 a-Pinene 0.49-0.59
12 n-Dodecanal 0.06 32 (+)-Sabinene 0.2-1.0
13 B-Elemene 0.01-0.02 33 y-Terpinene 0-1.21
14 Geranial 0-1.8 34 y-Terpineol 0.04-008
15 Germacrene-D 0.02-0.08 35 a-Terpineol 0.07-0.42
16 B-Gurjurene 0.01 36 Terpinolene 0-0.08
17 Hexadecanol 0.04 37 a-Thujene 0.04
18 D-Limonene Ca. 95
19 L-Limonene 0.02
20 trans-Limonene oxide 0.01

Table 1.

Composition of C. sinensis essential oil obtained from peels.

2.2 Polyphenols
2.2.1 Flavanoids

Polyphenols extracted from the CS peel belongs to the general structural cate-
gories of flavanones (Figure 1a), flavones (Figure 1b), flavonols (Figure 1b), with
and without sugar moieties attached to one or more of the hydroxyl groups [28].

It is worthy of particular mention the rarely occurring class of C-glycolflavones
(Figure 1b, compounds 63-65, 85, 86).

These compounds are produced iz vivo from the biogenetic mixed pathway of
the Acetate and Shikimate that implies the enantiospecific formation of the basic
aromatic bicyclic framework of the flavanone, from which a huge number of flavo-
noids originate employing selective enzymatic hydroxylations, methylations, and
glycosylation steps. As can be seen from the structures shown in Figure 1, most of
the chemical entities found in the peel extract contain several methoxy fragments
that decorate the carbon skeleton. This characteristic makes those molecules to get a
rather apolar character that explains their presence in the hydrophobic environ-
ment of the waxy peel. On the contrary, compounds containing a major number of
hydroxyl groups are less present in the peel and are instead more significantly
concentrated in the juice of the pericarp. However, some glycosylated compounds
are present in the peel. In these molecules, the aglicone bears a monosaccharide
unit (mainly glucose) or a disaccharide, in most of the cases being
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Rutinose (91) - Rhamnosyl (a1 — 6) glucose — or Neohesperidose (92)- Rhamnosyl
(a1 — 2) glucose (Figure 2).

The composition of the peel extracts described in the literature may slightly vary
depending on the cultivar and the region of harvesting but some general points are

OR;
Ry
R3O O
' Re

a)
Ry
OR; O

Cm Ri Rz Rs Ra Rs Re Name

p.

38 H H H H Me OH Hesperetin

39 H H Rut H Glu H Narirutin-4’-
glucoside

40 H H Rut H Me OH Hesperidin

41 H H Neohesp H Me OH Neohesperidin

42 H H Rut H H H Narirutin

43 H H Rut H Me H Didymin

44 H H Glu-Glu H H H Naringenin-7-0-
bglucoside

45 M OMe Me H Me H 5,6,7,4-

e tetramethoxyflavano

ne

46 H OMe Me OMe Me OMe  5-hydroxy-6,7,8,3’,4’-
pentamethoxyflavano
ne

47 H H Neohesp H H H Naringin

b)
R1 R2 Rs Ra Rs Re Ry Name
Cmp.

