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Chapter

Gradient Optimal Control of
the Bilinear Reaction–Diffusion
Equation
El Hassan Zerrik and Abderrahman Ait Aadi

Abstract

In this chapter, we study a problem of gradient optimal control for a bilinear
reaction–diffusion equation evolving in a spatial domain Ω⊂

n using distributed
and bounded controls. Then, we minimize a functional constituted of the deviation
between the desired gradient and the reached one and the energy term. We prove
the existence of an optimal control solution of the minimization problem. Then this
control is characterized as solution to an optimality system. Moreover, we discuss
two special cases of controls: the ones are time dependent, and the others are space
dependent. A numerical approach is given and successfully illustrated by
simulations.

Keywords: distributed bilinear systems, reaction–diffusion equation,
controllability, optimal control

1. Introduction

The controllability of distributed bilinear systems governed by partial differen-
tial equations has been studied by many authors: in [1], the authors developed the
weak controllability of the beam and rod equations in the mono-dimensional case.
In [2], the author considered the controllability of semilinear parabolic and hyper-
bolic systemse using distributed controls. In [3], the author studied the exact con-
trollability of the semilinear wave equations in one space dimension. The optimal
control problem for a class of infinite dimensional bilinear systems have been
consedered in many works. In [4], the author proved the existence and characteri-
zation of an optimal control of a bilinear convective-diffusive fluid model using
bounded controls. In [5], the author developed optimal control problem of a bilinear
heat equation with distributed bounded control. In [6], the authors studied optimal
control for a class of bilinear systems using unbounded control. In [7], the authors
considered the optimal control problem of the wave equation using bounded
boundary control. In [8], the authors considered the optimal control problem of the
Kirchhoff plate equation with distributed bounded controls. In [9], the author
proved the optimal control of the bilinear wave equation using distributed and
bounded controls. The regional optimal control problem of a class of infinite
dimensional bilinear systems with unbounded controls was developed in [10], then
the authors studied the existence and characterization of an optimal control.
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In [11], the authors studied the constrained regional optimal control of a bilinear
plate equation using distributed and bounded controls. The notion of gradient
controllability is very important, since its close to real applications and there
exist systems that cannot be controllable but gradient of the state is controllable.
Then in [12], the authors proved the regional controllability of parabolic systems
using HUM method.

In the present work, we study the gradient optimal control problem of the
bilinear reaction–diffusion equation using distributed and bounded controls. Then,
we examine the existence and we give characterization of an optimal control. Also,
an algorithm and simulations are given. Let Ω be an open bounded domain of


n, n≥ 1ð Þ with a C2 boundary ∂Ω, we denote by Q ¼ Ω� 0,Tð Þ and Σ ¼

∂Ω� 0,Tð Þ, and we consider the bilinear reaction–diffusion equation

yt x, tð Þ � Δy x, tð Þ ¼ u x, tð Þy x, tð Þ in Q

y x, 0ð Þ ¼ y0 xð Þ in Ω

y x, tð Þ ¼ 0 on Σ,

8

>

<

>

:

(1)

where u∈Uρ≔ u∈L∞ Qð Þ j �ρ≤ u≤ ρ a:e: inQf g is a scalar control function,
and ρ is a positive constant.

Let us consider the following state space

H≔L2 0,T;H1
0 Ωð Þ

� �

:

For all y0 ∈H1
0 Ωð Þ and u∈Uρ, the system (1) has a unique weak solution y∈H

(see for example [13, 14]).
Define the operator

∇ : H1
0 Ωð Þ ! L2

Ωð Þ
� �n

y ! ∇y ¼
∂y

∂x1
, … ,

∂y

∂xn

� �

,

and ∇ ∗ its adjoint.
Let us recall that the system (1) is weakly gradient controllable if for all

yd ∈ L2
Ωð Þ

� �n
and ε>0, there exist a control u∈Uρ such that

∥∇y :,Tð Þ � yd :ð Þ∥
L2

Ωð Þð Þ
n ≤ ε,

where yd ¼ yd1 , … , ydn
� �

is the gradient of the desired state in L2
Ωð Þ

� �n
.

Our problem consists in finding a control u that steers the gradient of state close

to yd, over the time interval 0,T½ � with a reasonable amount of energy. This may be
stated as the following minimization problem

min
u∈Uρ

J uð Þ, (2)

where

J uð Þ ¼
1

2

ðT

0
∥∇y :, tð Þ � yd :ð Þ∥2

L2
Ωð Þð Þ

ndtþ
β

2

ð

Q
u2 x, tð ÞdQ, (3)

with β>0.
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The rest of the paper is organized as follows: in section 2, we study the existence
of an optimal control solution of (2). In section 3, we give a characterization of an
optimal control solution of the problem (2), and we discuss two special cases of an
optimal control solution of such problem. Finally, in section 4, we present an
algorithm and simulations.

