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Chapter

Role of Click Chemistry
in Organic Synthesis
Ayushi Sethiya, Nusrat Sahiba and Shikha Agarwal

Abstract

Click chemistry involves highly efficient organic reactions of two or more highly
functionalized chemical entities under eco-benign conditions for the synthesis of
different heterocycles. Several organic reactions such as nucleophilic ring-opening
reactions, cyclo-additions, nucleophilic addition reactions, thiol-ene reactions, Diels
Alder reactions, etc. are included in click reactions. These reactions have very
important features i.e. high functional group tolerance, formation of a single prod-
uct, high atom economy, high yielding, no need for column purification, etc. It also
possesses several applications in drug discovery, supramolecular chemistry,
material science, nanotechnology, etc. Being highly significant and valuable, we
have elaborated on several aspects of click reactions in organic synthesis in this
chapter. Recent advancements in the field of organic synthesis using click chemistry
approach have been deliberated by citing last five years articles.

Keywords: click chemistry, organic synthesis, eco-benign synthesis, selectivity,
atom economy, cyclo-addition

1. Introduction

Presently, researchers are paying considerable attention to devise eco-friendly
approaches for organic transformations. There has been a significant hike in interest
among the scientists for more environmentally acceptable processes in the chemical
industries. Synthetic chemistry has led us to the development of more potent
structural analogs of natural products. The high therapeutic efficiency, bioavail-
ability, and pharmacological characteristics of synthetic molecules have increased
their use in medicinal chemistry as compared to natural products. Pharmaceutical
chemistry encompasses the design, synthesis, and evaluation of compounds. In
designing drugs, there is an upsurge demand for eco-benign pathways to accom-
plish the green aspects of chemistry. Novel green pathways play a vital role in the
synthetic chemistry field by eradication of harmful solvents and chemicals or suit-
able handling of waste materials. The quest for new and proficient approaches for
the synthesis of numerous biologically active scaffolds has made click chemistry a
promising approach in chemistry. Click chemistry is a fruitful approach for the
fabrication of molecules.

Huisgen and co-workers demonstrated a click reaction, Cu(I)-catalyzed azide–
alkyne cycloaddition (CuAAC). The advanced use of this reaction and click chem-
istry was introduced by K. Barry Sharpless in 2001. The term click chemistry not
only refers to the reaction which occurs fast but also to those that involve twelve
principles of green chemistry i.e. selective, easier product isolation, mild reaction
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condition, high yield, good atom economy, avoid toxic catalyst and solvent, and so
on. They encompass reactions that are high yielding, fast, modular, and wide in
scope. They are practical and tolerant for a variety of functional groups. Finally, the
product isolation is expected to be effortless due to lack of by-products. These vast
characteristics make click chemistry a powerful tool that paves a path in several
fields of research viz. designing of drugs and lead structures [1–4]. Therefore the
synergy between these disciplines has given rise to an area of intense research
activity. The click chemistry has been such an engrossing topic of research that a lot
of review articles have been published so far which explained its applicability in
various fields of chemistry like manufacturing and alteration of metal–organic
frameworks [5], making devices in bio-sensing system for responsive copper iden-
tification [6], designing bio-adhesives for hastening wound closure [7], in virus-
related research [8], generation of biosensors [9], proteomics analysis [10], in
strategy for indirect 18F-labeling [11], in vivo bio-imaging [12], to identify the
interaction of curcumin with protein [13], synthesis of polymers and material
science [14], for surface modification [15], and so on. In this chapter, the state-of-
art modernization with a particular focus on click chemistry assisted synthesis and
their uses in various fields of science have been discussed. An attempt has been
done to prepare an outline of the importance of click chemistry and its foremost
requirement in the research area. It is predicted that this methodical study will pave
the way for future opportunities in this direction and design of safer, economical,
and eco-friendly pathways.

2. Green aspects of click reactions

According to Sir John Cornforth, a Noble Prize laureate in chemistry in 1975,
ideal reaction has been defined as “The ideal chemical process is that which a one-
armed operator can perform by pouring the reactants into a bath-tub and collecting
the pure product from the drain hole” [16]. Click reactions are designed in such a
way that it involves all the twelve principles of green chemistry. Click chemistry
includes synthetic methods that are designed to maximize the inclusion of all
resources used in the process into the final product. Due to involvement of addition
and rearrangement reactions, they have high atom economy. The products are
designed with maximum efficacy and minimum cytotoxicity [17]. The green
aspects have been depicted in Figure 1.

