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Chapter

Stochastic Theory of
Coarse-Grained Deterministic
Systems: Martingales and
Markov Approximations
Michel Moreau and Bernard Gaveau

Abstract

Many works have been devoted to show that Thermodynamics and Statistical
Physics can be rigorously deduced from an exact underlying classical Hamiltonian
dynamics, and to resolve the related paradoxes. In particular, the concept of equi-
librium state and the derivation of Master Equations should result from purely
Hamiltonian considerations. In this chapter, we reexamine this problem, following
the point of view developed by Kolmogorov more than 60 years ago, in great part
known from the work published by Arnold and Avez in 1967. Our setting is a
discrete time dynamical system, namely the successive iterations of a measure-
preserving mapping on a measure space, generalizing Hamiltonian dynamics in
phase space. Using the notion of Kolmogorov entropy and martingale theory, we
prove that a coarse-grained description both in space and in time leads to an
approximate Master Equation satisfied by the probability distribution of partial
histories of the coarse-grained state.

Keywords: stochastic theory, coarse-grained deterministic systems, Markov
processes, martingales

1. Introduction

It is generally admitted that Thermodynamics and Statistical Physics could be
deduced from an exact classical or quantum Hamiltonian dynamics, so that the
various paradoxes related to irreversibility could also be explained, and
nonequilibrium situations could be rigorously studied as well. These questions have
been and still are discussed by many authors (see, for instance Refs. [1–4] and many
classical textbooks, for instance [5–10]), who have introduced various plausible
hypotheses [7–14], related to the ergodic principle [8–11], to solve them. It seems
that there are two major kinds of problems. First, to justify that physical systems
can reach an equilibrium state when they are isolated, or in contact with a thermal
bath (which remains to be defined). Secondly, to justify various types of reduced
stochastic dynamics, depending on the phenomena to be described: Boltzmann
equations, Brownian motions, fluid dynamics, Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchies, etc..: see for instance Refs [1–11, 15, 16]. Concerning
the first type of problems (reaching an equilibrium, if any) very rough estimations
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show [17] that the time scales to reach equilibrium, using only Hamiltonian
dynamics and measure inaccuracies, are extremely large, contrarily to everyday
experience, and quantum estimations are even worse [17]. Essentially, these times
scale as Poincaré recurrence times and they increase as an exponential of the
number of degrees of freedom (see Section 3 of this chapter for a brief discussion
and references).

Here we concentrate on the second type of problems: is it possible to derive a
stochastic Markovian process from an “exact” deterministic dynamics, just by
coarse graining the microscopic state space? We generalize and complete the for-
malism recently presented [18] for Hamiltonian systems. Our framework is now
more general and applies to all deterministic systems with a measure preserving
dynamics, which, by Liouville theorem, include Hamiltonian dynamics.

Following Kolmogorov, we start with a measure space with a discrete time
dynamics given by the successive iterations of a measure preserving mapping. The
Kolmogorov entropy, or trajectory entropy, has been defined by Kolmogorov as an
invariant of stationary dynamical systems (see Arnold and Avez book [19] for a
pedagogical presentation). We follow his work and generalize part of his results.
We also use martingale theory [20–23] to show that the stationary coarse-grained
process almost surely tends to a Markov process on partial histories including n
successive times, when n tends to infinity. From this result, we show that in the
nonstationary situation, the probability distribution of such partial histories
approximately satisfies a Master equation. Its probability transitions can be com-
puted from the stationary distribution, expressed in terms of the invariant measure.
It follows that, with relevant hypotheses, the mesoscopic distribution indeed tends
to the stationary distribution, as expected.

Our next step is to coarse grain time also. The new, coarse-grained time step is
now n τ, τ being the elementary time step of the microscopic description, and n
being the number of elementary steps necessary to approximately “erase” the
memory with a given accuracy. The microscopic dynamics induces new dynamics
on partial histories of length n. We show that it is approximately Markovian if n is
large enough. This idea is a generalization of the Brownian concept: a particle in a
fluid is submitted to a white noise force which is the result of the coarse-graining of
many collisions, and the time step is thus the coarse-graining of many microscopic
time steps [8, 24]. The Brownian motion emerges as a time coarse-grained
dynamics.

In Section 2, we recall various mathematical concepts (Kolmogorov entropy,
martingale theory) and use them to derive the approximate Markov property of the
partial histories, and eventually to obtain an approximate Master Equation for the
time coarse-grained mesoscopic distribution [18].

In Section 3, we briefly consider the problem of relaxation times and recall very
rough estimations showing that an exact Hamiltonian dynamics predicts unrealistic,
excessively large relaxation times [17], unless the description is completed by
introducing other sources of randomness than the measure inaccuracies leading to
space coarse-graining. Note that, following Kolmogorov [19], we do not address the
Quantum Mechanics formalism.

2. Microscopic and mesoscopic processes in deterministic dynamics

2.1 Microscopic dynamics: Definitions and notations

It has been shown recently [18] that coarse-grained Hamiltonian systems can be
approximated by Markov processes provided that they satisfy reasonable
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properties, covering many realistic cases. These conclusions can be extended to a
large class of deterministic systems generalizing classical Hamiltonian systems,
which we now describe. We first specify our hypotheses and notations.

2.1.1 Deterministic microdynamics

Consider a deterministic system S. Its states x, belonging to a state space X, will
be called “microstates”, in agreement with the usual vocabulary of Statistical
Physics. The deterministic trajectory due to the microscopic dynamics transfers the
microstate x0 at time 0 to the microstate xt = φt x0ð Þ at time t. The evolution function
φt satisfies the current properties of dynamic systems: φt φs ¼ φtþs,φ0 ¼ I, t and s
being real numbers and I being the identical function.

The dynamics is often invariant by time reversion, as assumed in many works on
Statistical Physics: we refer to classical textbooks on the subject for details [5–8], but
we will not use such properties in this chapter.

2.1.2 Microscopic distribution

Assume that the exact microstate x0 is unknown at time 0, but is distributed
according to the probability measure μ on the phase space X. The microscopic
probability distribution μt at time t is given by

μt Að Þ ¼ μ φ�t Að Þ: (1)

for any measurable subset A of X. If μ is stationary, it is preserved by the
dynamics: μt (A) = μ (A). This condition, however, it not necessarily satisfied, in
particular for physical systems during their evolution.

