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Chapter

Gasification Process Using 
Downdraft Fixed-Bed Gasifier  
for Different Feedstock
Md. Emdadul Hoque and Fazlur Rashid

Abstract

The use of conventional fuels is decreasing globally due to its limited reserves 
and negative impact on the environment. The associated cost of conventional fuels 
is increasing owing to the higher demand for conventional fuels. Hence, utilization 
methods of biomass to generate energy are of growing interest. Among differ-
ent biomass feedstocks, rice husks, waste plastics, and sawdust are significantly 
available in the global environment. The annual generation amount of rice husk 
is approximately 120 million tons worldwide, with an annual energy generation 
potential of 109 GJ with a heating value of 15 MJ/kg. The gasification process is 
assumed to be the most effective biomass conversion method that can generate 
synthetic gas to operate IC engines, fuel cells, and boilers. Synthetic gas production 
from biomass using a gasification process is a significant source of future energy. 
Downdraft fixed-bed gasifiers are considered as a feasible option of biomass 
conversion in the gasification process. By optimizing the operating conditions of 
downdraft fixed-bed gasifier, such as reaction zone temperature, combustion zone 
temperature, intake air temperature, airflow rate, the humidity of intake air, a 
significant amount of synthetic gas can be produced from rice husks, waste plastic 
material, and sawdust.

Keywords: gasification, downdraft fixed-bed gasifier, rice husk, waste plastic, 
sawdust

1. Introduction

1.1 Global energy status

Human civilization and development have significantly increased world 
energy demand over the past years [1]. Consumption of world energy includes all 
energy sources consumed by humans in their economy and industrial purposes  
[2, 3]. Major factors that influence energy consumption are the high growth rate 
of population and per capita energy consumption. The globalization of interna-
tional trade is another factor that affects the global energy profile [4]. Figure 1  
shows the global energy consumption from 2000 to 2020 and the forecast of 
future energy for 2035.

However, the world’s population is the main global energy consumer [2–4]. 
According to the United Nations forecast data, the global population will reach 
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approximately 9.157 billion in 2040, which is around 2 billion higher than the 
population reached in 2015 [2]. Figure 2 shows the global population in 2015 and 
the forecast for 2040. It is a challenge to provide sufficient energy to this huge 
population of around 2 billion using conventional energy sources.

All countries and regions worldwide are trying to reduce the use of conventional 
energy sources due to their low reserve and high rates of emission. However, due 
to the change in overall gross domestic product (GDP), failure of energy-saving 
technologies, and lack of investment for alternate energy, it is difficult to reduce 
the intense use of conventional energy. Consequently, the environment is largely 
polluted, and the world is moving towards an energy crisis era. The major sources 
of conventional energy are oil (33%), and the other sources of energy are coal 
provides 27%, and natural gas, 24% [6–8]. On the other hand, hydropower energy 
sources supply 6%, renewable sources 5%, and nuclear energy sources provide 
4% world energy [7]. Figure 3 presents the world’s primary energy consumption 
sources. Overall around 84% of global energy is consumed from conventional fossil 
fuels. Therefore, finding new sources of energy is a major concern nowadays. In 
certain capacities, alternative renewable sources of energy are currently used with 
conventional fuels [9].

1.2 Renewable energy sources

Renewable energy sources can be utilized to generate energy again and again 
where wastes are minimized with less air pollution. Renewable sources of energy 
provide a significant contribution to global energy demand. It includes solar energy, 
energy from biomass, wind, ocean energy, and hydropower [10]. They supply 
clean energy and give less pollution than conventional sources of energy. Due to 
the depletion of conventional fuels and their negative impact on the environment, 
renewable energy sources would have a remarkable contribution to the world 
economy [11]. Again, fossil fuels reserve are diminishing, and they create an adverse 
effect on the environment that causes health hazard and change global climate 
condition [12]. Hence, the world’s population moves slowly towards the generation 
of energy from sustainable renewable energy sources. Table 1 shows the global 
consumption of renewable energy in a million tons of oil equivalent (Mtoe) and 
their forecast for 2040.