Figure 1.
Green aspects of click chemistry.
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3. Role of click reactions in synthetic chemistry

Click chemistry includes a cluster of powerful linking chemical reactions that are
easy to perform, have high yields, require no or minimal purification, and are
flexible in the unification of different structures without the prerequisite of protec-
tion steps. Molecular diversity, modularity, and efficiency are essential in synthetic
organic chemistry and expected to be involved in the preparation of several com-
plexes and multi-purpose compounds. In general “Click Chemistry” is a class of
biocompatible reactions, to link desired substrates with particular biomolecules.
Natural products are produced by joining tiny modular units via biosynthesis as well
as photosynthesis [18]. Click chemistry provides a route for the synthesis of several
heterocyclic scaffolds, amino acids, triazole-fused heterocycles, peptides, and
chromophores [19, 20].

3.1 Classification of click reaction

There is no specific classification of click reactions. The chief requisite for “Click
Chemistry” is well met by reactions that take place in nature and their mimic in the
laboratory is the closest and most desirable to the mind and spirit of most synthetic
organic chemists. Usually, four main classifications of click reactions have been
identified [21, 22].

• Cycloadditions: These refers to 1,3-dipolar cycloadditions reactions and
hetero-Diels-Alder cycloadditions.

• Nucleophilic ring-opening reactions: This classification belongs to the
opening of strained heterocyclic electrophiles, such as epoxides, aziridines,
aziridinium ions, cyclic sulfates episulfonium ions, etc.

• Nucleophilic addition reaction: It includes the reaction of carbonyl groups
like formation of hydrazones, urease, thiourease, oxime ethers, aromatic
heterocycles, amides, etc.

• Additions to carbon–carbon multiple bonds: It involves epoxidation,
dihydroxylation, aziridination, nitrosyl halide addition, sulfenyl halide
addition, and certain Michael additions.

Presently, click chemistry inspired synthesis has become the most fascinat-
ing approach. Several multi-component reactions have been designed in an eco-
friendly manner like aldol condensation followed by Michael addition, Ugi
reaction/aldol reaction, Ugi reaction/Huisgen reaction, Ugi Reaction/Diels-
Alder reaction, Ugi reaction/Heck reactions, Michael addition/Mannich reac-
tion, etc. [23]

The most famous click reaction is the classical reaction between an azide and an
alkyne. Both the substrates do not react under physiological conditions and go
through a cycloaddition reaction only at a particular temperature. The uncatalyzed
reaction is usually slow and not regio-selective. On the other hand, it was found that
the use of electron-deficient terminal alkynes can cause 1,4-regioselectivity to a
great extent. These factors limit the use of uncatalyzed Huisgen cycloaddition as an
efficient conjugation pathway [24].
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3.2 Metal-catalyzed approach for the click synthesis

3.2.1 Synthesis of triazole derivatives

Metals have been used to catalyze several click reactions. The mechanism of
metal catalyzed azide alkyne click reaction involves formation of π-alkynyl complex
with metal followed by complexation of azide by metal of the π-coordinated triple
bond. After cyclization, metallacycle is formed followed by the reductive elimina-
tion to afford the relevant 1,2,3-triazole. Several metal like Cu, Ru, Ag, Au, etc. have
been employed to accomplish click reactions [25–28]. This section has been divided
in two subsections:

3.2.1.1 Metal-catalyzed synthesis of triazole derivatives

Transition metals have been used to catalyze several organic reactions as they
provide large surface area and they have vacant d-orbitals due to which they can
show variable oxidation state that help in generation of intermediate for organic
synthesis [29, 30]. The common process for the click reaction is the transition metal
catalyzed synthesis of 1,2,3-triazoles. 1,3-dipolar cyclo-addition of an azide and an
alkyne catalyzed by Cu is the most extensively used click-chemistry pathway due to
its high selectivity and simplicity [31]. In 2014, Guo and co-workers synthesized
β-cyclodextrin derivatives (1) using mono-6-azidocyclodextrin and aromatic
aldehydes by CuI-catalyzed azide–alkyne cyclo-addition. The mono, di, and tri
derivatives were synthesized upto 75% yield under mild reaction conditions [32]
(Figure 2).