48 H H H H H H H Apigenin

49 H H H H Me H H Acacetin

50 Me OMe Me H Me H H Tetra-0-

methylscutellarein

51 Me OMe Me H Me OMe H Sinensetin

52 Me OMe Me OMe Me H H Tangeretin

53 Me OMe Me OMe Me OMe H Nobiletin

54 Me OMe Me H Me OMe OMe  Hexa-O-

methylquercetagetin
55 Me OMe Me OMe Me OMe OMe 3'4'3,5,6,7,8-

Heptamethoxyflavone
56 H H H H Me H OH Kaempferide
57 H H H H H H OH Kaempferol
58 H H H H H OH H Luteolin
59 H H H H H OH OH Quercetin
60 Me OMe Me OMe Me OMe OH Natsudaidain
61 Me OMe Me OMe Me H OH 3-hydroxy-5,6,7,8,4'-
pentamethoxyflavone
62 Me OMe Me H Me H OH 3-hydroxy-5,6,7,4'-
tetramethoxyflavone
63 H H H C- H H H Vitexin
Glu
64 H C- H C- H H H 6,8-di-C-
Glu Glu Glucosylapigenin
65 H C- H C- Me OH H 6,8-di-C-
Glu Glu Glucosyldiosmetin
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66 H H Me H H OMe O-
Glu
67 H H Me H H H H 5,4’-dihydroxy-7-
methoxyflavone
68 H H H H H OH 0- isoquercetin
Glu
69 Me H H H H H 0- 5-Methyl-3-
Rut ruthinoxylKaempferol
70 Me H Me H Me OMe H 5734
tetramethoxyflavone
71 H H H H H OH 0- Rutin
Rut
72 H H H OH H H H Iscoscutellarein
73 H H Me H Me OMe OMe  5-hydroxy-3,7,3",4'-
tetramethoxyflavone
74 H OMe Me H Me OMe OMe 5-hydroxy-3,6,7,3",4’-
pentamethoxyflavone
75 H H Me OMe Me OMe OMe 5-hydroxy-3,7,8,3",4’-
pentamethoxyflavone
76 H OMe Me H Me H H 5-hydroxy-6,7,4’-
trimethoxyflavone
77 H OMe Me H H H H 5,4’-dihydroxy-6,7-
dimethoxyflavone
78 H OMe Me OMe Me H H 5-hydroxy-6,7,8,4’-
tetramethoxyflavone
79 H OMe Me H Me OMe H 5-hydroxy-6,7,3’,4’-
tetramethoxyflavone
80 H OMe Me OMe Me OMe OMe 5-hydroxy-3,6,7,8,3",4’-
hexamethoxyflavone
81 H OMe Me OMe Me OMe H 5-hydroxy-6,7,8,3",4’-
pentamethoxyflavone
82 H H Rut H H OH H Luteoline-7-0-
rutinoside
83 H H Rut H H OMe H Chrysoeriol-7-0-
rutinoside
84 H H Rut H Me OH H Diosmin
85 H C- Rut H Me OH H 6-C-b-glucosyl diosmin
Glu
86 H C-Glc  Rut C-Gle Me OH H 6,8-di-C-b-glucosyl
diosmin
87 H H Rut H H H H Isorhoifolin

Glu: Glucose, Neohesp: Neohesperidose, Rut: Rutinose.

Figure 1.
Chemical structures of flavonoids from C. sinensis peels.

common, that is the presence of the high amount of bioactive polymethoxy-
flavonoids [29, 30] (PMF) some of which are rather ubiquitous, e.g. Nobiletin 53,
Sinensetin 51, 3',4',3,5,6,7,8-Heptamethoxyflavone 55; some other compounds
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Figure 2.
Chemical structuves of the disaccharides most commonly bound to flavonoids of C. sinensis peel.

containing one to six methoxy groups in place of the hydroxyl groups are present at
variable amounts. The presence of one or more residual hydroxy groups in the
molecule may result in a higher bioavailability and in other general differences in
their mechanism of biological and therapeutic actions [30, 31].

The biological role of these secondary metabolites in the plant is still matter of
debate. It has been proposed their involvement in the mechanism of defense of
the fruits exposed to the attack of phytopathogens, such as Phytophthora
citrophthora [32].

Further, the composition of the PMF blend can be employed for the
chemiotaxonomic characterization of the Citrus genus [33].

However, it needs to be stressed that in many cases the reported compounds
were recognized by mass spectrometry and electronic spectroscopy. It is not always
a matter of simplicity to discern the exact structure of a given PMF and to discrim-
inate between different regioisomers, normally quite similar in terms of mass and
electronic spectra, if an isolation procedure is not conducted and followed by a
complete bi-dimensional NMR characterization. Significant differences in the
extract composition do arise also in consequence of the extraction method; non-
polar solvents such as Methanol, Chloroform Ethyl acetate let to obtain PMFs-rich
extracts while, on the other hand, hydroalcoholic and aqueous extracts do contain a
low concentration of PMFs and a higher concentration of un-methylated
polyphenols as well as glycosylated compounds.

The biological activities disclosed for the flavonoids extracted from CSP are
variegated. They include antioxidant [9, 34-39], anti-inflammatory [40, 41],
antimicrobial [39, 42-44], antimalarial [45], antitrypanosomal [46], cardio-
protective [47], anti-osteoporosis [48], anti-ulcer [49], vascular protective [50],
anti-diabetes [51, 52], hepatoprotective [53, 54], neurotrophic [55], anti-
adipogenesis and anti-obesity [56-58], anti-hypertensive [59], cataract prevention
[60], sun protection [61], metabolic syndrome control [62]. Further, it has been
demonstrated [63] that while both flavonoid set 40, 42, 43 and the PMFs 51-53
were able to inhibit the anion transportin polypeptide OATP2B1 in HEK293 cells,
only the PMF group displayed this inhibitory activity also for the OATP1B1 and
OATP1B3 carriers.