We will focus on two important cases:

a. the finite case: X is finite and consists in N microstates.

b. the absolutely continuous case: X ⊂Rn, where (i) R is the set of real numbers
and n is an integer (usually very large, and even in the case of Hamiltonian
dynamics), and (ii) the measure μ is absolutely continuous with respect to the
Lebesgue measure ω on Rn: these exists an integrable probability density p(x)
such that for any measurable subset A of X

μ Að Þ ¼

ð

A
p xð Þdω xð Þ: (2)

Furthermore, we assume that (iii) the Lebesgue measure of X (or volume of X)
V ¼ vol Xð Þ �

Ð

Xdω xð Þ is finite, and (iv) the Lebesgue measure ω is preserved by the
dynamics for any t and any measurable subset A of X.:

volA ¼ vol φ�tAð Þ: (3)

The last two assumptions obviously generalize basic properties of Hamiltonian
dynamics in a finite volume of phase space. Thus, by (1)–(3), the probability
density is conserved along any trajectory: at time t the probability density is

p x, tð Þ ¼ p 0,φ�txð Þ � p φ�txð Þ: (4)
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2.1.3 Initial microscopic distribution: The stationary situation

Suppose that S is an isolated physical system and no observation was made on S
at time 0 nor before 0. Then, in the absence of any knowledge on S, we admit that
at the initial time S is distributed according to the only unbiased probability law,
which is the uniform law. This is clearly justified in the finite case, according to the
physical meaning traditionally given to probability: in fact, attributing different
probabilities for two distinct microstates of X would imply that some measurement
would allow one to distinguish them objectively, which is not the case at time 0.

In the absolutely continuous case, initial uniformity is less obvious: it amounts to
assuming that the system should be found with equal probability in two regions of
the state space with equal volumes if no information allows one to give preference
to any of these regions. This is of course a subjective assertion, but for Hamiltonian
systems it agrees with the semi-quantum principle which asserts that, in canonical
coordinates, equal volumes of the phase space correspond to equal numbers of
quantum states.

Another way for choosing the initial probability distribution is to make use of
Jaynes’ principle [25], which is to maximize the Shannon entropy of the distribution
under the known constraints over this distribution: in the present case of an isolated
system which has not been previously observed, this principle also leads to the
uniform law. It is not really better founded than the previous, elementary reason-
ing, but it may be more satisfying and it can be safely used in more complex
situations. We refer to most textbooks on statistical mechanics for discussing these
well-known, basic questions.

The uniform distribution in a finite space, either discrete or absolutely continu-
ous, is clearly stationary. In addition to the previous hypotheses, we will assume
that the space X is indecomposable [26]: the only subsets of X which are preserved
by the evolution function φt are the empty set ∅ and X itself. Then, the stationary
probability distribution is unique [18].

For simplicity, we will henceforth assume that the phase space X is finite.
Initial, nonstationary situation. In certain situations, the system can be pre-

pared by submitting it to specific constraints before the initial time 0. Then it may
not be distributed uniformly in X at t = 0. We will consider this case in the next
paragraph.

2.2 Mesoscopic distributions

2.2.1 Mesoscopic states

Because of the imprecision of the physical observations, it is impossible to
determine exactly the microstate of the system, but it is currently admitted that the
available measure instruments allow one to define a finite partition of X into subsets
i∈ M � (ik), k = 1, 2,…M, such that it is impossible to distinguish two microstates
belonging to the same subset i. So, in practice the best possible description of the
system consists in specifying the subset i where its microstate x lies: i can be called
themesostate of the system. The probability for the system to be in the mesostate i at
time t will be denoted p(i,t). It is not sure, however, that two microstates belonging
two different mesostates can always be distinguished: this point will be considered
in Section 3.2.2.

Remark: for convenience, we use the same letter p to denote the probability in a
countable state space, as well as the probability density in the continuous case. This
creates no confusion when the variable type is explicitly mentioned. This is the case
now since, as mentioned previously, we assume that the space X is discrete. The
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transposition to the continuous case is generally obvious, although the complete
derivations may be more difficult.

2.2.2 The stationary situation

If time 0 is the beginning of all observations and actions, we assume that the
initial microscopic distribution μ is uniform and stationary, as discussed previously,
and the probability to find system S in the mesostate i0 at time 0 is p(i0, 0) = μ(i0,).
The probability to be in i at time t is p0 i, tð Þ ¼ μt ið Þ ¼ μ φ�t ið Þð Þ. The stationary joint
probability to find S in i0 at time 0 and in i at time t is

p0 i0, 0; i, tð ÞÞ ¼ μ φ�ti∩i0ð Þ ¼ μ i∩φti0ð Þ (5)

and the conditional probability of finding S in the i at time t, knowing that it was
in i0 at time 0 is

p0 i, t i0, 0jð Þ ¼
p0 i, t; i0, 0ð Þ

p0 i0, 0ð Þ
¼

μ φ�t i∩i0ð Þ

μ i0ð Þ
¼

μ i∩φti0ð Þ

μ i0ð Þ
(6)

Similarly, the stationary n-times joint probability and related conditional proba-
bilities are readily obtained from

p0 i0, 0; i1, t1; … in�1, tn�1ð Þ ¼ μ φ�t
n�1
itn�1

∩…∩i0
� �

: (7)

with, for any t: p0 i0, t; i1, t1 þ t; … in�1, tn�1 þ tð Þ ¼ p0 i0, 0; i1, t1; … in�1, tn�1ð Þ.
For the sake of simplicity, we will discretize the times 0 < t1 < t2… , and write

ti = kiτ, ki being a nonnegative integer and τ a constant time step, which will be
taken as time unit.

2.2.3 Non stationary situation

If S is a physical system, interactions may exist before or at time 0, so that the S
can be constrained to lie in a certain subset A of X at time 0. However, since it is not
possible to distinguish two microstates corresponding to the same mesostate, A
should be a union of mesostates, or at least one mesostate. If it is known that at time
0 the microsate x of the system belongs to the mesostate i, we should assume that
the initial microscopic distribution is uniform over i, since no available observation
can give further information on x: so, in the discrete case, if n(i) is the number of
microstates included in i and χi (x) the characteristic function of i

p x, 0 x∈ ijð Þ ¼
1

n ið Þ
χi xð Þ (8)

In the absolutely continuous case, the similar conditional density is obtained in
the same way, replacing the number of microscopic states contained in the
mesostate i by its volume v(i). For simplicity, we follow considering the discrete
case, with obvious adaptations to the continuous case.