2. Existence of an optimal control

The main result of the existence of an optimal control solution of (2) is given by
the following theorem.

Theorem 1. There exists an optimal control u ∗ ∈Uρ, solution of (2).
Proof: Let un be a minimizing sequence in Uρ, such that

lim inf
n!þ∞

J unð Þ ¼ inf
u∈Uρ

J uð Þ: (4)

Then, according to the nature of the cost function J, we can deduce that un is
uniformly bounded in Uρ.

So, we can extract from un a subsequence also denoted by un such that un * u
weakly in Uρ.

In other hand, using the weak form of system (1), we deduce that

1

2

d

dt
∥yn∥2

L2
Ωð Þ

þ

ð

Ω

∇yn∇yndx ¼

ð

Ω

un ynj j2dx: (5)

By integration with respect to time and using the function un is uniformly
bounded in L∞ Qð Þ, we have

∥yn∥2L2
Ωð Þ

þ

ðt

0
∥yn∥H1

0 Ωð Þds≤ c1

ðt

0
∥yn∥2L2

Ωð Þ
ds, (6)

where c1 is a positive constant.
Using Gronwall’s Lemma, we deduce that yn uniformly bounded in

L∞ 0,T;L2
Ωð Þ

� �

, and then yn uniformly bounded in L2 0,T;H1
0 Ωð Þ

� �

.

Using the previous result and system (1), we obtain that ynt is uniformly bounded

in L2 0,T;H�1
Ωð Þ

� �

, and then yn is uniformly bounded in H.

Using the above bounds, we can extract a subsequence satisfying the following
convergence properties

yn * y ∗ weakly in L2 0,T;H1
0 Ωð Þ

� �

(7)

yn ! y ∗ strongly in L2 Qð Þ (8)

un * u ∗ weakly in L2 Qð Þ: (9)

Since Uρ is a closed and convex subset of L∞ Qð Þ⊂L2 Qð Þ, Uρ is weakly closed in

L2 Qð Þ. Then u ∗ ∈Uρ ⊂L2 Qð Þ. On the other hand, since �ρ≤ un ≤ ρ for all n, un *

u ∗ ∗ weakly ∗ in L∞ Qð Þ, and hence un * u ∗ ∗ weakly in L2 Qð Þ. By the uniqueness of
the weak limit, we obtain u ∗ ¼ u ∗ ∗ and u ∗ ∈Uρ ⊂L∞ Qð Þ.

Now, we show that unyn ! u ∗ y ∗ weakly in L2 Qð Þ.
Since unyn � u ∗ y ∗ ¼ un yn � y ∗ð Þ þ un � u ∗ð Þy ∗ , and using (7), (8) and (9), we

obtain unyn ! u ∗ y ∗ weakly in L2 Qð Þ.
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Thus y ∗ ¼ y u ∗ð Þ is the solution of system (1) with control u ∗ .
Since the functional J is lower semi-continuous with respect to weak conver-

gence (basically Fatou’s lemma), we obtain

J u ∗ð Þ≤
1

2
lim inf
n!þ∞

ðT

0
∥∇yn :, tð Þ � yd :ð Þ∥2

L2
Ωð Þð Þ

ndtþ
β

2
lim inf
n!þ∞

ð

Q

unð Þ2 x, tð Þdxdt

≤ lim inf
n!þ∞

J unð Þ

¼ inf
u∈Uρ

J uð Þ:

Finally, we conclude that u ∗ is an optimal control.

3. Characterization of an optimal control

This section is devoted to characterization of an optimal control solution of the
problem (2).

3.1 Time and space control dependent

In this part, we give characterization of an optimal control that depend on time
and space.

The following result give the differentiability of the mapping u ! y uð Þ.
Lemma 1 The mapping u∈Uρ ! y uð Þ∈H is differentiable in the following sense

y uþ εhð Þ � y uð Þ

ε
* ϕ weakly  in H as ε ! 0, forany u, uþ εh∈Uρ

Moreover, ϕ ¼ ϕ y, hð Þ satisfies the following system

ϕt x, tð Þ � Δϕ x, tð Þ ¼ u x, tð Þϕ x, tð Þ þ h x, tð Þy x, tð Þ on Q

ϕ x, 0ð Þ ¼ 0 in Ω

ϕ x, tð Þ ¼ 0 in Σ:

8

>

<

>

:

(10)

Proof: Consider yε ¼ y uþ εhð Þ and y ¼ y uð Þ. Then yε�y
ε

� �

is a weak solution of

yε�y
ε

� �

t
� Δ

yε � y

ε

� �

¼ u
yε � y

ε

� �

þ hyε on Q

yε � y

ε

� �

x, 0ð Þ ¼ 0 in Ω

yε � y

ε

� �

x, tð Þ ¼ 0 in Σ:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Using the result (6), it follows that

