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Chapter

Perturbation Methods to Analysis
of Thermal, Fluid Flow and
Dynamics Behaviors of
Engineering Systems

Gbeminiyi M. Sobamowo

Abstract

This chapter presents the applications of perturbation methods such as regular
and homotopy perturbation methods to thermal, fluid flow and dynamic behaviors
of engineering systems. The first example shows the utilization of regular pertur-
bation method to thermal analysis of convective-radiative fin with end cooling and
thermal contact resistance. The second example is concerned with the application of
homotopy perturbation method to squeezing flow and heat transfer of Casson
nanofluid between two parallel plates embedded in a porous medium under the
influences of slip, Lorentz force, viscous dissipation and thermal radiation.
Additionally, the dynamic behavior of piezoelectric nanobeam embedded in linear
and nonlinear elastic foundations operating in a thermal-magnetic environment is
analyzed using homotopy perturbation method which is presented in the third
example. It is believed that the presentation in this chapter will enhance the
understanding of these methods for the real world applications.

Keywords: perturbation method, thermal analysis, fluid flow behavior,
dynamic response, engineering systems

1. Introduction

The descriptions of the behaviors of the real world phenomena and systems
through the use of mathematical models often involve developments of nonlinear
equations which are difficult to solve exactly and analytically. Consequently,
recourse is always made to numerical methods as alternative methods in solving the
nonlinear equations. However, the developments of analytical solutions are obvi-
ously still very important. Analytical solutions for specified problems are also
essential and required to show the direct relationship between the models parame-
ters. When analytical solutions are available, they provide good insights into the
significance of various system parameters affecting the phenomena. Such solutions
provide continuous physical insights than pure numerical or computation methods.
Indisputably, analytical solutions are convenient for parametric studies, accounting
for the physics of the problem and appear more appealing than the numerical
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solutions. Also, they help in reducing the computation and simulation costs as well
as the task involved in the analysis of real-life problems.

Although, there is no general exact analytical method to solve all nonlinear
problems, over the years, the nonlinear problems have been solved using different
approximate analytical methods such as regular perturbation, singular perturba-
tion method, homotopy perturbation method, homotopy analysis method,
methods of weighted residual, variational iterative method, differential transfor-
mation method, variation parameter method, Adomian decomposition method,
etc. The non-perturbative approximate analytic methods present explicit approx-
imate analytical solutions which often involve complex mathematical analysis
leading to analytic expressions involving large number terms. Furthermore, the
methods are inherently with high computational cost and time accompanied with
the requirement of high skills in mathematics. Moreover, in practice, analytical
solutions with large number of terms and conditional statements for the solutions
are not convenient for use by designers and engineers. Also, in these methods,
there are always search for particular value(s) that will satisfy the end boundary
condition(s). This always necessitates the use of software and such could result in
additional computational cost in the generation of solution to the problem. Also,
the quests involve applications of numerical schemes to determine the required
value(s) that will satisfy the end boundary condition(s). This fact renders most of
the approximate analytical methods to be taken as more of semi-analytical
methods than total approximate analytical methods. Moreover, these methods
have their own operational restrictions that severely narrow their functioning
domain and when they are routinely implemented, they can sometimes lead to
erroneous results. Specifically, the transformation of the nonlinear equations and
the development of equivalent recurrence equations for the nonlinear equations
using differential transformation method proved somehow difficult in some
nonlinear system such as in rational Duffing oscillator, irrational nonlinear
Duffing oscillator, finite extensibility nonlinear oscillator. There is difficulty in
the determination of Adomian polynomials for the application of Adomian
decomposition method for nonlinear problems. There are lack of rigorous theories
or proper guidance for choosing initial approximation, auxiliary linear operators,
auxiliary functions, and auxiliary parameters in the use of homotopy analysis
method. Therefore, the need for comparatively simple, flexible, generic and high
accurate total approximate analytical solutions is well established. One of the
techniques that can be applied for such quest is the perturbation method. Pertur-
bation method, although comparably old, as a pioneer method for finding
approximate analytical solutions to nonlinear problems, it offers an alternative
approach to solving certain types of nonlinear problems. In the limit of small
parameter, perturbation method is widely used for solving many heat transfer,
vibration, fluid mechanics and solid mechanics problems. It is capable of solving
nonlinear, inhomogeneous and multidimensional problems with reasonable high
level of accuracy. The most significant efforts and applications of the method were
focused on celestial mechanics, fluid mechanics, and aerodynamics. Although, the
solutions reported for other sophisticated methods to difference problems have
good accuracy, they are more complicated for applications than perturbation
method. Therefore, over the years, the relative simplicity and high accuracy espe-
cially in the limit of small parameter have made perturbation method an interest-
ing tool among the most frequently used approximate analytical methods.
Although, the perturbation method provides in general, better results for small
perturbation parameters, besides having a handy mathematical formulation, it has
been shown to have a good accuracy, even for relatively large values of the
perturbation parameter [1-5].
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2. Example 1: regular perturbation method to thermal analysis of
convective-radiative fin with end cooling and thermal contact
resistance

Consider a convective-radiative fin of temperature-dependent thermal
conductivity k(T), length L and thickness 8, exposed on both faces to a convective
environment at temperature T, and a heat transfer co-efficient s subjected to
magnetic field shown in Figure 1. The dimension x pertains to the length coordinate
which has its origin at the tip of the fin and has a positive orientation from the fin
tip to the fin base. In order to analyze the problem, the following assumptions are
made. The following assumptions were made in the development of the model

i. The heat flow in the fin and its temperatures remain constant with time.
ii. The temperature of the medium surrounding the fin is uniform.
iii. The temperature of the base of the fin is uniform.
iv. The fin thickness is small compared with its width and length, so that
temperature gradients across the fin thickness and heat transfer from the

edges of the fin is negligible compared with the heat leaving its lateral surface.