Later on, Kumar et al. [33] designed a library of new nucleosides (2 and 3)
having 1,2,3-triazole scaffold at the 2″-position of the sugar nucleus. It was synthe-
sized by 2″-azidouridine using the copper (I)-catalyzed Huisgen–Sharpless–Meldal
1,3-dipolar cyclo-addition reaction (Figure 3). The reaction gave 52–82% yield and
1,4-disubstituted 1,2,3-triazoles were obtained.

Tale and co-workers also synthesized 1,2,3-triazoles in excellent yields using
(1-(4-methoxybenzyl)-1-H-1,2,3-triazol-4-yl)methanol (MBHTM) ligand (1.1 mol%)
and CuSO4 (1 mol%) as a catalyst and sodium ascorbate (5 mol%) in DMSO:H2O(1:3)
as a solvent [34]. Shamla and co-workers synthesized coumarin substituted triazole
derivatives (4) in good yields using 4-bromomethylcoumarins, terminal alkynes, and
sodium azide in the presence of triethylamine and CuI as a catalyst [35] (Figure 4).

Yarlagadda et al. synthesized N-((l-benzyl-slH-l,2,3-triazol-5-yl) methyl)-4-
(6-methoxy benzo[d]thiazol-2-yl)-2-nitrobenzamide derivatives (5) and examined
their anti-microbial activity. Among these compounds, compounds 5a, 5 h, 5i
possessed promising activity in comparison to standard drug ciprofloxacin and
miconazole (Figure 5) [36].

Figure 2.
Synthesis of β-cyclodextrin derivatives using click chemistry approach.
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Anand et al. designed Cu(I) catalyzed regio-selective synthesis of iso-indoline-
1,3-dione linked 1,4 coumarinyl 1,2,3-triazoles (6) and Ru (II) catalyzed pathway
of 1,5 coumarinyl 1,2,3-triazoles in high yields with no need for further purification
(Figure 6) [37].

Anandhan et al. prepared a series of triazole-based macrocyclic amides (7)
via click chemistry using CuSO4 (5 mol%), sodium ascorbate (10 mol %) in the
presence of H2O/THF (1:1), RT. The synthesized compounds showed good anti-
inflammatory activity although at low concentration (50 μg/mL) in comparison to
the reference drug prednisolone (Figure 7) [38].

Li and co-workers designed triazole derivatives (8 and 9) by click chemistry
using CuSO4∙5H2O (0.1 g) and ascorbic acid (0.1 g) in tBuOH/H2O as a solvent and
investigated their applications to synthesize self-assembled membrane against cop-
per corrosion. As per the investigation results, it was found that 2-(1-tosyl-1H-1,2,3-
triazol-4-yl)-ethanol (TTE) (8) and 2-(1-tosyl-1H-1,2,3-triazol-4-yl)-propan-2-ol
(TTP) (9) coating on film can sturdily decrease the corrosion caused by copper in

Figure 4.
Synthesis of coumarin substituted triazole derivatives.

Figure 5.
Synthesis of N-((l-benzyl-lH-l,2,3-triazol-5-yl) methyl)-4-(6-methoxy benzo[d]thiazol-2-yl)-2-
nitrobenzamide derivatives.

Figure 3.
Synthesis of library of traizole substituted nucleosides.

5

Role of Click Chemistry in Organic Synthesis
DOI: http://dx.doi.org/10.5772/intechopen.96146



3 wt.% NaCl solution and the inhibition effectiveness of TTP and TTE were 93.1%
and 89.4%, respectively (Figure 8) [39].

Savanur and co-workers developed facile click chemistry inspired synthesis of
triazole ring fused coumarin and quinolinone derivatives using CuSO4 (10 mol%),
sodium ascorbate (10 mol%), H2O:PEG, RT followed by K2CO3/DMF at 50–60 °C
and examined their anti-microbial activity. Among the synthesized compounds,
compounds 10j, 11 g and 12f displayed good anti-bacterial activities. Derivatives
10e and 10j were found highly active against yeast strains. Compound 11f was
highly active against filamentous strain A. niger and yeast fungi [40] (Figure 9).

Yarovaya et al. [41] fabricated a conjugate of cytisine with camphor having
triazole ring using click chemistry pathway by employing CuSO4∙5H2O, sodium
ascorbate, t-BuOH/H2O. The designed molecules were examined for in vitro
antiviral activity against A/PuertoRico/8/34 influenza virus (H1N1). The compound
(13) has highest inhibition activity with IC50 = 8 � 1 μmol (Figure 10).