∥
yε � y

ε
∥H ≤C,

where C depends on the L∞ bound on h, but is independent of ε. Hence on a
subsequence, by weak compactness, we have
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yε � y

ε
* ϕ weakly in L∞ 0,T½ �;H1

0 Ωð Þ
� �

yε � y

ε

� �

t

* ϕt weakly in L∞ 0,T½ �;H�1
Ωð Þ

� �

:

By the definition of weak solution, we have

yε � y

ε

� �

t

,ψ

� 	

�

ð

Ω

∇
yε � y

ε

� �

∇ψdx ¼

ð

Ω

u
yε � y

ε

� �

ψdxþ

ð

Ω

hyεψdx, (11)

for any ψ ∈H1
0 Ωð Þ, and a.e 0≤ t≤T.

Letting ε ! 0 in (11), we conclude that ϕ is the weak solution of system (10).
Now, we give characterization of an optimal control that depend on time and space.
Theorem 2 An optimal control solution of problem (2) is given by the formula

u ∗ x, tð Þ ¼ max �ρ, min �
1

β

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þ, ρ

 ! !

, (12)

where p∈ C 0,T½ �;Hð Þ is the weak solution of the adjoint system

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ x, tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼
∂y Tð Þ

∂xi
� ydi

� �

in Ω

pi x, tð Þ ¼ 0 in Σ:

8

>

>

>

<

>

>

>

:

(13)

Proof: Let u ∗ ∈Uρ and y ¼ y u ∗ð Þ be the corresponding weak solution, and let
u ∗ þ εh∈Uρ, for ε>0 and yε ¼ y u ∗ þ εhð Þ.

Since J reaches its minimum at u ∗ , then

0≤ lim
ε!0þ

J u ∗ þ εhð Þ � J u ∗ð Þ

ε
¼ lim

ε!0þ

X

n

i¼1

1

2

ð

Ω

ðT

0

∂ϕ

∂xi

∂pi
∂t

dt

�

þ

ðT

0
�Δ

∂ϕ

∂xi
þ u

∂ϕ

∂xi
þ h

∂y

∂xi
pi

� �

dt

�

dx

þ lim
ε!0þ

β

2

ð

Q
2hu ∗ þ εh2
� �

dQ:

Then

0≤

ð

Q
βhudQ þ

X

n

i¼1

ð

Q
h
∂y

∂xi
pidQ ¼

ð

Q
h βuþ

X

n

i¼1

ð

Q
h
∂y

∂xi
pi

 !

dQ :

Using a standard control argument based on the choices for the variation h x, tð Þ,
an optimal control is given by

u ∗ x, tð Þ ¼ max �ρ, min �
1

β

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þ, ρ

 ! !

:

3.2 Time or space control dependent

In this subsection, we study two cases of controls: the first ones are time depen-
dent u tð Þ, and the others are space dependent u xð Þ.
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• Case 1: u ¼ u tð Þ.

Here, we consider the admissible controls set

Uρ ¼ u∈L∞ 0,Tð Þ : �ρ≤ u≤ ρ a:e in 0,Tð Þf g (14)

and we take the functional cost

J uð Þ ¼
1

2

ðT

0
∥∇y :, tð Þ � yd :ð Þ∥2

L2
Ωð Þð Þ

ndtþ
β

2

ðT

0
u2 tð Þdt: (15)

Corollary 1 Under conditions (14) and (15), an optimal control is given by the
formula

u tð Þ ¼ max �ρ, min �
1

β

ð

Ω

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdx, ρ

 ! !

, (16)

where y is the weak solution of the equation

yt x, tð Þ � Δy x, tð Þ ¼ u tð Þy x, tð Þ on Q

y x, 0ð Þ ¼ y0 xð Þ, in Ω

y x, tð Þ ¼ 0 in Σ,

8

>

<

>

:

and pi is the weak solution of the adjoint equation

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼
∂y Tð Þ

∂xi
� ydi

� �

in Ω

pi x, tð Þ ¼ 0 in Σ:

8

>

>

>

>

<

>

>

>

>

:

Proof: Using the same steps as in the proof of Theorem 2, let h ¼ h tð Þ be an
arbitrary function with uþ εh∈Uρ for small ε.

We have

ðT

0
h tð Þ

ð

Ω

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdxþ βu tð Þ

 !

dt≥0:

By using a standard control argument concerning the sign of the variation h, we
obtain

u tð Þ ¼ max �ρ, min �
1

β

ð

Ω

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdx, ρ

 ! !

:

• Case 2: u ¼ u xð Þ.