Applying thermal energy balance on the fin and using the above model
assumptions, the following nonlinear thermal model is developed

d aT 0€ ;4 o OBl
Ix 1+ AT — T)]dx _ka (T-T,) — ké(T —Ta) kAcr<T T,) =0
(1)
The boundary conditions are
or 4 4
x =0, —k(T)ax he(T —Ts) +o0€(T*—T2) (2)
x =1L, —k(T)a:hc(Tb—T)—l—ae(T —Ta) (3)

= EEEXXSCIEEEET

Figure 1.
(a) Schematic of the convective-radiative longitudinal straight fin with magnetic field. (b) Schematic of the
longitudinal straight fin geometry showing thermal contact resistance and boundary conditions.
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Considering a case when a small temperature difference exists within the mate-
rial during the heat flow. This actually necessitated the use of temperature-invariant
physical and thermal properties of the fin. Also, it has been established that under
such scenario, the term T can be expressed as a linear function of temperature.
Therefore, we have

T* =T* + 4T3 (T — T,) + 6T2(T — T,)* + ... = 4T>T — 3T* (4)

On substituting Eq. (4) into Eq. (1), one arrives arrived at

d aT h 465T3 (rBsu2
d_x [1+2<T_ Tm)]% _kaé(T_ Tﬂ) T kaé (T_ Tﬂ) \ kaAL‘r (T_Ta) =0
(5)
The boundary conditions
x =0, —k(T)a:he(T—Tﬂ)+4a€Ta(T—Ta) (6)
x =1L, —k(T)a:hc(Tb—T)+40€Ta(T—Ta) (7)

On introducing the following dimensionless parameters in Eq. (8) into Eq. (5),

x  T-T, _gkB(T, —To)b . 40,bT.  oBhu?
X=pf=n o M= N 4, ®
h.b hb? (he + oe)b
BEZL) B'C:La 2:—) - - aB.e 267)
i . i . M s e =MTp — Ta)Bi, .
. (he + o€)b
B =
ZC@? ka
The dimensionless form of the governing Eq. (5) is arrived at as
d do 5
On expanding Eq. (9), one has
d*6 d*0 AN
ﬁ—l—eeﬁ—i-e(d—x) — M“0 — Nr@ — Haf = 0 (10)
The boundary conditions are
de .
X = O, (1 + 80) d_X = —Ble,eﬁfe (11)
X=1 (1+ e)d—a——B' (1-0) (12)
0 Fax = led

3. Method of solution using regular perturbation method

It is very difficult to develop closed-form solution for the above non-linear
Eq. (10). Therefore, in this work, recourse is made to apply a relatively simple and
accurate method approximate analytical method, the perturbation method.
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Perturbation theory is based on the fact that the equation(s) describing the phe-
nomena or process under investigation contain(s) a small parameter (or several
small parameters), explicitly or implicitly. Therefore, the perturbation method is
applicable to very small magnitudes of € where the nonlinearity is slightly effective.
Although, it has been shown to have a good accuracy, even for relatively large
values of the perturbation parameter, ¢ [1, 2].

In solving Eq. (10), one needs to expand the dimensionless temperature as

0 =0 + €0y + €20, + ... (13)

Substituting Eq. (13) into Eq. (10), up to first order approximate, we have

d*0, b d*0, d*0, (d90>2 X
M~ + Nr + Ha )00 + +0 + | 5w | — (M"+Nr+Ha)o
! Joo e Tt (ax) )0
2|02 g 400 +6 0y ) (d0r) (doo) (M? + Nr + Ha)6,| =0
ax> " tax? | lax? | T\ax )\dx 2\ =
(14)
Leading order and first order equations with the appropriate boundary
conditions are given as:
Leading order equation:
da’e, 5
i (M? + Nr+ Ha)0, =0 (15)
Subject to:
db, .
X =0, Frdn —Bi, o0, (16)
do, ,
X =1, 2 =Biog(0h—1) (17)
First-order equation
d291 2 dgo 2 dzeo
ﬁ_ (M +NV—|-H&l)91 _(dX) OR (18)
Subject to:
B doy do, .
X = O, 90 d_X + d_X = —Ble’eﬁfel (19)
B A6y doy
X = 1, 00 E + K = Blc’eﬁfal (20)
Second-order equation
d’0, d’0o , d*0y _ (doy (do,
T2 (MR Nr+Ha)l = —0,—2 9,52 o272} (220 21
dXz ( + Nr + 01)92 91 dXZ 90 dXz (dX) (dX) ( )
The boundary conditions
de, do, do,
X = L2 B 22
0, 61—+ X + 6o ox T gx B 02 (22)
B dby do, do,
X = 1, 01 AX 90 AX dX Blc q§”02 (23)
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It can be shown from Eq. (15), (18) and (21) with the corresponding boundary
conditions of Egs. (16), (19) and (22) that the:
Leading order solution for 6, is

” - Bie{\/(M? + Nr + Ha) cosh (\/ (M + Nr + Ha)X) — Bi,sinh (\/ (M? + Nr + Ha)X) }

Bio{ (\/ (M + Nr + Ha)) cosh (\/ (M? + Nr + Ha) ) — Bicsinh (\/ (M? + Nr + Ha) ) }

+/ (M2 + Nr + Ha) { Bi, cosh (/ (M? + Nr + Ha) ) = (\/ (M? + Nr + Ha) ) sinh (\/ (M? + Nr + Ha) ) }