Figure 1. 
World’s energy consumption scenario [1].
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Overall, renewable sources of energy provide approximately 15% supply of 
global energy demand [14]. The use of renewable energy sources is now considered 
an alternate solution to meet the high energy demand [15, 16]. Major sources of 
renewable energy are solar, biomass, and hydropower. Figure 4 shows the prospec-
tive usage options of renewable energy that can be applied to meet up the global 
energy demand [17–20].

Figure 2. 
Global energy population by different countries in 2015 and 2040 [2, 5].

Figure 3. 
World’s primary energy sources [6–8].

Renewable energy sources Year

2001 2010 2020 2030 2040

Biomass energy 1080 1313 1791 2483 3271

Solar energy 4.10 15.0 66.0 244.0 480.0

Hydropower 22.70 266.0 309.0 341.0 358.0

Wind energy 4.70 44.0 266.0 542.0 688.0

Tidal/wave energy 0.050 0.10 0.40 3.0 20.0

Geothermal energy 43.20 86.0 186.0 333.0 493.0

Consumption of total energy (Mtoe) 10,038 10,549 11,425 12,352 13,310

Table 1. 
World’s renewable energy consumption scenario in million tonne of oil equivalent (Mtoe) [13].
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Energy generation from solar and hydropower sources are dependent on the 
weather condition of that country or regions of the world. Among different renew-
able sources, biomass plants require 0.820–1.130 relative units of energy to generate 
per unit of electricity, whereas solar photovoltaic requires 0.470 [17]. Table 2 shows 
global renewable energy sources with their required relative units to generate per 
unit of energy.

1.3 Biomass renewable energy

Biomass renewable energy is a significant source of energy that can provide 
energy at a lower cost. It can maintain a sustainable energy supply and targeted 
greenhouse gas reduction all over the world. Moreover, energy generation methods 
related to biomass renewable sources are growing in interest due to the lower reserves 
of conventional fuels [21]. Also, regulations on low carbon dioxide emissions and 
reduced pressure on fossil fuels increase the interest in biomass renewable energy 
sources. Biomass renewable energy sources include waste produced from plants, 
rice husks, waste plastics, sawdust, algae, and trees [2]. Biomass renewable energy 
sources are mainly found in the wood form.

Usually, energy can be generated using thermal or chemical processes, as 
depicted in Figure 5. Gasification, pyrolysis, and combustion are the commonly 
used thermal processes to generate energy from biomass sources. In contrast, by 
applying chemical reagents and processes, biogas, hydrogen, and ethanol gas is 
generated from biomass renewable sources [22]. Gasification is now considered as 
one of the potential conversion processes, and therefore, this chapter presents the 
gasification methods of biomass sources.

Overall, biomass energy sources supply around 15% of the global energy and 
35% for the developing countries. It is an effective bio-renewable energy source 
that is available globally. Production of biomass is approximately 146 billion metric 
tons per year globally [22]. It is approximated that 90% of the global population 
will depend on biomass renewable energy sources by the end of 2050 [22]. Figure 6 
shows the different usage options of biomass renewable energy that can be utilized 
to solve the high demand for future energy. It is seen from Figure 6 that biomass 
renewable energy has the potentiality to use as energy and non-energy sources.

Figure 4. 
Options of renewable energy usage [17–20].
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Renewable energy sources Required quantity to generate per unit of electricity

Biomass energy plant 0.82–0.13.0

Solar PV plant 0.470

Tidal energy plant 0.070

Wind energy plant 0.06–1.920

Wave energy plant

Geothermal energy plant

0.30–0.580

0.080–0.370

Table 2. 
Energy production from different renewable energy sources plant [17].

Figure 5. 
Different power generation processes for biomass [22].

Figure 6. 
Different applications of biomass renewable energy [22].
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There are different types of biomass sources available in nature. The most com-
mon and available biomass sources are rice husk, sawdust, and waste plastics. Rice 
is the common food among the world’s population. Hence, each year, millions of 
rice husks are wasted all over the world. On the other hand, plastics are used with a 
high growth rate due to their formability and higher durability. Therefore, turning 
waste plastic to generate energy is a potential way that can generate energy and 
reduce global environmental pollution. Sawdust can also be converted into energy 
using biomass anaerobic gasification method [23].