If one only knows the mesoscopic initial distribution p(i,0) that at time 0 the
system belongs to i, for each mesostate i of M, the initial microscopic distribution
becomes

p x, 0ð Þ ¼
X

i

1

n ið Þ
p i, 0ð Þ χi xð Þ ¼

X

i

p i, 0ð Þ

μ ið Þ

χi xð Þ

N
(9)
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N being the total number of microstates in X.
The n-times nonstationary mesoscopic probabilities are obtained from (9)

pn i0, 0; i1, 1, ; in�1, n� 1ð Þ ¼ p i0∩φ�1i1∩…∩φ�nþ1in�1, 0
� �

¼
p i0ð Þ

μ i0ð Þ

n i0∩φ�1i1∩…∩φ�nþ1in�1

� �

N
: (10)

where n(A) is the number of microstates belonging to some subset A of X. So

pn i0, 0; i1, 1, ; in�1, n� 1ð Þ ¼ μ i0∩φ�1i1∩…∩φ�nþ1in�1

� � p i0ð Þ

μ i0ð Þ
: (11)

and all multiple probabilities follow, for instance

pn�1 i1, 1; … ; in, nð Þ ¼
X

i0

μ i0∩φ�1i1∩…∩φ�nin
� � p i0ð Þ

μ i0ð Þ
: (12)

The corresponding process is generally not Markovian. For instance, if i0 ∩ ϕ�1

i1 6¼ ∅, i1 ∩ ϕ�1 i2 6¼ ∅ and i0 ∩ ϕ�2 i2 = ∅, it is easily seen that

p :i2, 2 i1, 1; i0, 0Þ
�

� ¼ 0 but p i2, 2 i1, 1Þ
�

� 6¼ 0
��

.

From the definition of the relative probabilities, one can formally write

p i2, t2
� �

¼
X

i1

p i2, t2 i1, t1j
� �

p i1, t1
� �

: (13)

but in general this equation is useless, since the conditional probability p(i2, t2|
i1, t1) cannot be computed independently of p(i1, t1).

It results from (11) that the nonstationary conditional probabilities, conditioned
by the whole past up to time 0, are identical to the corresponding stationary proba-
bilities: as an example

p in, n in�1, n� 1; … ; i0, 0jð Þ ¼ p0 in, n in�1, n� 1; … ; i0, 0jð Þ

¼
μ i0∩φ�1i1∩…∩φ�ninð Þ

μ i0∩φ�1i1∩…∩φ�nþ1in�1

� � : (14)

We will make use of this simple but important property later.

2.3 Entropy of the mesoscopic process resulting from deterministic,
microscopic system

Kolmogorov and other authors [19] studied the entropy and ergodic properties
of the stationary mesoscopic process defined previously, following methods intro-
duced by Shannon in the framework of signal theory [27–30]. These methods, and
part of Kolmogorov’s results, can be extended to the nonstationary process (11).

2.3.1 The n-times entropy and the instantaneous entropy of the mesoscopic system

Following Kolmogorov, we consider y the Shannon entropy [27–30] of the
trajectory (i)n = (i0, … , in-1) in the phase space

S pn
� �

¼ �
X

i0, … in�1

pn i0, 0; … ; in�1, n� 1ð Þ ln pn i0, 0; … ; in�1, n� 1ð Þ: (15)
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On the other hand, the new information obtained by observing the system in the
mesoscopic state in at time tn, knowing that it was in the respective states i0, … in-1
at the prior times 0, … n-1, will be called the instantaneous entropy

sn pð Þ ¼ Snþ1 pð Þ � Sn pð Þ ¼ �
X

i0, ; ; ; in

p i0, 0; :… in, nð Þ ln p in, n in�1, n� 1; … ; i0, 0Þ
�

� ≥ 0
�

¼
X

i0,; ; ; in�1
p i0, 0; :… in�1, n� 1ð Þ S p •, n in�1, n� 1; … ; i0, 0Þ

�

�

� �

:
�

(16)

where p denotes the infinite process. The properties of S(pn) and sn(p) have been
extensively studied by Kolmogorov and other authors in the case of the stationary
process (6) [19]: they are summarily mentioned in 2.5. They are not necessarily
valid for the nonstationary process.

2.3.2 Maximizing the n-times entropy of the mesoscopic system: The “Markov scheme”

If one knows the first two distributions p1 and p2, one can mimics the exact
mesoscopic distributions pn by using the Jaynes’ principle, maximizing the
entropy S(qn) of a ditribution qn under the constraints q1 = p1 and q2 = p2. Then it is
found that optimal distribution qn is the Markov distribution qn satifying these
constraints [18].

It is shown in Ref. [18] that for n > 2, both the n-times entropy Sn qð Þ and the
instantaneous entropy sn qð Þ are larger than the correponding entropies Sn pð Þ and
sn pð Þ of the exact process p, except if p is Markov: p = q.

The Markov process qn is not really an approximation of the mesoscopic process
p, because qn does not tend to pn when n!∞. Approximating the exact mesoscopic
process by a Markov process will be the main purpose of the next section.

2.4 Entropy and memory in the stationary situation

2.4.1 Kolmogorov entropy of the stationary process

Here we consider the stationary process arising from the initial uniform micro-
scopic distribution μ(x), when the n-times stationary probability is p0n given by (7).
For the sake of simplicity we omit the index 0 in the present Section, unless other-
wise specified. It can be shown [19] that the entropy Sn(p) is an increasing, concave
function of n

sn � Snþ1 pð Þ � Sn pð Þ≥0: (17)

snþ1 � sn ¼ Snþ1 pð Þ � 2Sn pð Þ þ Sn�1 pð Þ≤ 0: (18)

It results from (17) and (18), and also from 2.5.2, that the limits

lim n!∞
1

n
Sn pð Þ ¼ lim n!∞sn pð Þ ¼ s pð Þ: (19)

exist: s(p) is the Kolmogorov entropy of the evolution function f with respect to
the partition (i) of the mesoscopic states [19]. More simply, we can call it entropy of
the mesoscopic process.