Figure 6.
Synthesis of iso-indoline-1,3-dione linked 1,4 coumarinyl 1,2,3-triazoles derivatives.

Figure 7.
Triazole based macrocyclic amides.

Figure 8.
Derivatives of triazole.
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Khanapurmath et al. synthesized various derivatives of triazole by click chemis-
try approach using CuSO4 and ascorbic acid in H2O:DMF solvent and assessed them
against Mycobacterium tuberculosis H37Rv. 6-Methyluracil and theophylline
mono-triazole compounds 14(a-d) and bis-triazole compounds, 15(a-e) showed
reasonable inhibition of M. tuberculosis H37Rv, with MIC values in the range of
55.62–115.62 μM. Benzimidazolone bis-triazole derivatives 16(a-n) inhibited
M. tuberculosis H37Rv with MIC 2.35–18.34 μM (Figure 11) [42].

3.2.1.2 Metal Nano-particle based triazole synthesis

Green synthesis is the fundamental requirement of present synthetic protocol
and use of nanoparticles (Nps) is one of the key tackle for organic transformations.
NPs are microscopic particles with dimension between 1–100 nm. These are used as
catalysts because they provide large surface area, high catalytic activity, nontoxic,
heterogeneous nature, etc. In lieu of this, Chetia et al. designed copper Nps (nano
particles) supported over hydrotalcite and used these Nps (15 mg) to catalyze 1,3
dipolar cycloaddition reaction to form 1,4 disubstituted-1,2,3-triazoles (17)

Figure 9.
Triazole ring fused coumarin and quinolinone derivatives.

Figure 10.
Cytisine conjugated triazole derivative.

Figure 11.
Methyluracil and theophylline mono-triazole compounds and Bis-triazole compounds.
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(Figure 12) at room temperature using ethylene glycol as a solvent. The catalyst is
heterogeneous, easily recyclable, and further reusable [43]. In this context, Poshala
and co-workers developed copper Nps (0.1 mmol) using rongalite as a reducing
agent and examined their catalytic efficiency in synthesizing triazole (18) deriva-
tives in the presence of β-cyclodextrin (0.02 mmol) [44].

Chavan et al. [45] designed a click chemistry assisted MCR strategy for the
synthesis of spirochromenocarbazole tethered 1,2,3-triazoles (19) using CuINps
supported over cellulose (7 mol%) as a catalyst in the presence of DMF:Water (1:2)
(Figure 13). The synthesized compounds were screened for anti-cancer activity
against MCF-7, HeLa, MDA-MB-231, A-549, PANC-1 and THP-1. Compounds 19i
and 19j were observed to be the most potent against MCF-7 with IC50 = 2.13 μM and
4.80 μM respectively. Compound 19 k was the most potent one against MDA-MB-
231 with (IC50 = 3.78 μM). All the products were found to be safe against the human
umbilical vein endothelial cells (HUVECs).

Elavarasan et al. prepared nano rod shaped triazine functional hierarchical
mesoporous organic polymers (HMOP) containing Cu metal. This catalyst was used
to synthesize triazole derivatives (20) via stirring at 80 °C in the presence of water
as a solvent [46]. In the same year 2019, Gholampour et al. synthesized a library of
1,4-naphthoquinone-1,2,3-triazole hybrids (21) using CuSO4 (0.15 mmol) and
sodium ascorbate (.05 mmol) catalyzed click chemistry approach from 2-(prop-2-
ynylamino)naphthalene-1,4-dione and different azidomethyl-benzene analogs. The
anti-cancer activity of synthesized compounds was anticipated against three cancer
cell lines (MCF-7, HT-29 and MOLT-4) by MTT assay. The compound 21f pos-
sessed the highest activity [47]. In continuation to this, magnetic CuFe2O4/g-C3N4
hybrids were synthesized and their catalytic activity was examined in the synthesis

Figure 12.
Triazole derivatives.

Figure 13.
Spirochromenocarbazole tethered 1,2,3-triazole derivatives.

Figure 14.
Structures of different triazole derivatives.
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of triazole derivatives (22 and 23) using terminal alkyne, azide, epoxide or
haloarene (Figure 14) [48].

