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Chapter

Haloarchaea May Contribute to 
the Colour of Avian Plumage in 
Marine Ecosystems
Rosa María Martínez-Espinosa and Javier Torregrosa-Crespo

Abstract

Some seabirds or coastal birds such as flamingos or pelicans display elegant pink 
or reddish colours. These colours are due to pigments that birds cannot synthesize 
de novo. Thus, this coloration is mainly originated from carotenoids ingested 
trough carotenoid rich food sources like microalgae (Dunaliella) or small shrimps 
(Artemia), which are microorganisms inhabiting the salty environments where the 
mentioned birds live. New advances in this field of knowledge have revealed that 
extreme microorganisms belonging to the haloarchaea group (Archaea Domain) 
may contribute significantly to the characteristic pink- red colour of flamingos’ 
feathers for instance. Alive haloarchaea cells have been found on the surface of the 
feathers. Besides, the major carotenoid produced by haloarchaea (bacterioruberin) 
has also been identify within the feathers structure. This work summarizes the main 
contributions recently reported about this topic as well as general aspects regarding 
bacterioruberin as a powerful colour carotenoid. Discussions about potential role of 
these microorganisms in the life of seaside birds are also included.

Keywords: bacterioruberin, bird coloration, carotenoids, flamingos,  
natural pigments, plumage

1. Introduction

Coloration is one of the most conspicuous traits that varies among organisms. 
In the case of animals, colour is mainly due to: (i) the presence of pigments (carot-
enoids, melanin, turacoverdin, biliverdin, protoporphyrin, etc); (ii) light phe-
nomena such as reflection/emission from animal structures (skin, feathers, etc.); 
(iii) the presence of microscopic structure in scales, bristles, or feathers, which 
give them brilliant iridescent colours (commonly named “structural colours”) [1]; 
and (iv) general aspects related to genetics [2]. Due to these reasons, animals show 
different colours, which can slightly vary even between individuals belonging to the 
same species. Animal colorations are strongly linked to different biological roles: 
camouflage, sexual, social, and interspecific signalling, physical protection (against 
UV radiation for instance), and sexual dimorphism [3–6].

In the case of the birds, feathers play a key role in general coloration. Those 
that are red orange show these colours thanks to the presence of different carot-
enoids within their structures. Carotenoids are natural pigments widely spread 
in nature: chloroplasts and chromoplasts of plants, bacteria, archaea, microalgae, 
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fungi and even phytoplankton [7–9]. All the mentioned organisms can synthesize 
carotenoids, but animals in general are not able to produce them de novo (aphids 
and spider mites are an exception, and it is assumed that they acquired this ability 
thanks to genes transferred from fungi [10]). Thus, animals obtain carotenoids 
from diet. After food uptake, they are mainly metabolized by the liver and intestinal 
epithelium [11] to be further incorporated into fatty tissues or other structures such 
as feathers, skin, eyes, etc.

There are over 600 known carotenoids classified into two classes: xanthophylls 
(which contain oxygen) and carotenes (which are hydrocarbons without oxygen). 
Thanks to their chemical structure, they absorb wavelengths ranging from 400–550 
nanometres (violet to green light) [12]. Consequently, these pigments are deeply 
coloured yellow, orange or red. Some carotenoids have vitamin A activity (they can 
be converted into retinol) and most of them can also act as antioxidants. Recently, it 
has been stated that cytochrome P450 enzymes are also involved in red carotenoid 
coloration [13].

Red coloured birds inhabiting salted environments such as salt marshes, 
seaside ecosystems, salted lagoons etc. may often acquire carotenoids by ingest-
ing small organisms or even microorganisms like yeast and algae. Thus, flamingos 
(Phoenicopterus sp.) filter-feed on brine shrimp (Artemia salina) and blue-green 
algae (Dunaliella salina) [14], which are high rich sources of carotenoids. They 
are broken down into pigments by liver enzymes and fully incorporated into 
tissues [15, 16].

The nature of the colour shown by red-pink feathers is one of the aspects 
strongly discussed during the last few years. Many works have demonstrated that 
the colour is due to the carotenoids obtained through the diet, whilst other studies 
suggested that other external factors like microorganisms or light phenomena could 
contribute to the final red-orange-pink phenotype. This chapter summarizes recent 
knowledge about the presence of alive microorganisms belonging to the Archaea 
domain on the surface of red-pink feathers thus may contributing to their colour. 
General aspects related to the carotenoids produced by haloarchaea inhabiting 
feathers of coastal birds are also discussed.