This chapter also presents the salient features and gasification method using a 
downdraft fixed-bed gasifier. It has been found in previous literature that the upper 
limit of moisture content of downdraft fixed-bed gasifier is 25% on a wet basis, 
while for updraft fixed-bed gasifier, it is 50% on the wet basis of measurement [24]. 
However, the high content of feed moisture negatively affects the gasification pro-
cess and product gas [25, 26]. As a consequence, downdraft fixed-bed gasifier may 
provide better performance than updraft fixed-bed gasifier. Hence, this chapter 
considers the performance analysis of the downdraft fixed-bed gasifier.

2. Conventional biomass conversion technologies

2.1 Gasification

Gasification is the method that can convert carbonaceous biomass material to 
hydrogen, carbon dioxide, and carbon monoxide [27]. The method can be achieved 
by reaction of feed material at over 700 °C temperature, with a limited amount 
of oxygen and steam. In the gasification method, the feed material is processed 
without combustion. In this method, the generated mixture of gas is considered 
synthetic gas or producer gas utilized as fuel [28]. The produced power in the bio-
mass gasification method and combustion of the generating gas can be considered 
as renewable energy source.

In chemical reactions of gasification method, char type carbonaceous feed 
material (C) is reacted with steam (H2O) and generates carbon monoxide (CO) and 
hydrogen (H2).

 + → +
2 2

C H O H CO  (1)

 + →
2

C CO 2CO  (2)

Therefore, in the gasification method, a small amount of air or oxygen is applied 
to the gasifier reactor to burn the organic feed material to generate energy and 
carbon dioxide. Figure 7 shows the overall process of the gasification method to 
generate synthetic gas.

Figure 7. 
Flow diagram of biomass gasification process [29].
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The gasification method of biomass renewable energy sources is the potential 
sources to generate energy, chemical energy, and biofuels. A gasifier is required 
to convert biomass renewable energy sources to synthetic gas in the gasification 
method. The generated synthetic gas is used to operate an internal combustion 
engine. They can also be used to produce electricity and heat energy by using a 
cogeneration system [30].

Again, the gasification process of biomass renewable energy sources is similar 
to the coal gasification method. Thermal decomposition of both biomass and coal 
gasification method generates the same output gases [31]. However, the operating 
conditions of gasification methods of biomass energy sources are less severe than 
coal gasification method [32]. In the biomass gasification method, cellulose and 
hemicellulose present in the feed material, whereas carbon is the main material of 
coal feed materials.

Practically, biomass energy sources are required to dry first. After that, the 
dried feed materials are required for the process of shrinkage and devolatization 
[30]. Finally, the char gasification is applied from the surface of the material to 
the biomass center. Figure 8 shows the overall process of biomass gasification to 
generate energy.

The overall power generation cost of the gasification process of biomass renew-
able energy includes labor cost 54%, cleaning cost of synthetic gas 28%, balancing 
of plant 9%, fuel cost 6%, and miscellaneous cost 3%. Figure 9 represents the 
overall power generation cost of gasification methods.

2.2 Pyrolysis

Pyrolysis is the process where biomass materials are decomposed in absence of 
air or oxygen using heat energy. Therefore, the pyrolysis method generates bio-char 
as solid fuels, bio-oil as liquid fuels, and gases (non-condensable) [35]. Figure 10 
shows the overall process of pyrolysis method. The pyrolysis oil properties and 
yield of pyrolysis products depend on the operating conditions and parameters of 
the pyrolysis process. The pyrolysis process’s operating parameters are the heating 
rate of feed material, the temperature of the reactor, residence time, catalysts, and 
reactor configurations.