Pourmohammad et al. synthesized (CuI@[PMMA-CO-MI]) (0.02 g) nano cata-
lyst and employed them in the synthesis of triazole derivatives using terminal
alkynes, α-haloketones or alkyl halides and sodium azide in H2O at RT to give 1,4-
disubstitued 1,2,3-triazoles (24) (Figure 15). The catalyst being heterogenous and
regioselective gave high yields in short reaction times [49].

Thanh et al. [50] designed a hybrid structure of chromene and triazole by
applying click chemistry approach for the synthesis of 1H-1,2,3-triazole-tethered
4H-chromene-D-glucose analogs (25) using Cu@MOF-5 (2 mol%) as a catalyst to
afford 80–97.8% yields. The copper supported over metal organic frame work was
found better catalyst in comparison to conventional catalysts viz. CuSO4.5H2O-
sodium ascorbate, CuI, Cu Nps, CuIM2(IM is imidazole) as it afforded high yields of
desired products in less reaction time and in the presence of ethanol whereas other
required long reaction time and non green solvent. All the derivatives were assessed
for in vitro anti-microbial activity with MIC values in the range of 1.56–6.25 μM
(Figure 15).

3.2.2 Synthesis of other organic molecules

Click chemistry has been used to synthesize biologically active hybrids of several
synthetic organic molecules. In lieu of this, Sharova et al. [51] demonstrated click
chemistry inspired phosphorylation of anabasine, camphor, and cytisine using Cu
assisted 1,3-diploar cycloaddition reaction. Later on, Touj et al. [52] synthesized
copper N-heterocyclic carbene (Cu-NHC) complexes using benzimidazolium salt as
a catalyst. These complexes were further used for the synthesis of triazole deriva-
tives (26) (Figure 16).

The reaction involved mild reaction conditions, water as a green solvent with
low catalyst loading, no need of further purification which made the protocol eco-
friendly. Bernard et al. [53] investigated a cost effective, and convenient click
chemistry inspired synthesis of cyclooctyne (27) and trans-cyclooctene (28) using
inexpensive Cu powder as a catalyst (Figure 17).

Qui et al. [54] synthesized parthenolide–thiazolidinedione (29) hybrids using
click chemistry-mediated coupling. The compounds were screened for anti-
proliferative activity against prostate (PC3), breast (MDA-MB-231), and human

Figure 15.
Triazole derivatives.

Figure 16.
Synthesis of triazole derivatives.
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erythroleukemia cell line (HEL) by MTT assay. The compound (29f) having
3,5-dimethoxyphenyl group exhibited the highest inhibitory effect against HEL
(IC50 = 2.99 � 0.22 μM), MDAMB-231 (IC50 = 2.07 � 0.19 μM), and PC3
(IC50 = 3.09 � 0.20 μM) (Figure 18).

Senthilvelan et al. [55] designed synthesis of 3’-O-1,2,3-triazolyl-guanosine-50-o-
monophosphate (30) from in situ generation of azide from the resultant bromide
followed by copper and β-cyclodextrin catalyzed cyclo-addition with
30-O-propargyl guanosine monophosphate in aqueous media. The designed pathway
has high regioselectivity and gave good yield of products (Figure 18).

3.3 Metal-free approach for click reaction

Several new metal-free click chemistry assisted syntheses of heterocyclic scaf-
folds have been designed up to date. These pathways involve a variety of func-
tional group tolerance in the substrate of cyclo-addition reaction. These synthetic
pathways can be achieved under mild conditions and give high yields of desired
products using organo-catalyst [56, 57]. In 2010, Fokin and co-authors developed
the first transition metal-free synthesis of 1,5-diaryl-1,2,3-triazoles (31)
employing azide-alkyne cyclo-addition [58] (Figure 19 Method 1). In this reac-
tion, tetraalkylammonium hydroxide was used as the catalyst that provided mod-
erate to high yield of products. Later on, in 2013, Ramachary and co-workers [59]
achieved a region-selective synthesis of N-arylbenzotriazoles at room temperature
using a cyclic enone and an arylazide under pyrrolidine catalysis at room temper-
ature. Additional aromatization by DDQ gave fused heterocyclic scaffolds (32)
(Figure 19 Method 2). In the subsequent year, a one-pot tandem,

Figure 17.
Synthesis of cyclooctyne and trans-cyclooctene.