(24)

While the first order solution 0, is

Biccosh (/(M? + Nr + Ha)) [Bi. (M2 + Bi?) + 4MBi2Bi ] cosh (2/(M? + Nr + Ha)
Bi +
(VM Ny + Ha) sinh (VM2 + Nr & Ha) +[M(M? + Bi2) — 2MBi,Bi.) sinh (2/M7 + Nr + Ha)

Biccosh (\/(M? + Nr + Ha) ) } ((\/(M2+Nr+Hﬂ)>cmh(\/(MZ+NV+H41)>)
Bi

-( M2+Nr+Ha)n'nh( M+ Nr+ Ha)

—Bi’Bi,

O=—73— ( (M? + Nr + Ha) {

cosh ( (M + Nr + Ha))X

~Bi,sinh /(M + Nr + Ha))

{ (/v +Nr + Ha) ) cosh (\/ (M? + Ny + Ha) ) }
—Bi,

~Bi.sinh /(M + Nr + Ha))

4( (MZ\N‘/'{HR))(

Bi.cosh (\/(M? + Nr + Ha) ) J

(/0 Nr -+ Ha) ) simb /(M + Nr + Ha))

i (M? + Bi? i2Bi,| cosh 2+ Nr+ Ha 2 + Nr+ Ha) ) cosh 2+ Nr+Ha
(o {[B (M? + Bi2) + 4MBi2Bic] cosh (2, (M? + N +H))}+Bzf{(\/(M +Nr+Ha) ) cosh (\/ (M7 + N +H))}

+[M(M? + Bi2) — 2MBi.Bi| sinh (2/M" + Nr + Ha) ~Bi,sinh (VM + Nr + Ha)

2 Bi,cosh (\/(M? + Nr + Ha) (M? & Nr+ Ha) ) cosh (/(M? + Nr + Ha)
% ( (M1+Nr+Ha)) ( ) Bi, (\/ ) (\/ ) ﬂ'"h< (M2+N’+Hﬂ)>x
(VM Ny Ha)) sinh (VM + Nr + Ha) ~Bicsinh (\/(M? +Nr + Ha))
(/0 = Nr+ Ha) ) cosh (1 (4* + N + Ha)) Bicosh (\/(M? + Nr + Ha) )
—Bi, +(\/ (7 + N+ Ha) )
—Bi.sinh /(M +Nr + Ha)) (/0 + Nr -+ Ha) ) sink /(2 + Nr + Ha) )
[Bic(M? + BiZ) + 4MBBi.  cosh (2,/ (M? + Nr + Ha) )X
Bi2 +[M(M? + Bi2) — 2MBi.Bi.] sink (2/MF + Nr + Ha) X

3 {Bi((\/(MZ+N7+Ha)>wsh(\/(M2+Nr+Ha)))+< RS (Bi{msh( (M + Nr + Ha) )}

“\ Bigsin (/0 + Nr + Ha) ) (/2 + Nr -+ Ha) ) sinh (\/ (M + Nr + Ha) )

2

(25)

The second-order solution 6, is too huge to be included in the manuscript.
On substituting Eqgs. (24) and (25) into Eq. (13) up to the first order (i.e.
neglecting the higher orders), one arrives at

Bic{ /(M2 + Nr + Ha) cosh /(M2 + Nr + Ha)X) — Bicsinh /(M2 + Nr + Ha)X) }

{Bz}{(\/(MZJrNVJrHa)) cosh /(M2 +Nr + Ha) ) = Bisinh (\/ (M2 + Nr + Ha) ) } }

+/ (0 + Nr -+ Ha) {Bi.cosh /(M2 + Nr+ Ha) ) = /(M2 + N+ Ha) ) sinh (\/ (M + Nr + Ha) ) }

0(x) =

2{Bi cosh (\/ (M2 + Nr + Ha) ) } {[Bz (M? + Bi2) + 4MBiZBi.] cosh (2,/ (M? + Nr + Ha))
Bi,
_¢Bi?Bi —(V/M? + Nr + Ha ) sinh (/M? + Nr + H MZ+Bz — 2MBi.Bi| sinh (2/M? + Nr + Ha
o) )sinh (VA N +o Jsnk (2 . )
Bmash( (M2+Nr+Ha)) MZ+Nr+Ha rosh(\/(Mz+Nr+Ha))
(/@ + Nr+ Ha) )
—(VMF+ Ny Ha)) sinh (VM2 + Nr + Ha) ~Biesinh (\/(M? - Nr + Ha) )

{ <\/(M2 +Nr+ I:Ia)-) cosh <\/(MZ +Nr +Ha)-) }
_Bi,

~Bicsinh (/(M? + Nr + Ha)

+(y/( M2+Nv+Hu))(

Biccosh (/(M? + Nr + Ha)) )

(\/ Ny +Ha) ) sinh (\/ (M? + Ny + Ha) )

[Bic (M2 + Bi?) + 4MBiZBi] cosh (2,/ (M + Nr + Ha)) (/4 4N+ Ha) ) cosh (\/ (8" + Nr + Ha) )
(/02 + N+ Ha)) +Bi}
B2 +[M(M? + Bi2) - 2MBi.Bi,] sinh <2 MZ 4 Nr+ Hﬂ) —Bi, sinh (\/MZ TNrt Ha)
+=< 5 :inh( (MZ+Nr+Ha)>X

Biccosh (\/(M? + Nr + Ha) ) (/02 = N+ Ha) ) cosh (\/ (M + N» + Ha))
(/2 +Nr + Ha)) Bi