2.4.2 Memory decrease in the stationary mesoscopic process

It has been proved recently [18] that, although it is infinite, the memory of the
mesoscopic process fades out with time: for n large enough, if N > n the probability
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of iN at time N conditioned by the n last events, is practically equal to the probabil-
ity at time N, conditioned by the whole past down to time 0.

p iN,Nj iN�1,N � 1; … in,N � nð Þ≈ p iN,Nj iN�1,N � 1; … i0, 0ð Þ when n ! ∞:

(20)

More precisely, for any ε > 0, there exists a positive integer n such that for any
N > n

0< sN < sn < ε: (21)

where sn is the instantaneous entropy given by (14). In fact, let us write

ΠN iNð Þ ¼ p iN,N iN�1,N � 1; ::… i0, 0Þj ¼ μ f�NiN f�Nþ1iN�1∩…∩i0
�

�

� �

;
�

(22)

Π
nð Þ
N iNð Þ ¼ p iN,N iN�1,N � 1; ::… ; iN�n,N � nÞj ¼ μ f�NiN f�Nþ1iN�1∩…∩ f�NþniN�n

�

�

� �

:
�

(23)

For a given n, formula (23) allows one to define a new process p(n) from the
original process p, which can be called “the approximate process of order n” of p
(see Section 2.6). It results from (21) and from the stationarity of p that for any
ε > 0, there is an integer n(ε) depending only on ε, such that for any integers N,
n > n(ε)

0< sn pð Þ � sN pð Þ ¼
X

i0, … iN�1

μ i0∩ f�1 i1ð Þ∩…∩ f�Nþ1 iN�1ð Þ S0,…N�1 ΠN Π
nð Þ
N

�

�

�

� �

< ε:
�

(24)

where S0,…N�1 ΠN |Π
nð Þ
N

� �

is the relative entropy of ΠN with respect to Π
nð Þ
N : the

last right hand member of Eq. (22) is the average of this relative entropy on the past
of N. Because sN(p) decreases to a limit s pð Þ when N ! ∞, it results that

0< δsn pð Þ � sn pð Þ � s pð Þ ≤ ε if n> n εð Þ: (25)

The total variation distance d(P,Q) between two distributions Pj and Qj over the
states j of a finite set (j) is

d P,Qð Þ ¼
1

2

X

j

P j � Q j

�

�

�

�

�

�: (26)

Then, the total variation distance d0,…N�1 ΠN,Π
nð Þ
N

� �

between ΠN and Π
nð Þ
N (for a

given past trajectory between times 0 and N-1) is related to the relative entropy
[18, 31] and it can be concluded that

d0,…N�1 ΠN,Π
nð Þ
N

� �D E2
≤ d0,…N�1 ΠN,Π

nð Þ
N

� �h i2
� �

< ε=2 if n εð Þ< n<N: (27)

2.4.3 Convergence properties of the approximate process

Let us write m = N-n > 0. It follows [18] from (25) that for any fixed m, the total
variation distance between the exact and the approximate probabilities

d0,…mþn�1 Πmþn,Π
nð Þ
mþn

� �

tends to 0 in probability when n ! ∞

8
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d0,…mþn�1 Πmþn,Π
nð Þ
mþn

� �

!
p

0 if n ! ∞: (28)

So, the probability that this distance exceeds a given accuracy a > 0 can be made
as small as desired by choosing n large enough.

Further results can be obtained by newly using the sationnarity of process p. In
fact, it can be shown [18] that p is a martingale [20–22]. Then, general results from
martingales theory (see below) show that when n ! ∝ the distance between the

stationary conditional probability Πm + n and its approximation Π
nð Þ
mþn tends to 0

almost surely [18], as well as and in probability

d0,…mþn�1 Πmþn,Π
nð Þ
mþn

� �

!
a:s:

0 if n ! ∞: (29)

So, the approximation Π
nð Þ
mþn converges to Πm + n for almost all trajectories [18].

We now sketch the derivation of this conclusion from martingale theory.

2.5 Martingale theory and almost sure convergence

For convenience, we first summarize some definitions and results of martingale
theory [20–22], before applying them to the mesoscopic laws of deterministic
systems. We refer to [20] for adressing more general cases.

2.5.1 Definitions

i. simplified definition: a (discrete time) sequence of stochastic variables Xn is
a martingale if for all n:

Xnj jh i<∞ and Xnþ1jXn, …X1

	 


¼ Xn: (30)

where Xh i denotes the average (mathematical expectation) of the stochastic
variable X.

ii. more generally (see the general definition, for instance, in [20])

If • (Ω, F , P) is a probability space (where Ω is the state space, P is the probability
law, and F is the set of all subspaces (σ-algebra) for which P is defined),

• F n is an increasing sequence of σ-algebras extracted from F (F n ⊂ F n + 1

⊂ … ⊂ F), and.

• for all n ≥ 0, Xn is a stochastic variable defined on (Ω,F n, P),

the sequence Xn is a martingale if Xnj jh i<∞ and Xnþ1jF n

	 


¼ Xn.

2.5.2 Convergence theorem for martingales

Among the remarkable properties of martingales, the following convergence
theorem holds [20, 21]:

If (Xn) is a positive martingale, the sequence Xn converges almost surely to a
stochastic variable X.

So, for almost all trajectories ω, Xn(ω) ! X(ω) with probability 1 when n ! ∞.
Stronger and more general results can be found in the references.
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2.5.3 Application to the nth approximation of the stationary mesocopic process

The stochastic variable YN ¼ p0 iN,N iN�1,N � 1; … ; i0j , 0ð Þ is a martingale. In
fact, because of the stationarity of p0 we have, renumbering the states

p0 i,N i�1,N � 1; … ; i�N

�

� , 0
� �

¼ p0 i, 0 i�1,�1; … ; i�N

�

� ,�N
� �

� p0 i, 0 FNjð Þ: (31)

where FN is the σ-algebra generated by i�1, … i-N. Let us write

πN ¼ p0 i, 0 i�1,�1; … ; i�N

�

� ,�N
� �

¼ p0 i, 0 FNjð Þ: (32)

We have, because FN�1 ⊂FN

πN FN�1jh i ¼ p0 i, 0 FNjð Þ FN�1j
	 


¼ p0 i, 0 FN�1jð Þ ¼ πN�1: (33)

So, πN is a martingale on the σ-algebra FN, and by the convergence theorem, it
converges almost surely to a.

limit π when N ! ∞.
Now if N > n, let us write m = N-n > 0. Because of the stationarity of p0

p0 i, nþm i�1, nþm� 1; … ; i�m

�

� ,m
� �

¼ p0 i, 0 i�1,�1; … ; i�n

�

� ,�n
� �

¼ πn ið Þ: (34)

Thus, for any fixed, positive m

πnþm � πn !
a:s:

0: (35)

The absolute value distance between πn + m and πn is obtained by summing
πnþm ið Þ � πn ið Þj j over the M possible states i, So

d0,… nþm�1 qnþm, q
nð Þ
nþm

� �

¼ d πmþn, πnð Þ !
a:s:

0 if n ! ∞: (36)

which is (29), one of our main, formal results.