Figure 18.
Synthesis of parthenolide–thiazolidinedione and 3’-O-1,2,3-triazolyl-guanosine-50-o-monophosphate
derivatives.
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Knoevenagel/azide-alkyne cycloaddition reaction between indole, aromatic alde-
hydes or pyrazole and phenylazide was fruitfully accomplished in the presence of
piperidinium acetate in methanol to furnish the desired triazole derivatives (33)
(Figure 19 Method 3) [60].

In 2018, Han et al. [61] developed a metal-free and solvent-free approach for the
synthesis of 4-trifluroacetyl 1,2,3-triazoles in good yields with great selectivity. The
synthesized compounds were examined for the anti-cancer activity and compound
34b possessed superior activity as compared to others against HePG2 (0.0267 μmol/
mL) (Figure 20).

In the same year, Tan et al. [62] used thiol-ene click chemistry for the controlled
functionalization of poly vinylidene fluoride in the presence of a base. The mecha-
nism of the reaction suggests that it involves addition reaction followed by both
Markonikov and anti-Markonikov mechanism and furnishes the same product.
Later on in 2019, Moore and co-workers [63] designed a novel methodology for the
synthesis of ionic liquids which were based on fluoroalkynyl imidazolium using
thio-ene/yne click chemistry. The pathway has high conversion efficiency and high
yields with no need for further purification.

3.4 Visible light assisted click chemistry

Visible-light-assisted organic transformations have received a huge response in
chemical synthesis in order to design environmentally friendly approaches. The
synthesis using economical, easily available visible-light sources have become van-
guard in the synthetic chemistry as a prevailing approach for the activation of small
molecules to furnish the desired products [64–66].

Figure 19.
Metal-free synthetic route of triazole based heterocycles.

Figure 20.
4-Trifluroacetyl 1,2,3-triazole derivatives.
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Burykina et al. [67] synthesized different kinds of vinyl sulphides (35) in high
yields with good selectivity using thiol-yne click reaction using visible light. The
designed pathway is transition-metal-free and gave Markonvikov-type product
through a radical photo-redox pathway (Figure 21 Method 1).

Recently, Wu et al. [68] synthesized triazole analogs (36) through photo-redox
electron-transfer mechanism. The authors inspected the reaction of benzyl azide
with phenylacetylene using diverse photo-catalysts under ambient reaction condi-
tions like room temperature (RT), air, and visible light irradiation. The catalyst
(piq)2Ir(acac) or TPPT-Cl catalyzed the formation of triazole derivatives. The
designed pathway is high region-selective, high yielding, having a high atom econ-
omy, and using solar catalysis (Figure 21 Method 2).

3.5 Ultrasound assisted click chemistry

Ultrasound assisted reactions are milder and faster. The mechanism of ultra-
sound is based on an acoustic cavitation phenomenon. This technology hastens the
reaction in both heterogeneous and homogeneous media, due to amplified energy
intake. It shortens the reaction time and augments the competence of the system by
triggering the catalyst surface area and removing deposited impurities [69, 70].
A decades ago, Cintas et al. [71] depicted the synthesis of 1,4- disubstituted 1,2,3-
triazole analogs using Cu under ultrasound irradiation exclusive of a ligand. Later
on, a heterogeneous catalytic system, Cu(II) doped clay was used at RT with
ultrasonic irradiations [72]. The use of heterogeneous catalyst evaded needless
complexity due to copper (I) salt redox protocol that involved the presence of
ligands and protecting agents. The reaction is eco-friendly, easy to prepare, and
recoverable. One-pot synthesis of 1,4-disubstituted-1,2,3-triazoles was successfully
achieved using a benzyl or alkyl halide, sodium azide, and a terminal alkyne under
these conditions [73]. The formation of triazole starting from a TMS protected
alkynylglycoside was also demonstrated under ultrasound conditions with in situ

Figure 21.
Visible light assisted synthesis of vinyl sulphide.

Figure 22.
Synthesis of ultrasound assisted 1-azido-3-chloropropan-2-ol azido chitin derivatives.
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deprotection of TMS group [74]. In 2020, Kritchenkov et al. synthesized triazole
chitin derivatives and used them in the synthesis of Pd(II) complexes. Initially,
ultrasound-assisted interaction of chitin with 1-azido-3-chloropropan-2-ol gave
azido chitin and was further converted to triazole derivatives (37) that were used as
ligands for the complex formation (Figure 22) [75].