7( M2+Ny+Hu):inh( M+ Nr -+ Ha)
{ (/02 5 Nr + Ha) ) cosh (\/ (M + Nr + Ha) ) }
—Bi,

~Bicsink /(M? + Nr + Ha))

\ i simt (/0 + v+ Ha))

»( (M? + Nr + Ha) (

{ [Bi. (M2 + Bi?) + 4MBiZBi ] cosh (24/ (M + Nr + Ha) )X }

Biccosh (\/(M? + Nr+ Ha) )
(/0 Nr -+ Ha) ) sink (/M + Ny + Ha))
eBi2 +[M(M? + Bi2) — 2MBiBi,] sink (2v/M? + Nr + Ha )X
3 (\/(M2+Nr+Ha))cmh (\/(M2+N7+Ha)>
Bi,
~Bicsinh (\/(M? +Nr + Ha))

7

) +< (M1+Ny+Ha)> (Bi,cash( (MZ+NV+H11)) )}

~(\/(0* + Nr -+ Ha) ) sink /(P + Nr + Ha) )
(26)
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4. Example 2: homotopy perturbation method to analysis of squeezing
flow and heat transfer of Casson nanofluid between two parallel
plates embedded in a porous medium under the influences of slip,
Lorentz force, viscous dissipation and thermal radiation

Consider a Casson nanofluid flowing between two parallel plates placed at time-
variant distance and under the influence of magnetic field as shown in the Figure 2.
It is assumed that the flow of the nanofluid is laminar, stable, incompressible,
isothermal, non-reacting chemically, the nanoparticles and base fluid are in thermal
equilibrium and the physical properties are constant. The fluid conducts electrical
energy as it flows unsteadily under magnetic force field. The fluid structure is
everywhere in thermodynamic equilibrium and the plate is maintained at constant
temperature.

Following the assumptions, the governing equations for the flow are given as

ou ov
Z122 -0 2
ax+0y (27)
ou  ou  ou ap 1\ [(,0%u u u 5 Haft
—tUu—Fv— | = — = 1+-)(2=5+——=—+—-— ) —oB*u —
oGt vy) = aerm () PR i ) o
(28)
w W ap 1 o v 0\ Ha?
—U—FV— | = — = 1+- (2 +—+-) - 2
p"f(aﬁ”ax“ay) ay“‘"f( +ﬂ)(0x2+6x&y+0y2) k,
oT 0T dT  hy (aZT 02T>
o ox oy (pCp), \ox? - 0y?
2 2
Pu Fu v (30)
n Huf 1_{_1 2<0x2> +<5)’2+0x2> B 1 %
(PCp)yp \ P % (PCp),p 0
f +2<W> of
where
1y
Bnf = -5 (32)
S
s Yy

upper pl-t/ /

@
. ©O00 0Qg ©
: 111(1::\!161(‘1 9 :gr QQ Id ®
"2*0 0 O o

. - X

°Q
@ ©

Figure 2.

Model diagram of MHD squeezing flow of nanofluid between two parallel plates embedded in a porous
medium.
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and the magnetic field parameter is given as

Bl) = 77— (33)
3{z—1}¢
Onf = OFf 1+ ; ! i ], (34)
{52 {5 -1y
— ks+(m—1)kf—(m—1)(kf—ks)¢
A ey Dkyp+ (kp — k) | 2

The Casson fluid parameter, f = uz+/27/P, and k is the permeability constant.
The radiation term is given as

dq,  4odT* _ 160T. 9T
d 3K oy 3K 0y?

1%

(using Rosseland’s approximation) (36)

The appropriate boundary conditions are given as

u=0, v:vw:%, T=Ty aty=h(t)=HV1—a, (37)
ou oT
—=0, —=0, v=0, at y=0, (38)
) o g

aH aH ¥y T — T 1 ( aH )2
= >t)s = - >t)s = > 9:7’ Ec=—
P v L W, v AU Al T p Th—-To G, \2(1—at)
- s PrHV _ aH? K, o P _HGy _H
Re = —SA(1 - ¢) = S_ZW” Da=—h, Ai=(1-¢)+¢*, Pr=n, 5=
o+ (m—1)os)+(m—1) (o, — o p k., 46T°
B, — (0 + (m = Doy) + (m — 1)( H¢, A (—¢y+¢( ﬁ& ?Q ZK
(0s + (m —1)og) — (m —1)(0; — 07) ( Cp)f ¥ 3

One arrives at the dimensionless equations

(1 " ;) £ = S~ 9 (uf +3f" +fF ~ FF") ~Haf' o f" =0

(40)

4 A2 PrEc I 2 /N 2

1+—R6V+HS(—)H —n0) + ————+ + 468? =0

(1+3) 1) =)+ (1) 1 42(£))

(41)
with the boundary conditions as follows

f=0, f'=0, =0, when n=0, (42)
f=1 f =0, 0=1, when n=1, (43)

where m in the above Hamilton Crosser’s model in Eq. (35).
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5. Method of solution by homotopy perturbation method

The comparative advantages and the provision of acceptable analytical results
with convenient convergence and stability coupled with total analytic procedures of
homotopy perturbation method compel us to consider the method for solving the
system of nonlinear differential equations in Egs. (40) and (41) with the boundary
conditions in Eq. (42).

5.1 The basic idea of homotopy perturbation method

In order to establish the basic idea behind homotopy perturbation method,
consider a system of nonlinear differential equations given as

AlU)—f(r)=0, req, (44)

with the boundary conditions

B(u, ()_14) =0, rerl, (45)

where A is a general differential operator, B is a boundary operator, f () a known
analytical function and I is the boundary of the domain Q.