The Pyrolysis process of biomass renewable energy sources can be simplified by 
the following Equations [36]:

 → +
2

Biomass feed materials H O unreacted residue materials  (3)

 → + + −Unreacted residue materials Volatile materials Gases bio char.  (4)

 − → + + −Bio char Volatile materials Gases Bio char.  (5)

Firstly, in the biomass pyrolysis method, feed materials are decomposed to 
remove the moisture contents and break the bond to form CO, CO2, and residues 
[37]. The remaining compounds are exposed to further conversion using crack-
ing and polymerization that produces secondary char, tar, and gases [37]. In this 
method, at a lower temperature, such as less than 500 °C temperature, the organic 
vapor materials are not cracked. However, at higher temperatures, they convert 
readily with fewer residence times. The optimum temperature to generate the 
maximum quantity of bio-oil using the biomass pyrolysis method is over 500 °C. 
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The residence time of vapor materials and heating rate in the pyrolysis method can 
be classified into three major groups, as shown in Figure 11.

Fast and flash pyrolysis process generates lower amounts of char when compared 
with slow pyrolysis process. Flash and fast pyrolysis methods can produce bio-oil in 
high quantity. Hence, they are considered as a favorable method for the generation 
of bio-oil [35].

Slow pyrolysis is the process that occurs under a long residence time, lower 
temperature, and slow heating rate. In the slow pyrolysis method, cracking of the 
primary material generates a high yield of char.

Slow pyrolysis is the process that occurs under a long residence time, lower 
temperature, and slow heating rate. In the slow pyrolysis method, cracking of 
the primary material generates a high yield of char [40, 41]. The remaining 
non-condensed gases are used for drying purposes of raw biomass materials or as 
fuel gases. They can also be reflowed to the pyrolysis reactor to heat the pyrolysis 
method. Overall, biomass fast pyrolysis generates bio-oil (60–75%), bio-char 
(15–25%), and gaseous yield (10–20%) [42]. This process is preferable compared 

Figure 9. 
Power generation cost of biomass gasification method [34].

Figure 10. 
Flow diagram of pyrolysis methods [35].

Figure 8. 
Energy generation process from biomass gasification method [33].
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to the slow and flash pyrolysis method based on the cost, transportability, and 
storability of liquid and gaseous fuels.

Flash pyrolysis is the third major group of pyrolysis methods that sometimes 
refer to a similar fast pyrolysis process. However, the flash pyrolysis method 
generates pyrolytic yield under a high heating rate, higher reaction temperature 
values, and short residence time [35]. This method has the capability to generate 
a high quantity of bio-oil from the conversion of biomass feed material. It has the 
capacity to convert a higher quantity of biomass to liquid bio-oil. However, the 
generated bio-oils in the flash pyrolysis method are unstable, acidic, and highly 
viscous in nature [43]. They even also contain solids and dissolve water. Hence, 
the yields of the flash pyrolysis method require up-gradation methods, such as 
hydrogenation and catalytic cracking to reduce the final product’s oxygen content. 
Table 3 shows the operating variables require to operate slow pyrolysis, fast 
pyrolysis, and flash pyrolysis method.

The pyrolytic reactor is considered the heart of the pyrolysis method and based 
on the types of reactors; the yields would change in the pyrolysis method. Several 
pyrolysis reactors are used in the pyrolysis process, such as a fixed-bed reactor, 
fluidized bed reactor, moving bed reactor, suspended bed reactor, inclined rotating 
bed reactor, etc. However, fixed and fluidized beds are commonly used in pyrolysis 
reactors. A fixed-bed reactor usually uses an external heating source by using a 
furnace. In contrast, the fluidized bed reactor uses a solid–fluid mixture of stable 
reactor bed where nitrogen is used to create an inert atmosphere. Figure 12 shows 
the characteristic properties of a fixed-bed and fluidized bed reactor. Fluidized bed 
reactors are easy to operate, capable of transferring high heat rates, good at control-
ling temperature [44, 45]. Therefore, the pyrolysis method is an effective way of 
biomass to the energy conversion process.