3.6 Microwave-assisted click chemistry

The use of microwave irradiation in cyclo-addition reactions for click chemistry
has also been comprehensively deliberated. It allows efficient internal heat transfer
and therefore decreases the reaction time as well as enhances the reaction rate with
high yield [76, 77]. The increased temperature can be used over short periods thus
avoiding decomposition or polymerization. Ashok and co-workers demonstrated
the synthesis of 1,2,3-triazole analogs using microwave irradiations in 8–10 min and
examined their antimicrobial activity [78] (Figure 23 Method 1). This method has
also been applied in the preparation of 1,2,3-triazole analogs of nucleosides [79]
(Figure 23 Method 2). In general, those reactions which require prolonged con-
ventional heating are accomplished in just 10–15 min using microwave irradiation.
A chronological one pot Ru catalyzed cycloaddition was also designed from primary
aryl or aliphatic bromides (Figure 23 Method 3) [80].

Figure 23.
Microwave assisted synthesis of triazole based scaffolds.
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4. Click chemistry in polymer synthesis

In the past two decades, various polymers have been introduced through ionene
synthesis, click chemistry, and Michael addition via polycondensation and
polyaddition process. Click chemistry reactions are known as reliable, powerful,
high-yielding, and selective for the synthesis of novel and combinatorial com-
pounds via Diels Alder cyclo-additions, copper-catalyzed azide-alkyne cycloaddi-
tions (CuAAC), and azide nitrile cycloadditions process [81, 82]. In 2013, Pasini
reviewed the utility of click reaction for the efficient synthesis of macrocyclic
structures like polymers, bio-conjugates, and dendrimers in different contexts [83].
Recently, Arslan and Tasdelen systematically reviewed the applications of click
chemistry in polymer design and synthesis, and studies based on their architecture
like block, cyclic, star, hyperbranched, and graftbrush comb polymers [84].

In 2018, Acik and co-authors demonstrated a simple copper (I)-catalyzed azide-
alkyne cyclo-addition “click” reaction for the synthesis of polypropylene-graft-poly
(L-lactide) copolymers (PP-g-PLAs) using different feeding ratio of alkyne end-
functionalized poly(L-lactide) azide and side-chain functionalized polypropylene in
the presence of CuBr/PMDETA and CuAAC [85]. This polymer exhibited special
characteristics like good thermal property, wettability and biodegradability.

Öztürk and companions introduced efficient click chemistry inspired synthesis
of an amphiphilic copolymer (41) from the reaction of propargyl-PEG and termi-
nally azidepoly(ε-caprolactone) in CHCl3 at ambient temperature (Figure 24) [86].
This method displayed a synergistic arrangement of hydrophilic PEG and crystal-
line PCL to furnish novel materials with good applicability.

Yang et al. synthesized poly(3-hexylthiophene)-multiwalled carbon nanotube
(P3HT-MWCNT) hybrid materials from in-situ click chemistry using Cu(I) / DBU
catalytic system [87]. This novel hybrid also termed as organic–inorganic donor-
acceptor material displayed special characteristics such as better thermal stability,
higher melting point of 243.2 °C, good solubility, and optical properties.

Wang et al. reported a novel and efficient method for the synthesis of amphiphilic
star-like rod-coil block copolymer poly(acrylic acid)-blockpoly(3-hexylthiophene)
through the combined effect of atom transfer radical polymerization, quasi-living
Grignard metathesis method, and thiol–ene click reaction to furnish narrow molecu-
lar weight distribution and well-defined molecular structures [88].

Agrihari et al. introduced CuAAC catalyzed synthesis of p-tert-butylcalix[4]
arene linked benzotriazolyl dendrimers using CuSO4.5H2O and NaN3 to prepare N-
1, N-2 type 6 fold compounds in good yields [89]. The synthesized compounds were
evaluated for in vitro and in vivo anti-bacterial studies against a range of microbes
and demonstrated good biological potential. Chen and his companions devised
superhydrophobic cotton fabric from mercaptan and vinyl trimethoxysilane using
ultraviolet irradiation via thiol-ene click chemistry [90]. This fabric possesses spe-
cial characteristics like economic, highly resistant towards acids, acetone, UV light,
water, and other liquids.