The operator A can be divided into two parts, which are L and N, where L isa
linear operator, N is a non-linear operator. Eq. (44) can be therefore rewritten as
follows

L(u)+N(u) —f(r)=0. (46)

By the homotopy technique, a homotopy U(r,p) : Q x [0,1] — R can be
constructed, which satisfies

H(U,p) = (1 - p)[L(U) — L(U,)] + plA(U) ~f(r)] =0, pe€[0,2],  (47)
H(U,p) = L(U) — L(U,) +pL(U,) + pIN(U) ~ f(r)] = 0. (48)

In the above Egs. (47) and (48), p €0, 1] is an embedding parameter, #, is an
initial approximation of equation of Eq. (44), which satisfies the boundary
conditions.

Also, from Eq. (47) and Eq. (48), one has

H(U,0) = L(U) — L(U,) = 0, (49)
H(U,0) = A(U) —f(r) = 0. (50)

The changing process of p from zero to unity is just that of U(r,p) from u,(r) to
u(r). This is referred to homotopy in topology. Using the embedding parameter p as
a small parameter, the solution of Egs. (47) and Eq. (48) can be assumed to be
written as a power series in p as given in Eq. (51)

U=U,+pU, +p’Us+ ... (51)
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It should be pointed out that of all the values of p between 0 and 1, p = 1
produces the best result. Therefore, setting p = 1, results in the approximation
solution of Eq. (42)

uzlirriU:Uo—i—Ul-i-Uz—i—... (52)
p—)

The basic idea expressed above is a combination of homotopy and perturbation
method. Hence, the method is called homotopy perturbation method (HPM), which
has eliminated the limitations of the traditional perturbation methods. On the other
hand, this technique can have full advantages of the traditional perturbation tech-
niques. The series Eq. (29) is convergent for most cases.

5.2 Application of the homotopy perturbation method to the fluid flow
problem

According to homotopy perturbation method (HPM), one can construct an

homotopy for Eq. (36)-(39) as
. "4+ 3f
(1 +%)f” ~SAi(1-¢)* ("f =i )

1 —i—ffm - f/f//

Hpn) = -p)| (143)7°] +
~Ha'f" — —f"
-0,

(53)

4
(1 + §R) 9" + PrS <%) (0f —no)
4 3
o= p (14 20)0] 4| 2
e 1\ 2 20 1\2
b + 45
a7 +48(r))
(54)
Taking power series of velocity, temperature and concentration fields, gives
f=Ffo+pfi+prf, +P3f3+ (55)
and
0 = 0o + pbr +p*0, + p°05 + ... (56)
Substituting Egs. (55) and (56) into Eq. (53) and (54) as well as the boundary
conditions in Eq. (42), and grouping like terms based on the power of p, the fluid

flow velocity equation is given as:
Zeroth-order equations

P )+ %fé’ (n) =0, (57)

4
p°: (1 + §R) 0y =0, (58)

10
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First-order equations
SELO) + F20) = AL = 4 nfo(n) — 5 Fo(n) ~ HaF o)
~35A1(1— ) f(n) — SA(L = ¢)*>F o ()f o (n) +SA1(L = 9)*f 4 (n)f o () = O

(59)
4 /! A / / P E /! !
P (1+ 3R)9 + P S<A3) (6ofo — 1) +ﬁ ((fo)2 +452<fo)2> =0
(60)
Second-order equations
P % 2 (1) + f3 (1) = SA (L = §)**nf 1 (n) if'{(n) —Ha*f{(n) - 3841~ ) £, (n)
~SA1(1 = @) F1(nfo(n) — SANL = ¢)**Fo(n)f 1 (n) + SA1(1 = §)*f1(m)f o ()
+SA41(1 = $)"*fo(n)f 1 (1) = 0,
(61)
: A\ 2PrEc Yo
P2 : <1+3R>9 +PS<A3> (91fo+‘9 fi- ) W(foﬂ +452fof1) =0
(62)

the boundary conditions are

f0:f1:f2:0’ fol/:fll/:fzﬁzo’ 0o =601 =60,' =0, when 5=0,
fo=L f1=1,=0, f/=f'=f'=0 00=1, 61=0,=0, when n=1,

(63)
In a similar way, the higher orders problems are obtained.
On solving Egs. (57), (61) and (64) with their corresponding boundary
conditions, we arrived at
1
foln) =5 (3n—n’) (64)

(168 (%)ﬂ + 168Ha’f + 419SA; (1 — ¢)2'5ﬁ> n

(336( ) B+ 336Ha’p + 873SA1(1 — ¢)* Sﬁ) n
1

f1n) = = =577
1 6720(1+p) | (168< ! ) f + 168Ha*B + 504SA;(1 — ¢ “ﬂ) n

—28S5A1(1 — ) B’ — 24SA,(1 — )y

12SA1(1 — )t
(65)
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( —12684672(L)’ B> — 25369344 (Di’) Ha?? — 12684672Ha* > — 92692600 (%) SAi(1— ¢)2-5/32)
n
—92692600Ha’A1(1 — ) — 1541638075 A2(1 — ¢)°

31135104 (3, ﬁ2+62270208<D1 )Hﬂzﬂz+31135104Ha4ﬁ2+205741536< )SA1(1 »)*p ) s
n

(+205741536Hu2A1(1 $)OB + 3244726615 A2(1 — )
(24216192 = ﬂz 48432384( )Ha2ﬂ2 — 24216192Ha™p* — 135567432< >5A1(1 &) ) i
n

—135567432Ha’SA1 (1 — )i — 18875656852A2(1 — )° >
1 + (672672( )SA1(1 $)°B + 672672Ha’SA1(1 — )% + 1677676S2A%(1 — 4;)5;32) n