2.3 Incineration

The process when the combustion of biomass materials occurs to generate heat, 
ash, and flue gases is known as incineration, as shown in Figure 13 [46]. It is con-
sidered as the thermal treatment process of biomass materials. In this process, ash is 
produced due to the inorganic components contained in the biomass feed material. 
Ash and flues gases are required to clean, whereas the generated heat in the incin-
eration process produces electricity. In recent practice, the generated heat is used 
to produce electricity effectively using combined heat energy and power systems. 
However, emission control is the main factor that needs to be considered during the 
biomass incineration process [30].

Figure 11. 
Types of biomass pyrolysis methods [38, 39].
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The incineration process is one of the several energy generation methods from 
wastes. Although gasification and incineration methods are considered similar, the 
generated energy is not the same for them. In the gasification method, combustible 
gas materials are the major energy product, whereas high-temperature heat is the 
main energy component in the incineration method [47, 48]. Both the gasification 
and incineration methods can be implemented without the recovery of energy.

3. Gasification method using different gasifiers

In the biomass gasification method, a gasifier is the core of the mechanism. 
There are different types of gasifiers commonly used in the gasification method. 
They can be classified depending on the ratio of dense phase biomass to the reac-
tor’s total volume. Therefore, dense phase gasifiers and lean phase gasifiers are two 
common types of gasifiers use in the gasification process. Dense phase biomass 
gasifiers have a density factor of between 0.08 to 0.3, whereas lean phase gasifiers’ 
density factors vary between 0.05 to 2 [30, 49–51].

Figure 12. 
Major types of reactor use in pyrolysis method.

Figure 13. 
Biomass incineration process [47].

Types of pyrolysis 

method

Temperature

(K)

Rate of heating 

(K/sec)

Residence time 

in sec

Size of particles 

(mm)

Slow 550–950 0.1–1 450–550 5–50

Fast 850–1250 500–105 0.5–10 Less than 1

Flash 1050–1300 Above 105 Less than 0.5 Less than 0.2

Table 3. 
Operating variables for fast, slow, and flash pyrolysis method [37, 42].
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3.1 Counter-current or updraft gasifier

In counter-current or updraft gasifiers, the air or oxygen is passed through the 
gasifier’s bottom level, and the generated product gases are left at the top of the 
gasifier [52]. Combustion reactions occur at the bottom side of the gasifier near 
the grate. After that, the reduction reactions occur at the somewhat upper level of 
the combustion zone, as shown in Figure 14. In the upper level of updraft gasifier, 
pyrolysis process and heating of the biomass materials occur using the forced 
convection and radiation heat transfer methods where the required heat is provided 
from the combustion and reduction zone in the lower part of the gasifier [53]. The 
generated volatile matters and tars in the updraft gasifier carry in the upper-level 
gas stream, as depicted in Figure 14. On the other hand, produced ash require to 
clean from the bottom layer of the updraft gasifier.

The main advantages of an updraft gasifier are simplicity in design, simplicity 
in operation, lower exit gas temperature, and high burning rate of feed materials. 
Therefore, the equipment efficiency of the updraft gasifier is high. This type of 
gasifier can be operated using different feed materials such as rice husk, waste 
plastics, and sawdust.

On the other hand, the disadvantages of updraft gasifiers are channeling that 
breaks the air or oxygen and creates harmful or explosive situations. Therefore, 
automatic grates are required in the updraft gasifier. Disposal of tar is another 
disadvantage in the case of an updraft gasifier.

3.2 Co-current or downdraft gasifier

In a downdraft gasifier, air or oxygen generally enters the middle zone of the 
downdraft gasifier above the grate, as presented in Figure 15. Air or oxygen enters at 
or above the oxygen region level in the downdraft gasifiers [54]. The feed materials 
are entered at the top of the gasifier, similar to the updraft gasifier. However, air and 

Figure 14. 
Gasification process using updraft gasifier [54].
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generated gas mixtures are passed through the oxidation region. In a downdraft gas-
ifier, the producer gases are removed at the bottom level of the gasifier. Therefore, 
gases and fuels in co-current or downdraft gasifiers are moved in the same direction. 
When the gases and fuels move down, the fuel must pass through a charcoal bed 
and generate H2, CO, CO2, and CH4. In a downdraft gasifier, based on the hot region 
temperature and residence time of tars, most of the tars are broken down. Therefore, 
the generated product gas in co-current or downdraft gasifier contains lower tar 
than updraft gasifier. Consequently, they are suitable to use in an internal combus-
tion engine compared to the updraft gasifier gases.