2.6 n-times Markov approximation of the mesoscopic stationary process

Returning to inequalities (19), when the value ε is fixed for obtaining a required
precision, the value n = n(ε) is determined and a satisfying approximation of the
exact mesoscopic process is obtained by neglecting the memory effects at time
differences larger than n [18] Thus, one replaces p iN,Nj iN�1,N � 1; ::… i0, 0ð Þ by

p nð Þ iN,N iN�1,N � 1; ::… i0, 0Þj ¼ p iN,N iN�1,N � 1; ::… iN�n,N � nÞj if N > nðð

(37)

With the convention

p nð Þ i0, 0; … iN,Nð Þ ¼ p i0, 0; … iN,Nð Þ if N ≤ n: (38)

all the probabilities related to the approximate process p(n) are defined from the
probabilities of p: this defines p(n), the approximate process of order n of p. So, p(n)

has a finite memory of size n, whereas p has in general an infinite memory.
The process p(n) is a Markov process on the partial trajectories IK consisting of

groups of n successive mesocopic states
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IK ¼ iKn, iKnþ1, … i Kþ1ð Þn�1

� �

∈ Mn (39)

Its probability distributions can be written in abbreviated notations

P
nð Þ
K I0,T0; I1,T1; … IK�1,TK�1ð Þ � p nð Þ I0, 0, 1, … n� 1; I1, n, nþ 1, :::2n� 1; … ; IK�1,

�

K � 1ð Þn, … ,Kn� 1Þ: (40)

TK being the group of n successive times: Tk ¼ kn, knþ 1, … , kþ 1ð Þn� 1. From
the approximation (18) it follows (see Appendix A) that

P0 IK ,TK IK�1,TK�1

�

� ; … I0,T0

� �

≈P0 nð Þ IK,TK IK�1,TK�1

�

�

� �

: (41)

where we now use the upper index0 in P0 and P0(n) to recall that, in the present
section, p is the stationary distribution. Note that, because of this stationarity

P0 nð Þ IK ,TK IK�1,TK�1

�

�

� �

¼ P0 nð Þ IK,T1 IK�1,T0j
� �

¼ P0 IK ,T1 IK�1,T0

�

�

� �

� W IK IK�1jð Þ: (42)

So, the transition matrix W is well defined from the known stationary
distribution p0.

From the approximate relation (41) if follows that the exact stationnary process

P0 on the partial history IK during the time interval TK approximately obeys the
n-times Markov Equation (see Section 2.7)

P0 IK,TKð Þ≈
X

I
K�1

W IK IK�1jð Þ P0 IK�1,TK�1ð Þ: (43)

while the nth approximation P 0(n) satisfies (33) exactly.

2.7 Markov approximations of the nonstationary mesoscopic process

We return to the nonstationary process p generated by the deterministic micro-
scopic process from an arbitrary initial distribution of the mesoscopic states, given
by (11). As in paragraph 2.6, it is now necessary to distinguish the stationary process
p° by the upper index0.

One can write the trivial equality

p iN,N; :… iNþn�1,N þ n� 1ð Þ ¼
X

i
N�1, … , i0

p iNþn�1,N þ n� 1; … ; iN,Nð

iN�1,N � 1; … ;j i0, 0Þp i0, 0; :… ; iN�1,N � 1ð Þ: (44)

We now use remark (14): the conditional probabilities, conditioned by the
whole past up to time 0, are identical in the stationary and nonstationary situations.
The stationary distributions p0 can be approximated by its nth approximation p0(n)

introduced in Section 2.6. Thus we can write

p0 iNþn�1,N þ n� 1; … ; iN,N iN�1, n� 1; … ;j i0, 0ð Þ ¼

p0 iNþn�1,N þ n� 1 iNþn�2,N þ n� 2; … ;j i0, 0ð Þp0 iNþn�2,N þ n� 2 iNþn�3,N þ n� 3; … ;j i0, 0ð Þ…

… p0 iN,N iN�1,N � 1; … ;j i0, 0ð Þ ≈ p0 nð Þ iNþn�1,N þ n� 1; … ; iN,N iN�1, n� 1; … ;j iN�n,N � nð Þ:

(45)
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With (35), Eq. (34) yields the approximate n-times Markov Equation

p iN,N; … ; iNþn�1,N þ n� 1ð Þ≈
X

i
N�1, … , i0

p0 iNþn�1,N þ n� 1; … ; iN,Nð

iN�1, n� 1; … ;j iN�n,N � nÞp iN�n,N � n; … ; iN�1,N � 1ð Þ: (46)

Taking N = Kn for an integrer K ≥ 0, using the condensed notations of § 2.6 and
definition (42), Eq. (46) yields an approximate Master Equation for the probability
P IK ,Tð Þ of the partial history IK during the time interval TK

P IK,TKð Þ≈
X

I
K

W IK IK�1jð Þ P IK�1,TK�1ð Þ (47)

which is the Eq. (43) obtained for the stationary probability P0 IK,Tð Þ. Let

P nð Þ IK,Tð Þbe the exact solution of Eq. (47) that coincides with the exact P at the n

first elementary times 0, 1, … n-1 of the system history: P nð Þ I0,Tð Þ ¼ P I0,Tð Þ.

Then, P nð Þ IK,Tð Þ defines the nth approximation of P IK ,Tð Þ: in principle, it can be
computed from Eq. (47) since the probability transitions W are known by (41).

The stationary probabilities approximation P0(n) deduced from p0 provide the
stationary solution of (47)

P0 nð Þ IK,TK

� �

¼ p0 iKn,Kn; … ; :iK nþ1ð Þ�1,K nþ 1ð Þ � 1
� �

¼ p0 iKn, 0; … ; iK nþ1ð Þ�1, n� 1
� �

: (48)

So, when K ! ∞,

P nð Þ IK ,TK

� �

! P0 nð Þ IK ,TK

� �

: (49)

and consequently, for any integer k ∈ [0, n-1], the nth approximation of the
mesoscopic distribution p satisfies

p nð Þ i,Knþ kð Þ ! μ i, kð Þ ¼ μ ið Þ if K ! ∞: (50)

for any initial mesocopic distribution, which is the basic assumption of statistical
thermodynamics. Supplementary assumptions allow one to conclude that, in
realistic situations, the mesoscopic distribution p itself satisfies this property (see
Appendix B).

2.8 Time averages and simple Markov approximation

Up to now, we took as time unit some time step τ which gives the time scale of
microscopic phenomena. By considering some finite partition (i) of the phase space
X and replacing the microscopic states x ∈ X by the mesocopic states i ∈ (ik), we
have performed a space coarse graining, as necessary for taking practical observa-
tions into account. For the same purpose, one should also introduce [18] a space
coarse graining, since the time scale θ = n τ of current observations is much larger
than τ: n > > 1.

All mesoscopic functions remaining practically constant on the time scale θ, their

averages can be computed from the time averages PK of the probabilities pk over θ

pK ¼
1

n

X

k∈TK
pk: (51)
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where K is an integer ≥ 1 and TK is the time interval (τ being the time unit)
TK = (K-1)n, K + 1, …Kn-1.