Faln) == 9686476800(1 + f)’ (

5765760 ()* + 11531520 Ha?f?* + 5765760Ha* > 4 24216192 x Vs
“ Da Da W

+24216192Ha’SA1 (1 — §)>p? + 179768162 A% (1 — ¢)° i
1009008 )SAl( — $)*°F* + 1009008Ha>SA1 (1 — ¢)**i* — 33294652A%(1 — (/))5/}2) n®

(1441440 (E) SA1(1— )™ + 1441440Ha>SA1(1 — ) % + 14414408?A%(1 — ¢)5ﬂ2)n9
+ (80080 (i) SA;(1— ¢)**p* + 80080Ha*SA4 (1 — ¢)2-5/32/}2> 710 —10992852A2(1 — ¢)°p2n™

+12376S2A2(1 — )02 + 168S2A2(1 — )20

(66)

In the same manner, the energy equations are solved. Following the definition of
the homotopy perturbation method as presented in Eq. (52), one could write the
solution of the fluid flow equation as

. (168 <i> f+ 168Ha’f + 419SA;(1 — 4;)“/3)” - (336 (i) S+ 336Ha’p + 873SA,(1 — 4))2-5/;) 7

1
fon =360~ g
(1+p) (168( )ﬂ + 168Ha’p + 504SA1(1 — (ﬁ)zsﬂ)ns 28SANL— P — 24SA (- $PS P+ 25— )
—12684672(L) 4 — 25369344( ! ) Haf* — 12684672Ha * — 92592600( ) Sy (1— )5
n
92692600H?A; (1~ §)*f* — 154163807S?A2(1 — ¢)°*

31135104 () B + 62270208 (Dlﬂ)Hazﬂz + 31135104Ha*f* + 205741536( >SA1(1 — B
3
Ui

4205741536Ha’A1 (1 — ¢) 2 + 324472661S?A2(1 — )2

~24216192(%) - 48432384< L >Ha 5 — 24216192Ha*f* — 135567432( )SAl(l PP —
i

135567432Ha’SA1 (1 — §)*° i — 1887565685 A2(1 — )°i*

+
—

1 +( 672672 (D )SA (1— ¢)*B + 672672Ha’SA1 (1 — ) + 167767652 A2(1 — ¢)5ﬂ2> e

" 9686476800(1 + )

/~

5765760 (5;) 24 + 11531520 <D1 )Hu /% -+ 5765760Ha* i + 24216192( > S
+ )77
24216192Ha’SA1(1 — ¢)*° i + 17976816S*A%(1 — ¢)° i

(1009008( )SAl(l #)>°* + 1009008Ha?SA1 (1 — §)*p — 3329468 A%(1 — 4;)5/12) 7
(1441440( )SA (1— §)*°B? + 1441440Ha’SA, (1 — $)*°B + 144144082A%(1 — ¢)5/;2) w
+ (80080 (E) SA1(1 — ¢)*** + 80080Ha*SA4(1 — ¢)2-5/f2/12) 710 — 10992852A42(1 — ¢)* 2"+

12376S52A2(1 — )20 + 168S%A2(1 — ¢)° 203

(67)

6. Example 3: homotopy perturbation method to dynamic behavior of
piezoelectric nanobeam embedded in linear and nonlinear elastic
Foundation in a thermal-magnetic environment

Consider a nanobeam embedded in linear and nonlinear elastic media as shown
in Figure 3. The nanobeam is subjected to stretching effects and resting on Winkler,
Pasternak and nonlinear elastic media in a thermo-magnetic environment as

depicted in the figure.
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z

Thermal load
Magnetic load

Winkler layer

Pasternak layver

& Quadratic and
cubic nonlinear

lavers

‘‘‘‘‘‘‘‘‘‘

Figure 3.
A nanobeam embedded in linear and nonlinear elastic media (note: Only the bottom side of the elastic media is

shown).
Following the nonlocal theory and Euler-Bernoulli theorem, the governing

equation of the structure is developed as

04_ 02 62_ 02— 02 - 02_
EI<ax > +pAc— 7 [ — (eon)’ pr ] + kw [ (€oa)2g_u;] _kpﬁ {w — (eoa)zg_u;}
02 w2 62 53 aZ a2_
+k; {Wz — (eoa)’ a(u; )} +ks3 [ — (eoa)’ a(;uz )} - nAcHéﬁ [w - (eoa)zg_bzu] (68)

azATY * [_ , 0w EA, [* (ow\* )\ (oW ,0'w
(B0 e ] - (EJ(&) a7 ) (G - o 50) | =0

It is assumed that the midpoint of the nanobeam is subjected to the following

initial conditions
(%, 0) = ,, w ~0 (69)

The following boundary conditions for the multi-walled nanotubes for simply
supported nanotube is given,
2500 7 205
w(0,7) = 0, w —0, WL, =0, %Et) —0. (70)
X

Using the following adimensional constants and variables

x w Nthermale Wy

=75 = 5 h = =———; A=—

7L r’ \/ pA, L4 "= V a EI r
szL k31"2L4

kL k,L2 nA. H2L2 d_ 4 _
K, — ; K, = 2%, Mk . KY
w = TR g Hom="F; EI El
(71)

The adimensional form of the governing equation of motion for the nanobeam is

given as
1
2 2 2 2 1 (ow\*, | Pw
1+ Kyh* + Hauh® — ofh* + < > ] [ — Kuh Kp—Ham—§J<&> dx]W
0
2 4 2,3
0 Ox?