The most abundant PMF occurring in CSP, Nobiletin 53, was proven to possess
sevral bioactivities, such as antioxidant, anti-inflammatory, cancer preventive [64]
and also a significant protective effect in vivo against the endotoxic shock [65] and
ethanol-induced acute gastric lesions [66] in mice. Further, compound 53 demon-
strated the capacity to induce autophagy in human keratinocyte HaCaT cells [67],
vasodilatator effect in the rat aorta [68] and to protect the intestinal barrier from
the demages induced by dextran sulfate sodium [69].
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PMFs can be considered as especially promising lead compounds for cancer
therapy as asignificant cytotoxic activity has been demonstrated toward a number
of cancer cells [70, 71] with several mechanisms of action [72, 73]; the cytotypes
investigated include MCF-7 [73-76], Hs578T triple-negative breast cancer [73, 77];
colon cancer cells CaCo-2 [19], LoVo [78], HTC-116 [79, 80] and HT-29 [79, 81];
lung cancer cells A549 [80, 82], H460 [82, 83], H1299 [82, 83]; gastric cancer cell
lines AGS, BGC-823, and SGC-7901 [84]; leukemia cells HL-60 [85]. However,
data regarding a possible antitumor activity in vivo are still rather uncommon.

An interesting example is the case of the significant reduction of the intestinal
tumor mass in ApcMin/+ mice treated with a CSP extract containing various PMF
[86]. Further, CSP extract and pure Naringin 47 were tested for their efficacy
against a YM1 esophageal cancer in an animal model [87].

Given the development of pharmacological applications of CSP extract compo-
nents, further investigations are needed to better understand the bioavailability,
safety, and efficacy of these compounds in humans. Most of the data reported
concern in vitro experimentations or animal model tests. For example, the toxicity
of Hesperidin 40 was evaluated [88] in Sprague Dawley rats showing a 50% lethal
dose (LD50) of about 5 g/Kg body weight (BW) and a lowest-observed-adverse-
effect level (LOAEL) of ca. 1 g/Kg BW.

In general, it should be emphasized as the body of evidence concerning the
actual efficacy of sweet orange-derived compounds in human health is still far to be
exhaustive. For example, while this work is under typewriting, a severe acute
respiratory syndrome pandemic due to a COVID-19 virus is in act and a big deal of
research has been being directed toward antiviral remedies and therapies. Research
on nutraceuticals is not an exception and in particular some authors have shown
by computational and molecular docking methods how Hesperidin 40, the most
abundant polyphenol obtained from C. sinensis, would be able to bind the spyke
protein of this virus thus inhibiting its activity [89]. Despite their undoubted inter-
est, these results need to be further investigated with different experimental
approaches.

The pharmacological potential of pure Hesperidin 40 was also investigated for
several relevant human morbidity, such as cancer, hypertension, and ulcer [90].

2.2.2 Hydroxy-acids

Several hydroxylated carboxylic acids belonging to several structural sub-classes
are present foremostly in the extract obtained with mixed hydro-organic solvents,
such as MeOH/water and EtOH / water [37, 38, 51, 78]; these include the aliphatic
Ascorbic, Citric, Kojic, Lactic, and L-Malic acids; the aromatic 4-Hydroxybenzoic,
Protocatechulic, and Gallic acids. Further, the cinnamyl compounds (Figure 3)
Cinnamic (93), p-Cumaric (94), Caffeic (95), Ferulic (96), Sinapinic (97) acids,
and Artepillin (98) were identified in some CSP extracts that showed relevant
biological activities, such as antioxidant [34, 37, 38] and antidiabetes [51].

These organic acids are mainly found in free form but in some cases, they are
esterified with a variety of alcoholic compounds, such as Ethanol in Ethyl gallate 99
[51], 2-Phenylethanol in Phenylethyl ester of Caffeic acid 100 [51] and (—)-Quinic
acid in Chlorogenic acid 101 [51]. An interesting ester derivative (102) in which the
anomeric hydroxyl of Glucose is esterified with a O-Caffeylsinapoyl acid unit was
found in the methanolic extract of a Greek cultivar of C. sinensis [34].