Suppose (a) that the mesoscopic probabilities p are slowly variating functions of
the mesoscopic states, (i.e. for any positive α, |p(i) – p(j)| < α if the distance
between the mesostates i and j is small enough, with an appropriate metric in the
spase of mesostates), and (b) that discontinuous trajectories have low probabilities
and can be neglected. Of course, these assumptions are not verified for some
important, well known processes such as Brownian processes, but they seem to be
reasonable for modeling physical processes where the inertial effects are strong
enough. Then, a simple approximation is to consider that

p0 iKn�1,Kn� 1; … ; i K�1ð Þn, K � 1ð Þn i K�1ð Þn�1, K � 1ð Þn� 1; … ;
�

� i K�2ð Þn, K � 2ð Þn
� �

≈ p0 i
K
, Kn� 1; … ; i

K
, K � 1ð Þn iK�1, K � 1ð Þn� 1; … ;

�

� iK�1, K � 2ð Þn
� �

� W iK iK�1Þ
�

� :
�

(52)

where

K ¼
1

n

X

k∈TK
k ¼

1

n

XKn�1

k¼ K�1ð Þn
: (53)

Consider the time-averaged probability

P iK ,K
� �

�
1

n

X

k∈TK
p ik, k
� �

≈
1

n

X

k∈TK
p i

K
, k

� �

: (54)

Using the Markov Eq. (47) and the complementary approximations (42), we
obtain the new Master Equation

P i,Kð Þ≈
X

j
W i jjð Þ P j,K � 1ð Þ: (55)

This equation is much simpler than Eq. (47), since it applies in the space M of
the M mesostates (i), whereas (47) is valid in the space M n of n successive
mesostates. However, Eq. (45) relies on several approximations that are difficult to
control. In spite of these difficulties, which can only be precisely discussed for
specific examples, Master Equations like (55), resulting from deterministic micro-
scopic systems by coarse-graining both their states and time, are a practical way to
study their evolution of a mesoscopic scale, used in innumerable works.

3. Discussion of the Markov representation derived from Hamiltonian
dynamics, and estimation of the uniformization time

The previous results show that the coarse grained mesoscopic dynamics can
eventually be represented by a Master Equation, because the memory of this dynam-
ics is gradually lost over time. However, they do not provide the time scale of this
fading. In order to estimate its order of magnitude simply, we make an intuitive
remark: the conditional probability to jump from somemesostate i to another one can
be evaluated without knowing the past history of the system if one knows the initial
microscopic distribution over i. The only unbiaised initial distribution is the uniform
one. Thus, one can consider that the system has a memory limited to one time step if
uniformity is approximately realized in each mesoscopic cell: this is the basis of the
elementary Markov models of mesoscopic evolution. Let T be the average time
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needed to reach uniformity in a mesoscopic scale, starting from strong inhomogene-
ity. In a first approximation it is reasonable to use this uniformization time T to
characterize the time scale over which a Markov evolution can describe the system.

3.1 Uniformization time in a mesoscopic cell: An elementary estimation
for Hamiltonian systems

Using oversimplified, but reasonable arguments [17], we now coarsely estimate
the uniformization time T in a mesoscopic cell. As an example, we consider n
identical particles initially located in this cell, among N identical particles in an
isolated vessel. The complete system obeys Hamilton mechanics.

Assume that the particles constitute a gas under normal conditions, with density
ρ ≈ 3. 1025 molecules.m�3. A mesocopic state can be reasonably represented by a
cube of size l ≈ 10�6 m (as an order of magnitude), which contains n ≈ 3. 107

molecules. We now divide the mesoscopic cell intom “microscopic” cells whose size
λ is comparable to the size of a molecule: each of these microscopic cells, however,
should contain a sufficient number particles for allowing them to interact from time
to time. We can take λ ≈ 10�8 m, so each microscopic cell approximately contains
30 molecules, and there are m ≈ 106 microscopic cells in a mesocopic cell. The
particles have an average absolute value v ≈ 500 m.s�1 in typical conditions. They
can jump between the various microcells of the same mesocopic cell. They can also
jump out of their initial mesoscopic cell, but they are replaced by molecules pro-
ceeding from other cells, and we assume that these contrary effects coarsely com-
pensate themselves, except in the first stage of the evolution if the initial mesocopic
distribution is strongly inhomogeneous.

Because all particles are identical, an almost microscopic configuration of a
mesoscopic cell can be defined by specifying the number of particles in each of its
microscopic cells. Focusing on a given mesoscopic cell, we compute the number of
its possible configurations, and we estimate the average time θ necessary for the
system to visit all these configurations. Note that the uniformization time T is
obviously much larger than θ: T > > θ. So, θ is a lower bound of T.

The number of ways of partitioning the n identical particles into the m
microscopic cells is

C ¼
mþ n� 1ð Þ!

n! m� 1ð Þ!
≈ exp mþ nð Þφ xð Þ½ � with φ xð Þ

¼ �x ln x� 1� xð Þ ln 1� xð Þ and x ¼ n= mþ nð Þ: (56)

The system jumps from one of these configurations to another one each time one
the present particles jumps to another microscopic cell. The order of magnitude of
the time needed for a particle to cross a micro-cell is λ/v, and the time between two
configurations changes is τ ≈ (1/n) λ/v.. In order that all configurations are visited
during time θ we should have at least θ ≈ C τ (in fact, θ should be much larger than
Cτ because of the multiple visits during θ). So we conclude from (46) and relevant
approximations that a lower bound of Θ satisfies

n
φ xð Þ

x
≈ ln

vΘ

λ
with x ¼ n= mþ nð Þ≈ 1: (57)

With the previous numerical values

θ≈
λ

v

n

m

� �m
≈ 2:10�11: 30ð Þ10

6

s: (58)
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which is far larger than the age of universe (now estimated to be about
14 � 109 years, or 4.4 � 1017 s)!

Although these calculations are very rudimentary, it is clear that, in the frame-
work of purely Hamiltonian systems, the microscopic distribution within a
mesocopic cell remains far from uniformity during any realistic time if it is initially
fairly inhomogeneous.

More generally, it is clear that the uniformization time T should be of the order
of Poincaré time [32–36] in a mesoscopic cell, which is known to be extraordinarily
long [9, 37].