+Row + ? " oxror?
(72)

13
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And the boundary conditions become

*w(0,1t) *w(1,1)

w(0,t) = 0, o 0, w(1,7) =0, v 0. (73)

6.1 Solution methodology: Galerkin decomposition and homotopy
perturbation methods

The method of solution for the governing equation includes Galerkin decompo-
sition and homotopy perturbation methods. As the name implies the Galerkin
decomposition method is used to decompose the governing partial differential
equation of motion can be separated into spatial and temporal parts. The resulting
temporal equations are solved using homotopy perturbation method.

The procedures for the analysis of the equations are given in the proceeding
sections as follows:

6.1.1 Galerkin decomposition method

With the application of Galerkin decomposition procedure, the governing par-
tial differential equations of motion can be separated into spatial and temporal parts
of the lateral displacement function as

w(x,1) = p(x)q(t) (74)

Using one-parameter Galerkin decomposition procedure, one arrives at
1
JR(x,t)gb(x)dx =0 (75)
0

where R(x,t) is the governing equation of motion for nanobeam i.e.

1

B (ow\® | d'w 1( (ow\*, | Fw
R(x,t) = 1+mmﬂ4mwf—¢W+§j<&>¢15F+[#—Kﬂf—meMm—ing)m:Eg
0

Fw 5 dw il 2 2P w?) il 3 20 W)

(76)

where ¢(x) is the basis or trial or comparison function or normal function, which
must satisfy the boundary conditions in Eq. (73), and ¢(t) is the temporal part
(time-dependent function).

Substituting Egs. (75) into (74), then multiplying both sides of the resulting
equation by ¢(x) and integrating it for the domain of (0,1), we have

d*q(t
dqtg ) + ﬂlq(l’) + ﬂzqz(t) + /13q3(t) =0 (77)
where
M A A3
1=k (78)
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1
2
do = J(d)z — W% %) dx (79)

0

1
4 2
J = J(I(w¢2 + (1+K,h* + Ha,h* — dfhz)gng—(f + (! = Kyh* — K, — Han) ¢ aj)
0

(80)
1 2 ( 12
T :JI<d<¢ h2¢aa(fz)>dx (81)
0
/_1—1Kd t_n? 7¢) i+ (9% 4 024’01 9PN 4 ‘34"5
_J ¢ x+7J(0x> xJ¢ax2 _§J(£> xJ ot
0 0 0 0 0
(82)
The initial conditions are given as
g0 =4, 49 _, (83)

dt

A is the maximum vibration amplitude of the structure.

From the initial conditions in Eq. (83), one can write the initial approximation,
U, as

= Acos(wt) (84)

Eq. (22) satisfies the initial conditions in Eq. (83).
The homotopy perturbation representation of Eq. (77) is

2 2

d-u, 2
dt2 + j*luo

d’q d“u,
+ A — + A,
a2 a2

H(g,p) = +p +p(hg® +23q°) =

(85)

From the procedure of homotopy perturbation method, assuming that the
solution of Eq. (77) takes the form of:

q=14qo+P41+P°0 +P95+ -, (86)

On substituting Egs. (86) into the homotopy Eq. (85)

+ (g0 +pq, + P, + P05+ )

d*(q, +pq, +1*q, +p°q; + -
H(q,p) _ [ ( 0 1 dtzz 3 )

2
a(do +pdy +1°0, + P35+ )
+p —=0
3
+23(90 + g, + P70, + P35 + -.)
(87)

2

Up
T
dar

dcu,
V4 ?—G—/Muo

rearranging the coefficients of the terms with identical powers of p, one obtains
series of linear differential equations as.
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Zero-order equation

d'q Uy
po : ;204—/11@0 dt2 +Au,| =0 (88)
with the conditions
dg,(0
q9,(0) = Aand —qfii ) _o (89)
First-order equation
d? d*u,
P! :—qzl+/11q0 —I——b;+/11u0 +dagh +A3q3 = 0 (90)
dt dt
with corresponding initial conditions
dqg. (0
4.(0) = 0 and 44,0 _ (91)
dt
Second-order equation
dzq
Pt 3t gy Yadods + 34q0d; = O (92)
with corresponding initial conditions
dg,(0
4,(0) = 0 and 4,00 _ (93)
dt
The solution of the zero-order is given by.
From Eq. (27), we have
g, = Acos(wt) (94)

On substituting Eq. (94) into Eq. (90) and using trigonometric identities, after
the colllection of like terms, one arrives at

d’ A%} A® A%)
d_q21 + Mg, +A (/11 — o’ + %Azl) cos (wt) + === cos (wt) + =2 cos (3wt) + TZ
r
=0
(95)
The solution of the above Eq. (95) provides
3 M Al Ak
A </11 —w?+ ZA2,1> (m) cos (wt) + - (m) cos (2mt)
q,(t) = 3 5
—i—ﬁ 4 cos (3wt) + At
4 \90? - 22 2
2.3 M A’y < M Al 7k > A’)y
+[A</11 1) +4A /1) (xl%—aﬂ) + > /1%_4(02 + 7 /1%_90)2 + 7 cos (at)
(96)
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Based on the procedure of HPM, setting p = 1,

a(t) = limq(t) = lim [go +pgy + 9’0, + P05+ ] =do + @1+ 45+ -

r—1
(97)
On substituting Egs. (94) and (96) into Eq. (97), the result is
PR A (s
A </11 @+ 4A A o cos (wt) + 2 \da2 22 cos (2wt)
q(t) = Acos(wt) +
+@ M (3 t) +@
4 \9az _2) 7T
5.3 M A%, M A3l M A%,
%A (ﬂl v l) (A% —w2> 2 (A% —4a)2> T (Z o) Ty et
(98)

In order to find the natural frequency, w, the secular term must be eliminated. In
order to do this, set the coefficient of cos (11¢) to zero.