2. The colour of bird feathers

Bird feathers have been the aim of several works during the last two centuries. 
Thus, the first reports on bird plumage listed in databases like PUBMED, Web of 
Science or Scopus analysed aspects focused on the muscles in charge of the feath-
ers movement [17] or their growth [18]. Other aspects of bird feathers related to 
biological roles like sexual selection, colonization strategies or signalling have also 
been extensively explored [19–23]. These aspects are intricately connected to the 
coloration of avian plumage.

The first detailed studies about the colour of bird feathers were published in 
indexed scientific journals in the middle fifties last century. Since then, around 500 
manuscripts have been reported on this subject (Figure 1). It is worthy to note that 
the number of studies about the colouration of plumage significantly increased at 
the beginning of XXI century (Figure 1). However, the number of publications 
focused on the presence of carotenoids in bird feathers is lower compared to those 
related to other issues affecting the phenotype of birds (Figure 1). Bird coloration 
(mainly in feathers) is one of the most studied topics to elucidate the role of natural 
and sexual selection in the evolution of phenotypic diversity. Thus, the variety of 
vibrant plumage colours has evolved as a direct result of social and environmental 
pressures.
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The colour of plumage and other structures in animals and plants is due 
to the presence of pigments (pigment-based coloration) or the presence of 
microscopically structured surfaces fine enough to interfere with visible light 
(structural coloration) [24]. Iridescence for instance, is one of the better-known 
examples of it [25]. In some cases, feather colours are the result of a combination 
of both [26, 27].

Table 1 summarizes the most representative pigments already identified 
as part of the colour of bird plumage. The most abundant are melanin and 

Figure 1. 
Graph representation of the total number of publications per year from the database PubMed concerning the 
combination of the following keywords: ( ) bird feathers AND colour; ( ) bird feathers AND colour AND 
carotenoids. Revision date: 10th January 2021.

Melanins

Name Colour References

Eumelanin Grey/Black [28–31]

Pheomelanin Brown [28, 29, 31, 32]

Carotenoids

Zeaxanthin Yellow [2, 33, 34]

Lutein Bright Yellow [2, 33–35]

β-carotene Yellow [2, 35]

β-cryptoxanthin Yellow [2, 35]

Canthaxanthin Orange Red [2, 33–35]

Astaxanthin Red [2, 34–36]

Rhodoxanthin Purple-red [34, 37, 38]

Porphyrins

Turacoverdin Green [39]

Coproporphyrin III Red Brown [40]

Turacin Red [41]

Table 1. 
Summary of the main features characterizing the most abundant pigments in bird feathers.
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carotenoids [28, 42]. On the one hand, melanin-based coloration switches from 
brown to black due to the presence of phaeomelanin or eumelanin, respectively, 
or the number and distribution of the melanosomes [29, 30]. On the other hand, 
carotenoids-based colorations vary from yellow to red as previously mentioned.

The genetics of coloration in birds remains poorly described. However, it is 
extensively accepted that its expression is phenotypically plastic with a high sen-
sitivity to variation in environmental conditions. Therefore, the melanin-based 
colour should be considered the key system to understand the molecular basis of 
phenotypic variations [43]. Some other pigments are only present in some species. 
This is the case of psittacofulvins, which are found just in a few species of parrots 
(Psittacidae) or penguins (Spheniscidae) [44–46] or turacoverdins, responsible 
for the bright green coloration of several birds of the family Musophagidae, most 
notably the turaco (Turaco sp.; Musophagidae). It is chemically related to turacin, a 
red pigment also found almost exclusively in turacos [39].

3. Haloarchaea

Archaea, one of the three Domains of life, make up a significant fraction of 
the microbial biomass on Earth [47]. It was thought that Archaea microbes were 
restricted to extreme environments, such as those with elevated temperatures, 
low or high pH, high salinity, or strict anoxia [48]. However, environmental sam-
pling analysis based on rRNA sequences has revealed that archaea are widespread 
in “normal” ecosystems, including soils, oceans, marshlands, human colon, 
human oral cavity and even in human skin. They are particularly numerous in 
the oceans; thus, archaea in plankton may constitute one of the most abundant 
groups of organisms on the planet. From a metabolic point of view, they have 
evolved a variety of energy metabolisms using organic and/or inorganic electron 
donors and acceptors, playing important roles in the Earth’s global geochemical 
cycles [49].