It was shown [38] that the antioxidant properties of a CSP extract better corre-
lated with the total phenols content (TPC) of the sample rather than with its total
flavonoid content (TFC), as it can be expected from the known relevant antioxidant
character of hydroxycynamic derivatives.
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R X COOH
Ry
R3
Compound Ri Rz Rs3 Name
93 H H H Cinnamic
Acid
94 H OH H p-Cumaric
acid
95 OH OH H Caffeic acid
96 MeO OH H Ferulic Acid
97 MeO OH MeO Sinapinic
acid
98 3- OH 3’- Artepillin C
Methylbut-2- Methylbut-2-
enyl enyl
COOEt
(o]
HO OH
OH HO HO
Ethyl gallate 99 Phenylethyl caffeate 100 Chlorogenic acid 101

o]
MeO 1-Glu
o) X No”
HO . o
HO OMe
102
Figure 3.

Chemical structures of cinnamic acids extracted from C. sinensis peels.

2.2.3 Coumarins

Coumarins are aromatic compounds biogenetically related to the
o-hydroxysubstituted cynamic acids from which originate by the intramolecular
condensation between the carboxylic and the o-hydroxy groups. These compounds
are most commonly encountered in other species of Citrus taxa [91], such as
C. aurantium (bitter orange), C. limon, (lemon), C. limetta (lime), C. paradisi
(grapefruit) and only a few molecules of this class were Isolated from extracts of
CSP endowed with activity against osteoporosis [48] and antioxidant [92]; these
compounds are shown in Figure 4. As coumarins are relatively less common in
C. sinensis cultivars compared to other species of the Citrus taxa, their rarity can be
considered as a chemotaxonomic marker for C. sinensis.

2.2.4 Catechins

The NADPH dependent bioreduction of flavanols is the biogenetic origin
of this class of compounds, present as minor constituents in CSP extract
possessing significant antioxidant activity [38]; they are the two enantiomeric
forms Catechin 113 and Epicatechin 114, together with Epigallocatechin 115

(Figure 5).
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R4
Rs X
Rz o
R4
Compound Ri Ry Rs3 R4 Name
103 H OH H H Umbelliferone
104 3'- OMe H H Osthol
methyl
but-2'-
enyl
105 H OMe OMe H Scoparone
106 H OMe H OMe Limettin
R,
/ \
o o
R4
Compound Ri Ro Name
107 H H Psoralen
108 H OH Bergaptol
109 OMe H Xanthotoxin
110 H OMe Bergapten
111 3'-methyl H Imperatorin
but-2'-enyl
112 H 3'-methyl Isoimperatorin
but-2'-enyl
Figure 4.

Chemical structure of coumarins extracted from C. sinensis peels.

2.3 Pectins

Pectins [93] are chemically definable as complex mixtures of polyglyconic acids
in which a linear polymeric backbone is structured by a series of « (1 — 4) linkages
(Figure 6). The main sugar monomer is always Galacturonic acid with the presence

Catechin 113

Figure 5.

Epicatechin 114

Chemical structure of catechins from C. sinensis peels.
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MTNO OMe
0

HO

Figure 6.
Minimal representation of a Homopolygalacturonic acid domain of the linear primary pectin structure with a
1/3 Mol. /Mol. Esterification degree.

of possible heterogeneous domains of other sugars such as Xylogalacturonan and
Rhamnogalacturonan-I. A variable amount of the free carboxy functions may be
esterified with methyl groups, while the hydroxy groups at C-2 and C-3 positions of
the sugar monomers may be acetylated. Even though the primary structure of the
main chain is linear, a possible degree of ramification, depending on the pectin
source, may also be found. The differences in the pectins composition and struc-
tures, depending on their natural source, do confer them different physio-chemical
properties, such as water solubility, sol-gel concentrations, etc. On the ground of
the degree of methylation of the acid moieties, pectins are classified as “low
methoxyl” (LMP, -COOMe/-COOH <50% mol.) or as “high methoxyl” (> 50%
mol). A simplified representation of pectin structure is given in Figure 6.

Pectins find many applications in the food and drug industry as a thickening and
gelling agents, excipients, and colloidal stabilizers [93].

As it has been already mentioned, the extraction method does affect the struc-
ture and the properties of the final product; the traditional acidic water extraction
implies a certain degree of hydrolytic deterioration, so that new extraction technol-
ogies have been being investigated to improve the quality of the final pectins, that is
microwave-assisted extraction (MAE) [94] and ultrasounds assisted extraction
(USAE) [35, 95].

2.4 Enzymes

As it can be easily argued, the CSP cellular system, whose genomic profile has
been fully characterized [96], is the site of a complex network of enzymatic activity.
Some of the enzymes of CSP have been characterized and employed in many
applications.