Figure 24.
Poly(CL-co-EG)star-type amphiphilic coploymer.
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Henning et al. utilized copper-catalyzed azide/alkyne cycloaddition reaction for
the efficient synthesis of triazole-based photo-initiators (42) for the two-photon
polymerization process (Figure 25) [91]. Here Me-Mono and Ph-Mono initiators
displayed higher tolerability and sensitivity in microfabrication areas.

A novel, facile and efficient synthesis of 3- and 4-arm star-shaped poly
(2-methyl-N-aziridine)s (43, 44) from ring opening reaction of N-sulfonyl
aziridines in the presence of trimethylsilylazide and PMDETA (N,N,N0,N″,N″-
pentamethyldiethylenetriamine) through click reaction with CuBr and alkyne was
demonstrated by Luo et al. (Figure 26) [92].

Cai et al. presented a one-step click chemistry process for the synthesis of high
performance graphene oxide/ styrene-butadiene rubber (GO/SBR) composites using
pentaerythritoltetra(3-mercapto propionate) [93]. Experiments and molecular

Figure 25.
Synthesis of triazole-based photo-initiators.

Figure 26.
3-and 4-arm star-shaped poly(2-methyl-N-aziridine)s.

Figure 27.
Functionalized poly(1-butene) synthesis.
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simulation results concluded that these composites displayed upgraded gas permeabil-
ity, thermal conductivity, dynamic, and static mechanical performances.

Tian and companions demonstrated the synthesis of the functionalized poly(1-
butene)(45) via sequential thiol-ene click reaction and ring-opening polymerization
using poly(1,3-butadiene) as a substrate (Figure 27) [94]. Here C═C bond was
further functionalized from thiol-ene reaction using hydroxyl-containing thiol
compounds.

Zhang et al. devised synthesis of thiol-maleimide ‘click’ chemistry based
β-cyclodextrin polymers in an aqueous medium without generating by-products
[95]. The structure of products was affected by temperature range i.e. higher tem-
perature gave higher molecular weighted and compact structures. The obtained
polymers showed better dissolution performance and drug complex-forming
capacity as compared to the parental structure.

Gao et al. reported thiol-ene click reactions in polysulfide oligomers and acrylate
monomers to prepare processable and self-healable thermosets and elastomers (46)
via different pathways like photo-initiator, redox-initiator system and base medi-
ated catalytic approaches (Figure 28) [96]. Reprocessable and self-healable prop-
erties depend upon polymer structure and their synthetic methodology, therefore,
DBU based catalytic synthesis displayed better activity as compared to other pro-
cesses, due to their catalytic efficiency for disulfide bond exchanges.

Zhu et al. introduced facile click chemistry assisted poly(2,2,6,6-tetramethyl-
piperidin-1-oxyl-4-yl methacrylate) graphene oxide composite (PTMA-GO) (47)
assisted reaction in ambient conditions and utilized them as cathode materials
(Figure 29) [97]. After completing 300 charge–discharge cycles,the specific capacity
was found to be 2.3 times higher for this composite as compared to the PTMAelectrode.

Shen et al. devised synthesis of superhydrophilic and superoleophobic
PEGylated PAN membrane (48) from poly (ethylene glycol) methyl ether methac-
rylate (PEGMA) monomers via thiol-ene click chemistry (Figure 30) [98]. After
this fabrication, pore size of the membrane was reduced and displayed low flux. The

Figure 28.
Process able and self-healable polymer synthesis.

Figure 29.
PTMA-GO polymer synthesis.
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fabricated membrane exhibited excellent separation (99%) of various oil–water
emulsion and fouling-resistant ability.

5. Conclusion

Synthetic organic chemistry includes the synthesis of biologically active mole-
cules and designing of potent scaffolds. Click chemistry is one of the toolboxes for
chemistry, biology, nano, and material sciences. It has vivid applications in the
synthesis of organic molecules, polymers, nanoparticles, biosensors, and many
more. The concept of click chemistry fulfills the green aspects of a reaction. In this
chapter, we have deliberated an incredible flurry of activities in the field of click
chemistry inspired synthesis. This study highlights the current advancements in the
synthesis of heterocyclic and other cyclic structures using click reactions. The
insertion of a triazole ring with the help of click reaction increases the biological
activity of the synthesized compounds. Different pathways with metal or metal-free
conditions using conventional or non-conventional reaction methods have also been
demonstrated in this chapter.
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