Salty environments are dominated by organisms commonly named “halophiles” 
(it comes from the Greek word for “salt-loving”). They are usually classified into 
three groups according to their NaCl requirements: slight halophiles (2–5% or 
0.34–0.85 M), moderate halophiles (5–20% or 0.85–3.4 M) and extreme halophiles 
(20–30% or 3.4–5.1 M) [50].

Halophilic archaea, also called Haloarchaea, are extreme or moderated halo-
philic species inhabiting neutral saline environments such as salt lakes, marine 
salterns, marshes, saltern crystallizer ponds or genuine environments like the Dead 
Sea [51, 52]. In those natural ecosystems, salt concentrations are around 1.5–4 M, 
which corresponds to 9–30% of salts (w/v). NaCl is the predominant salt and ionic 
proportions are like those dissolved salts in seawater.

These halophilic ecosystems harbour a large diversity of microorganisms of all 
three domains: small eukaryotes such the shrimp Artemia salina, primary producers 
as the green algae Dunaliella [14] (Figure 2A and B), aerobic heterotrophic bacteria 
(mainly belonging to the family Halomonadaceae), anaerobic fermentative bacteria 
(families Halanaerobiaceae and Halobacteroidaceae) and archaeal microorganisms of 
the families Halobacteriaceae and Haloferacaceae (commonly named “Haloarchaea”). 
They are mainly characterised by their red-orange-pink colour, which is due to the 
pigments they produce to be protected against the high sun radiation (Figure 3). 
Salted ponds for salt crystallisation or other salty ecosystems like de Dead Sea become 
completely red, mainly in summer, due to microbial blooms, in which haloarchaea of 
the genera Haloarcula, Haloferax, Haloquadratum or bacterial species like Salinibacter 
ruber constitute de major populations (Figures 2C and 3).
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4.  Haloarchaea and their relation to avian plumage colour: the case of 
marine birds

Studies in the early nineties of the last century demonstrated that the carotenoids 
of the feathers were derived from the diet and deposited within tissues selectively 
[53] being the liver one of the most important organs involved in the conversion of 
carotenoids uptaken [54]. Some years before, other studies focused on seaside birds 
as flamingos stated that the major carotenoids in blood and feathers were canthax-
anthin and a rare β-carotene derivative (4-keto-α-carotene) [55, 56]. Limitations on 

Figure 2. 
(A) Artemia salina and (B) Dunaliella salina. They constitute the major microbial populations in salted 
waters in coastal environments, salted lagoons, salty ponds from where NaCl is isolated from human 
consumption, etc. (C) Aerial overview of the saltern ponds located in Santa Pola city (Southeast of Spain) 
(http://paisajesturisticosvalencianos.com/paisajes/las-salinas-de-santa-pola-torrevieja/). This kind of 
ecosystems are warm places frequently inhabited by seaside birds like flamingos (D). The colour of the ponds is 
due to microbial blooms, which occur mainly in summer.

Figure 3. 
(A) Haloferax volcanii colonies; (B) Haloquadratum walsbii cells (picture from https://microbewiki.kenyon.
edu/index.php/Haloquadra) and (C) Haloferax mediterranei colonies. Flamingos display haloarchaeal 
colours, they often frequent hypersaline lakes, and they carry haloarchaea with them on their travels around 
the world.
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chemical and analytical techniques have contribute to the poor knowledge about 
carotenoids in birds up to nowadays. Fortunately, new advances in spectrometry and 
HPLC have made possible a significant improvement in this field of knowledge  
[41, 57]. Thus, during the last 15 years, several research groups worldwide have 
characterised the nature (and even the concentrations) of carotenoids in blood and 
feathers, mainly in finches [58, 59] and parrots [44, 60]. All the reported results 
show that the most important carotenoids contributing to the red-orange-pink 
colours in feathers are: canthaxanthin, astaxanthin, zeaxanthin and carotene 
(including its derivatives). In the case of seaside birds, it has been stated that the 
main rich carotenoids sources are the small shrimps and algae co-inhabiting the 
salty environments (Artemia and Dunaliella species, for instance) (Figure 2). 
Consequently, it is extensively assumed that the major pigments in marine bird’s 
feathers would be those predominating in shrimps and algae (astaxanthin, can-
thaxanthin and carotene). However, some other studies indicate that in hypersaline 
habitats the birds do not feed extensively on brine shrimps Artemia to avoid salt 
stress [61]. Therefore, other carotenoid rich sources must be considered as part of 
the diet of marine birds to explain their pigmentation.