3.2 An elementary, empirical approach of mesoscopic systems

The practical relevance of Markov processes to model a large class of physical
systems is supported by a vast literature. We have seen that the progressive erasure
of its memory over time allows one to justify the use of a Markov process to
represents the evolution of the coarse-grained system. However, such representa-
tion can also stem from random disturbances due to the measurements or other
sources of stochasticity: then, one has to renounce to a purely deterministic micro-
scopic dynamics, as formerly proposed by many authors, even without adopting the
formalism of QuantumMechanics. It is interesting to compare the time scales of the
relaxation to equilibrium in both approaches with an elementary example.

3.2.1 Uniformization induced by randomization

Suppose now that the measure process does not induce any significant change in
the average molecules energy - so, their average velocity remains unchanged – but
that it causes a random reorientation of their velocity. A rudimentary, one dimen-
sional model of such a randomization could be to assume that each time a molecule
is about to pass to a neighboring cell, it will go indifferently to one of the neighbor-
ing microscopic cell. In a one dimensional version of the model, a molecule perform
a random walk on the η = l/λ = 102 points representing the microscopic cells
contained in the mesoscopic cell, and we adopt periodic conditions at the bound-
aries of the mesocopic cell. The η � η transition matrix of the process is a circulant
matrix which, in its simplest version, has transition probabilities ½ to jump from
any state to one of its neighbors, and it is known that its eigenvalues λk are λk = cos
(2πk/η), k = 0, 1, … [η/2]. The number of jumps necessary for relaxing to the
uniform, asymptotic distribution is of the order

1= � ln λ1ð Þ∝2 2π=ηð Þ�2
≈ 500 s:

which correspond to a relaxation time of 500. λ/v ≈ 10�8 s, which is very short
for current measurements, but comparable with (or even larger than) the time scale
of fast modern experiments. Considering a 3-dim model would not change this time
scale significantly. It is conceivable that he molecules are not necessarily reoriented
each time they leave a microscopic cell. Even if the proportion of reoriented mole-
cules is as low as 10�6, the relaxation time is of order 10�2 s, which is insignificant in
many simple measures. In this case the Markov representation can be justified.

3.2.2 Semi-classical Hamiltonian systems

In analogy with the previous randomized system, we can introduce a new source
of stochasticity in the coarse-grained deterministc systems considered in Sections 2
and 3. This could be done by assuming that a particle cannot be described by a
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point, but by a probability density centered on the point that would represent it
classically: such a description borrows one, but not all, of the axioms of wave
mechanics, and it can be qualified as a “semi-quantical” description. A similar
assumption can be introduced without referring to quantum mechanics, by noticing
that a particle cannot be localized in a given mesoscopic cell with complete cer-
tainty, because of its finite size: if it is mainly attributed to a given cell, there exists a
small probability that it also belongs to a neighboring cell. Even without formalizing
these possibilities, one can presume that such random effects shorten drastically the
memory of the mesoscopic process, and make it short with respect to ordinary
measure times: then the Markov approximation described in Section 2 can correctly
represent the evolution of the observed coarse-grained process.

4. Conclusion

We have studied the mesoscopic, stochastic process derived from a deterministic
dynamics applied to the cells determined by measure inaccuracies. The stationary
process, which arises when the microscopic initial state is distributed according to a
time invariant measure, was studied by Kolmogorov and further authors: we
extended their methods and some of their results, and considered the nonstationary
process which stems from a noninvariant initial measure. We have shown that,
according to Jaynes’ principle, the “exact” mesocopic process can be approximately
replaced by the Markov process which, at any time n, reproduces the one-time
probability of each mesostate and the transition probabilities from it. This Markov
process maximizes the trajectory entropy up to time n, as well as the entropy at time
n, conditioned by prior events. The Jaynes’ principle, however, does not control the
accuracy of this estimate: this was our next concern.

So, a sequence of successive approximations has been defined for the stationary
mesoscopic process, based on one of our main results: the probability of any
mesostate state conditioned by all past events, can be approximated by its proba-
bility conditioned by the n last past events only, the integer n being determined by
the maximum distance allowed between these probabilities, as small as it may be.
This property entails that the nonstationary mesoscopic process can be approxi-
mated by a n-times Markov process or even, after a time coarse-graining, by an
ordinary one-time Markov process. These approximations require certain
conditions which should be fulfilled by “normal” physical systems, with possible
exceptions for slowly relaxing systems. If they are satisfied, the existence of a
thermodynamic equilibrium is derived for a coarse-grained system obeying a
measure-preserving deterministic dynamics, in particular an Hamiltonian dynam-
ics, without introducing ad-hoc external noises. However, very rough estimations of
the relaxation time show that for reasonable values of the parameters this time is
extraordinarily long and completely unrealistic.

We conclude that, although the basic hypotheses of thermodynamics can be justified
from aHamiltonian or deterministic microscopic dynamics applied to themesoscopic
cells, the observed time scales of the relaxation to equilibrium cannot be explained
without going beyond pure Hamiltonmechanics, by introducing additional random
effects, in particular due to the intrinsic imprecision of the particles localization.

Appendix A: Approximating the n-times conditional probability

With the notations of Section 4.2, we consider approximation (55), which is the
basis of the n-times Markov approximation both in the stationary and nonstationary
situations. Repeating approximation (51) we can write
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p iNþn�1, N þ n� 1; … ; iN, N iN�1,N � 1; … ; iN�n, N � n; … ; i0, 0Þ
�

� ¼
�

¼ p iNþn�1, N þ n� 1 iNþn�2, N þ n� 2; … ; :i0, 0
�

�

� �

::… p iN, N iN�1,N � 1; … ; i0, 0Þj
�

≈ p nð Þ iNþn�1, N þ n� 1 iNþn�2; … iN�1,N � 1
�

�

� �

… p nð Þ iN, N iN�1,N � 1; … ; iN�n,N � nÞj :
�

(59)

The last line of (49) is p nð Þ iNþn�1, N þ n� 1; … ; iN, N iN�1,N � 1; … ; i0, 0Þj
�

.