The acetylesterase (international enzymatic classification: EC 3.1.1.6) from CSP is
known since 1947 [97] and was isolated and characterized [98]. The acetylesterase
activity of the partially purified enzyme was used for the removal of the acetyl group
at the 3 positions of f-lactamic antibiotics 116 [98] (Figure 7a). Further, the whole
CSP, as well as pomace from the industrial waste of the orange juice production, was
successfully employed to catalyze several relevant biotransformations [99] such as
the conversion of Geranyl acetate 118 to Geraniol 119 (Figure 7b) and the
di-acetoxynaphtalene derivative 120 to the vitamin k1 precursor 121 (Figure 7c).

10
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H N
R/N S Acetylase R S
a) from CSP -
N~ OAc N .~ OH
o} O
COOH COOH
116 117
OA
b) W\/ c ﬂ, WOH
118 119
OAc OAc
OAc OH
120 121
OH
COOH Galacturonase ?H OH
d) Q from CSP : COOH
HO HOOC™ ™
OH “OH OH OH
122 123

Figure 7.
Chemical reactions biocatalysed by engymes from C. sinensis peels.

Recently, partial purification and functional characterization of a Uronic acid
oxidase from CSP was accomplished [100]; this enzyme promotes the oxidation by
O, of Galacturonic acid 122 to Galactaric acid 123 (Figure 7d).

2.5 Miscellaneous
2.5.1 Highly lipophilic compounds

The waxy environment of flavedo in CSP does contain several long-chain satu-
rated and unsaturated compounds: alkanes, fatty acids, waxes, higher terpenoids.

Tetracosane, Tetratriacontanoic acid, and Ethyl pentacosanoate were identified in
CSP of a Pineapple variety [101]. Further, some carotenoids were identified in the
CSP extract obtained with a solvent mixture composed of Ethanol, Ethyl acetate,
Petroleum ether 1: 1:1 [102]. This complex blend of carotenoids includes a- and
p-Carotene, Phytoene, Phytofluene, (all-E)- and (9Z)-Violoxanthin, (all-E)-
Neoxanthin, (13Z)-, (13Z’)- and (all-E)-Lutein, (9Z)-Zeaxanthin, (all-E)-Zeaxan-
thin; the mono and di-esters of violaxanthin, antheroxanthins, Xanthophyll, -
Citraurin with various fatty acids, including Lauraic, Myristic, Oleic, Palmitic, Stearic.
The composition of the blend has been correlated with the maturity stage of the fruit.

11
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Ala-Pro-Phe-Trp-Gly-Gly-Pro Leu-Leu-Pro-Tyr-Gly-Ser-Pro Glu-Ala-Glu-Trp-Gly-Glu-Val-Pro

124 125 126

Figure 8.
Primary structure of cyclic peptide isolated from the C. sinensis peels.

2.5.2 Peptides

Three cyclic peptides have been isolated from the hot water extract of CSP and
were structurally characterized by FAB-MS and 2D-NMR techniques [103]. Their
amino-acidic sequences, including a mostly lipophlic heptapeptide 124, a di-
hydroxylated heptapeptide 125, and a Glutamate-rich octapeptide 126, are reported
in Figure 8.

3. Conclusions

The chemical richness of the primary and secondary metabolome of C. sinesnis
species is undoubtedly impressive. Thousands of different compounds belonging to
dozens of structural classes have been isolated and described. The most deeply
investigated are sure, on one hand, the mixtures of volatile compounds composing
the blend of the essential oil and, on the other hand, polyphenols, especially flavo-
noids.

The chemical composition of the extract from the exocarp of C. sinensis does
differ from the composition of juice, or leaf extracts for some aspects [104]: the
presence of a higher amount of more lipophilic compounds such as polymethoxy-
flavonoids, r carotenoids, higher alkanes; a lesser extent of lighter terpenoids, a
lower content of glycosylated compounds, the absence of cyanidins and sterols.

It is also a matter of fact that several interesting bioactivities were disclosed in
the last years for the C. sinensis extracts that have been variously associated with the
well-recognized beneficial effects that regular sweet oranges consumption may
have on human health. However, a great deal of research work is still needed to
clarify the molecular basis and the mechanism of these chemopreventive effects and
to relate them with precise chemical entities that can be recognized as valuable
nutraceuticals, as it is already the case for the well-established antioxidants Ascorbic
acid, Hesperidin, Hesperetin, Quercetin, etc.
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