Recent contributions in this field have revealed that there are other important 
factors contributing to the red-orange-pink colour of the feathers. Between them, it 
is important to highlight the following: (i) genetics [2]; (ii) variation in carotenoid-
protein interactions in bird feathers structures, which produces novel plumage 
coloration [62] and (iii) the presence of alive red-orange microorganisms on the sur-
face of the feathers [63]. This last factor has recently been reported from flamingos 
growing up in captivity: viable, red-coloured archaeal strains belonging to the genera 
Halococcus and Halogeometricum were isolated from the surface of the plumage [63]. 
Apart from these viable cells, metagenomics approaches showed that cells belong-
ing to other genera such as Haloquadratum, Haloferax, Haloarcula, Halorubrum and 
Natronomonas are also present on the surface of the flamingos’ feathers. This kind 
of haloarchaea can produce significant amounts of bacterioruberin, a carotenoid 
mainly synthesised by them giving the microbial cells red-orange colours [8, 64, 65]. 
Besides, the analysis of the flamingo plumage pigments shows that bacterioruberin 
is not only in the alive microbial cells on the feathers’ surface, but also found inside 
the flamingo feathers structure. This result directly suggests that haloarchaea are also 
part of the diet of flamingos. Bacterioruberin is responsible for the colour of these 
extremophilic microorganisms (Figures 3 and 4) [8, 65]. It has a primary conjugated 
isoprenoid chain length of 13 C=C units with no subsidiary conjugation arising from 
terminal groups, which contain four –OH group functionalities only (Figure 4).

This carotenoid is involved in several biological roles in haloarchaea: it pro-
tects the cells against the damage produced by high intensities of sun radiation, it 
provides aid in photoreactivation [66] and it promotes membranes stability [8, 65]. 
Characterisation of pure bacterioruberin samples revealed that it is more powerful 
than carotene as antioxidant compound [67, 68]. Due to these facts, bacterioruberin 
could be used in biotechnology and biomedicine for different purposes [8, 69].

Figure 4. 
Chemical structure of bacterioruberin. This compound has promising potential uses as antioxidant, 
antitumoral and immunomodulatory molecule for pharmaceutical and cosmetical formulations [64, 65].
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Consequently, haloarchaea in general and their pigments in particular, may 
contribute to the orange-red colour of the feathers in two ways: (i) pink-red 
haloarchaea cells on the surface contribute to the pink-red phenotype in flamin-
gos’ feathers and (ii) haloarchaeal cells are part of the marine birds’ diet (at least 
flamingos), consequently their carotenoids (mainly bacterioruberin) are ingested, 
metabolised and further assimilated.

5. Conclusions

New advances in the knowledge of animal pigmentation state that not only the 
pigments (carotenoids, melanin, etc.), but also the microstructure of the feathers 
as well as external factors, contribute to the final phenotype in terms of coloration. 
Related to birds, and particularly to seaside birds, it was thought that microalgae 
and small shrimps were the major sources of carotenoids so far. Nevertheless, recent 
results revealed that other small microbes such as haloarchaea could contribute 
significantly to the red-orange colours showed by birds like flamingos. In that 
sense, bacterioruberin becomes a new pigment to be considered to explain animal 
colours in marine environments. The potential influence of haloarchaea as an 
environmental factor determining avian plumage coloration or even protecting the 
microstructures of feathers against UV radiation must be investigated in further 
studies. Although bacterioruberin has been very well described, only few studies 
about its biological implications are available at the time of writing this review. 
Thus, more efforts must be done to explain basic aspects related to bacterioruberin 
metabolism and its effects on animal health and animal phenotypes. On the other 
hand, associations between different haloarchaeal-bird species as well as changes in 
these associations promoted by environmental conditions or anthropogenic actions 
are worthy to be analysed into detail. Hypothesis based on potential symbiotic 
relationship between haloarchaea and seaside birds remains unexplored.
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