We write

p iNþn�1, N þ n� 1; … ; iN, N iN�1,N � 1; … ; iN�n, N � n; … ; i0, 0Þ
�

� �
�

p nð Þ iNþn�1, N þ n� 1; … ; iN, N iN�1,N � 1; … ; iN�n, N � n; … ; i0, 0Þ
�

� Q
nð Þ
N :

�

(60)

and for k > n we define lk, using the abbreviations (32)

lk i0, … ik�1ð Þ � ln
Πk ikð Þ

Π
nð Þ
k ikð Þ

: (61)

We have by (24)

sn pð Þ � sk pð Þ ¼
X

i0,… ik
pN i0, 0; … ; ik, kð Þ ln

Πk ikð Þ

Π
nð Þ
k ikð Þ

¼ lk i0, … ik�1ð Þh i � σk nð Þ:

(62)

(Note that σk is positive, although this not necessarily true for lk). By (24) for
any positive ε

2 d2 pk, p
nð Þ
k

� �D E

≤ σk i0, … ik�1ð Þh i < ε if n is large enough: (63)

Averaging the logarithm of Eq. (60) we have

L
nð Þ
N

D E

� lnQ
nð Þ
N

D E

¼
Xn�1

k¼0
sn pð Þ � sNþk pð Þ½ � ∝ n sn pð Þ � s

∞
pð Þ½ � ¼ nδs nð Þ:

(64)

δs nð Þ � sn pð Þ � s
∞

pð Þ can be interpreted as an entropy fluctuation with respect
to its equilibrium thermodynamic value. If such a fluctuation relaxes exponentially
to 0 with time, as usual, the last term of (54) tends to 0 when n ! ∞. Then, the
n-times Markov approximations 4.2 and 5.1 are justified. Although exponential
relaxation can be considered as a characteristic of “normal” physical systems,
slower relaxations can occur: in this case the Markov approximation may be invalid.

Appendix B: Tendency to the stationary mesoscopic distribution

This tendency can be reasonably expected from the approximation of the exact
mesocopic process by Markov processes, but it can only be affirmed by adding addi-
tional assumptions to the basic assumptions. We first prove a simple, useful lemma.

B.1. Lemma. Consider a d-dim sequence un,k with 2 positive, integer indices n, k,
satisfying the following properties:
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i. it is absolutely bounded: there is a positive real number M such that |un,k|
< M for all integers n, k.

ii. for all n, k, there are positive numbers εn (independent of n) and ν

(independent of n and k) such that

un,kj j < εn þ ν un,k�1j j and εn ! 0 if n ! ∞: (65)

Then un,k ! 0 if n ! ∞ and k ! ∞.
In fact, for any positive ε, there is an integer n0 such that εn < ε if n > n0, and

un,kj j< ε 1þ νþ … þ νk�1
� �

þ νkun, 0 <
ε

1� ν
þ νk un,0j j if n> n0: (66)

So, |un,k| can be made as small as desired by chosing n and k large enough.
B.2. For given integers n and K larger than 1, and states ik ∈ M, k = 0, 1,…

(K + 1)n-1, we will write.
p i0, 0; i1, 1; ::; i Kþ1ð Þn�1, K þ 1ð Þn� 1
� �

� p 0, 1, … , K þ 1ð Þn� 1ð Þ for the sake of

simplicity. In these abbreviated notations, we have

p Kn,Knþ 1; ::, K þ 1ð Þn� 1ð Þ ¼
X

i0, i1,… iKn�1
p K þ 1ð Þn, � 1…Kn Kn� 1, :::0Þjð

p 0; 1; ::,Kn� 1ð Þ: (67)

We know that

p K þ 1ð Þn, � 1…Kn Kn� 1, :::0Þj ¼ p0 K þ 1ð Þn, � 1…Kn Kn� 1, :::0Þj :ð
�

(68)

p0 being the stationary probabilities, and that, for large n

p0 K þ 1ð Þn, � 1…Kn Kn� 1, :::0Þ≈j p0 K þ 1ð Þn, � 1…Kn Kn� 1, …K n� 1ð ÞÞj :ð
�

(69)

More precisely, in the conditions discussed previously, for any given positive ε,
there is an integer n(ε) such that

p0 K þ 1ð Þn,�1…Kn Kn� 1, :::0Þ�j p0 K þ 1ð Þn,�1…Kn Kn� 1, …K n� 1ð ÞÞjð j < ε if n≥ n εð Þ
�

�

�

(70)

So, Eq. (67) becomes

p Kn,Knþ 1; ::, K þ 1ð Þn� 1ð Þ ¼
X

i0,… iKn�1
p K þ 1ð Þn,�1…Kn Kn� 1, :::0Þ � p0 K þ 1ð Þn,�1…Kn Kn� 1, :::0Þjð

�

�

�

p 0; 1; ::,Kn� 1ð Þ
��

þ
X

i0,… iKn�1
p0 K þ 1ð Þn,�1…Kn Kn� 1, … K � 1ð ÞnÞj p K � 1ð Þn; ::,Kn� 1ð Þ

� an,K þ
X

i0,… iKn�1
p0 K þ 1ð Þn,�1…Kn Kn� 1, … K � 1ð ÞnÞj p K � 1ð Þn; ::,Kn� 1ð Þ:

(71)

where the 1st term of the last line satisfies a n,Kð Þj j< ε if n ≥ n(e).
The second term in the last line of (71) is, in other notations, the righth hand side

term of the approximate Master Eq. (47) of Section 2.8
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P IK ,TKð Þ≈
X

I
K

W IK IK�1jð Þ P IK�1,TK�1ð Þ: (72)

This approximate Master Equation can now be written more precisely, in the
notations of 2.8

P IK,TKð Þ ¼ An,K IK ,Tkð Þ þ
X

I
K

W IK ,TK IK�1,TK�1

�

�

� �

P IK�1,TK�1ð Þ : (73)

where An,K IK ,Tkð Þ is just the an,K term of (71) expressed in the notations of 2.8

where TK is the group of n successive times: kn, knþ 1, ::, kþ 1ð Þn� 1, and IK ¼

iKn, iKnþ1, … i Kþ1ð Þn�1

� �

∈ Mn describes the corresponding partial history of the

mesoscopic system.
On the other hand, we know that the stationary distribution P0 satisfies the

Master Eq. (72) exactly. So, writing

Un,K IK,TKð Þ � P IK ,TKð Þ � P0 IK,TKð Þ: (74)

we have

Un,K IK,TKð Þ ¼ An,K IK ,Tkð Þ þ
X

I
K

W IK IK�1jð Þ Un,K�1 IK�1,TK�1ð Þ: (75)

Note that W depends of n, but is independent of K.
From (72)–(75) it results that Un,K IK,TKð Þ tend to 0 when n and K tend to

infinite if, furthermore, the following.
condition (c) holds. In fact, the (Mn- dim) vector Un,K is orthogonal to the left-

eigenstate with eigenvalue 1.
of matrix W. All the eigenvalues of the projection of W in the corresponding

subspace have an absolute value smaller than 1. Thus the lemma 1 applies if condi-
tion (c) is satisfied:

(c) When n increases, the absolute values of the nonstationary eigenvalues of W
have an upper bound <1.

This property is likely to hold if the actual stationary mesoscopic process is not
too different from an exact Markov process. So, it is reasonable to conjecture that
property (c) holds for typical actual systems.
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