We consider the admissible controls set

Uρ ¼ u∈L∞ Ωð Þ : �ρ≤ u≤ ρ a:e in Ωf g (17)

6
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and we take the functional cost

J uð Þ ¼
1

2

ðT

0
∥∇y :, tð Þ � yd :ð Þ∥2

L2
Ωð Þð Þ

ndtþ
β

2

ð

Ω

u2 xð Þdx: (18)

Corollary 2 Under conditions (17) and (18), an optimal control satisfies

u xð Þ ¼ max �ρ, min �
1

β

ðT

0

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdt, ρ

 ! !

, (19)

where y is the solution of system

yt x, tð Þ � Δy x, tð Þ ¼ u xð Þy x, tð Þ on Q

y x, 0ð Þ ¼ y0 xð Þ, in Ω

y x, tð Þ ¼ 0 in Σ,

8

>

<

>

:

and pi is the solution of system

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ x, tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼
∂y Tð Þ

∂xi
� ydi

� �

in Ω

pi x, tð Þ ¼ 0 in Σ:

8

>

>

>

<

>

>

>

:

Proof: Using the same notations as in the proof of Theorem 2, let h ¼ h xð Þ be an
arbitrary function with uþ εh∈Uρ for small ε.

We have

ð

Ω

h xð Þ

ðT

0

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdtþ βu xð Þ

 !

dx≥0:

A standard control argument gives

u xð Þ ¼ max �ρ, min �
1

β

ðT

0

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdt, ρ

 ! !

:

4. Algorithm and simulations

We have the solution of the problem (2) is given by the formula

u ∗ x, tð Þ ¼ max �ρ, min �
1

β

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þ, ρ

 ! !

,

where y ∗ is the weak solution of the Eq. (1) and pi is the weak solution of the
adjoint Eq. (13).

The computation of an optimal control solution the problem (2) can be
realized by

u ∗
nþ1 x, tð Þ ¼ max �ρ, min �

1

β

Xn

i¼1

∂yn x, tð Þ

∂xi
pni x, tð Þ, ρ

� �� �

,

u ∗
0 ¼ 0,

8

<

:

(20)
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where yn is the solution of the Eq. (1) associated to u ∗
n and pn is the solution of

the adjoint Eq. (13). Then, we consider the following algorithm

Step 1 : Initialization

⊙Initial statey0, u
∗
0 and yd:

⊙Threshold accuracyεand the final timeT:
















Step 2 :

⊙Solving the system 1ð Þ givesyn:

⊙Solving the system 13ð Þ givespn:

⊙Calculateu ∗
nþ1 by the formula 20ð Þ:

























:

Until∥u ∗
nþ1 � u ∗

n ∥L∞ Qð Þ ≤ ε stop, elsen ¼ nþ 1go to step 2:

Step 3 : The controlu ∗
n is optimal:






































































4.1 Simulations

On Ω ¼�0, 1½, we consider the following equation

yt x, tð Þ � Δy x, tð Þ ¼ u tð Þy x, tð Þ on Q

y x, 0ð Þ ¼ x 1� xð Þ 1þ xð Þ, in Ω

y x, tð Þ ¼ 0 in Σ,

8

>

<

>

:

(21)

and consider problem (2) with the control set

Uρ ¼ u∈L∞ 0,Tð Þ : �ρ≤ u≤ ρ a:e in 0,Tð Þf g:

An optimal control solution of problem (2) is given by the following formula

u ∗ tð Þ ¼ max �ρ, min �
1

β

ð1

0

X

n

i¼1

∂y x, tð Þ

∂xi
pi x, tð Þdx, ρ

 ! !

,

where y ∗ is solution of the Eq. (21) associated to the control u ∗ and p is the
solution of the following adjoint system

Figure 1.
The gradient of the state on �0, 1½.
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pit x, tð Þ � Δpi x, tð Þ ¼ u ∗ tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼
∂y Tð Þ

∂xi
� ydi

� �

in Ω

pi x, tð Þ ¼ 0 in Σ:

8

>

>

>

<

>

>

>

:

We take T ¼ 1, ρ ¼ 1, β ¼ 0:1, y0 xð Þ ¼ x 1� xð Þ 1þ xð Þ, and yd xð Þ ¼ 0. Applying

the previous algorithm, with ε ¼ 10�4 we obtain.
Figure 1 shows that the gradient state is very close to the desired one with error

∥∇y Tð Þ∥ ¼ 5:33� 10�5 and the evolution of control is given by Figure 2.

5. Conclusion

Gradient optimal control problem of the bilinear diffusion equation with dis-
tributed and bounded controls is considered. The existence and characterized of an
optimal control are proved. The obtained results are tested by numerical examples.
Questions are still open, as is the case of gradient optimal control problem of the
semilinear reaction–diffusion equation.

Figure 2.
Evolution of the control function.
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