3 M A%y M A3ls Y A%l
Al —o® +>A% =0
(1 a)+4 )(l%—w2)+ 2 \A2 - 40? + 4 \22 - 90?2 +2/11

(99)
After simplification of Eq. (99), we have
Al 49A1 AL
(—22 — 1)0)6 +A [ﬂ%(B B 2) — 361 + A4k 26/13A}a)4
25 2 2 (100)
A +1323 — (240 — 114341 ]0* + 21A (M + 13A%) =0
The sextic equation can be written as
Al 49A4 AL
(—22 — 1>w6 +A {/ﬁ (13 5 2) — 361 + 2| 2613A] w*
212 2 2 (101)
A[Xf +1313 — (244 — 113A%) 5|0 + 1A (1 + 13A%) = 0
Eq. (101) can be written as
){10)6 +)(2(()4+){3a)2+){4 =0 (102)
where
A 49A A
Y= (if_ 1>,;(2 :A[/ﬁ(ﬂ _® i2) 360+ 222 96,4
245 2 2

x3 =AU+ 131 — (240 — 113AY) 3], x4 = 1A (M + 13A%) = 0
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The roots of the sextic equation are

3
3| X2 XX3 X4 + <;{_3_ﬁ>3+<—lz _1_)(213_1_4)2
274 61 2 oon) D \Ta e
w1 =
—3 2\ 3 2
Lol(a s xa \/(x__a_) c(rmop) oL
\ i i 2 o on i i A 311
(103)
—3 2
3 X2 [ XX3 X4 ( ) ( e +)(2)(3_Z_4)
273 6x2 2;(1 o 75n 0 6 n
) — —
Lol aas xa o AV (Bemmop) L
27n 61 2n 3){ ! 9)(1 7 20 301
(104)
[ —3 2\ 3 2 |
3 X2 XX3 X4 + <}(_3_’1_2) _i_(_)fz_*_lﬂa_ﬂf_‘t)
) 27)(% 6)(% 21 3 9 27y3 20
ﬂl 3 3 2
L (s X (z_3_ﬁ> _|_<_)(2+M_X_4>
2773 6y 2 3 9 75 61 2a
w3 = S _
3 <_)(g )(2)(3_)(4>_|_\/<)(3_/1%2)3+( 3+1213 )(4)2
V3 273 61 2n o n/) o\ % &
21 3 > 30
X X3 Xa) _ <1_3_£> ( +m_n)
\ 7 6 2 oo/ A 2
(105)
K (—_)(3 %_1_4> +\/<x_3_i_§2>3+ <_)(2 +m_%_4)2 !
1 2703 63 2 3 9 270 21
= 16 X3 X 2\3 2
(A2 KoK X4\ (A s m 2
+\/<27)(§ 611 2;(1> \/(3)’1 9’&) i <27” " 2*1>
w4 = — - ~ . )
_3 2
3 ( X2 | X3 )(4) \/ s B\? 1 )(2)(3 a
e Y e I
3 2 3 9% 70 2
V3 \/ 70 o Zn <J‘ *) <X )’) n
2 2 P 3 > 311
Xy XoH3 X4\ (A —x m X4
\ \/<27;(1 613 2xl> \/(351 i) + (e -4)
(106)
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_ 3 3 2
(X2 XX3 X4 (%_s_ﬁ> <—)(2 m_x_z:)
1 \/(27)(? er 2;(1> +\/ o0 i

2753 1 6 2n
2)(1 —3 2\ 3 2
I e 28 _\/(z_s_x_z) (B g)

LV \274 & 2n o 753 2

w5 = _ i
—3 3 2
(A2 X3 X4 2 A s Ma_ﬂr_4
/=3 \/(27}({’ + 6)(% 2;(1> * \/(3;(1 9;&) + (27;{ + 2;(1) .
H s +%_1_4 _\/(%_3_&)3+( xz+m_x_4>2 o
I 270 62 2 3 273 2 ]
(107)
[ —y3 3 2
(A2 X3 Xa I_a_ﬁ) (ﬂrz m_x_4>
-1 \/(27)@ i 611 2)(1) " \/<311 w) T\@aT 20
2
Y el s ) \/(Z_s_ﬁ>3+ (4% - 42’
L V\274 ed oon) o \In /|
W = — _
; (—_ﬂé+m_%_4> N \/(1_3_&)34_ (s 42— )’
2
—/=3 27)(% 6){% 21 3 I 27 211 .,
21 3
_)(2 _|_)(2)(3_)(_4 _ (ﬁ_ﬁ)3+< +}%_l_4)2
\ i 0 63 2n 3 9 2773 20) |
(108)

7. Conclusion

In this chapter, the applications of regular and homotopy perturbation methods
to thermal, fluid flow and dynamic behaviors of engineering systems have been
presented. Regular perturbation was used in the first example to developed
approximate analytical solutions for thermal behavior of convective-radiative fin
with end cooling and thermal contact resistance. In the second example, homotopy
perturbation method utilized to study squeezing flow and heat transfer of Casson
nanofluid between two parallel plates embedded in a porous medium under the
influences of slip, Lorentz force, viscous dissipation and thermal radiation. The
same method was used in the third example to analyze the dynamic behavior of
piezoelectric nanobeam embedded in linear and nonlinear elastic foundations oper-
ating in a thermal-magnetic environment. It is hoped that the vivid presentation
and applications of these perturbation methods in this chapter will advance better
understanding of methods especially for real world applications.
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