The major advantages of downdraft gasifiers are tar-free gases, and they are 
suffered less from the environment compared with updraft gasifiers. Figure 16 
shows the salient features of the co-current or downdraft gasifier.

The main disadvantage of co-current or downdraft gasification is the inability 
to utilize or operate unprocessed fuel. Downdraft gasifier is suffered much from the 
high content of ash materials when compare with updraft gasifier.

3.3 Fluidized bed gasifier

In a fluidized bed gasifier, fuel fluidizes with air or oxygen and steam. Fuel is fed 
into a bubbling or circulating type fluidized bed. The bed of fluidized bed gasifier 
acts as fluid with high turbulence. In this system, ash materials are removed from 
the gasifier in a dry state that defluidize. The temperature in a fluidized bed gasifier 
is low, and the fuel is required to be highly reactive [55, 56]. However, the energy 
conversion efficiency is lower than the downdraft gasifier due to the elutriation 
of carbonaceous fuel [57]. There are three major types of fluidized bed gasifiers: 
circulating, bubbling, and dual fluidized bed.

The working principle of the operation of updraft and downdraft gasifier is 
affected by the fuel’s chemical and physical properties. Fluidized bed gasifiers can 
solve a few of the drawbacks of updraft and downdraft gasifiers, such as pressure 
drop and low bunker flow over the updraft or downdraft gasifier [58].

Figure 15. 
Gasification process using downdraft gasifier [54].
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Overall, a fixed-bed gasifier has the capacity for a wide range of temperature 
distribution. On the other hand, a fluidized bed gasifier can transfer heat between 
solid and gaseous phases with the best temperature distribution. Fluidized bed 
gasifiers can tolerate a high variation of fuel quality as well as a large particle distri-
bution [58]. The major drawbacks of fluidized bed gasifiers are high dust contents 
that make the conflict between higher reaction temperatures with better energy 
conversion efficiency and lower melting temperature of ash.

3.4 Entrained flow gasifier

In an entrained flow gasifier, a dried solid pulverized, liquid fuel, or a slurry 
of fuel is reacted with oxygen or air in a gasification process using co-current flow 
[59]. In an entrained flow gasifier, gasification reactions are taken place in a dense 
cloud of fine particles. High throughput can be achieved, but the overall efficiency 
is relatively low than the downdraft or fluidized bed gasifier. The entrained flow 
gasifier system’s residence time is approximately 5 seconds that is shorter than the 
residence time of the downdraft or fluidized be gasifier. Most of the reactions of 
entrained flow gasifiers are endothermic. Therefore, high heat is required to be 
supplied using combustion of biomass feed material or from the outside sources 
of heat.

In this gasifier, finer coal with air is added co-currently in such a way that air and 
water steam surrounds the finer coal feed materials. This type of gasifier usually 
operates at very high pressure and temperature [60]. As a consequence, the flow 
is turbulent in an entrained flow gasifier. The rate of gasification reaction and 
efficiency of conversion of carbon is high, while the generation of hydrocarbons is 
low. Moreover, the coal devolatization process generates oil, tar, other liquids, and 
phenols that can be decomposed into hydrogen (H2). This chapter describes gas-
ification of rice husk, waste plastic, and sawdust biomass, therefore the entrained 
flow gasifier performance is not presented with their related analysis.

3.5 Plasma gasifier

In a plasma gasifier, high voltage and current are applied to a torch that can 
create an arc of high temperature. In the gasification method using plasma gasifier, 

Figure 16. 
Salient features of the gasification process using downdraft gasifier.
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Biomass feed materials Carbon

C (%)

Oxygen 

O (%)

Nitrogen 

N (%)

Hydrogen

H (%)

Sulfur

S (%)

Rice husk [66] 45.2 47.6 1.02 5.8 0.2

Waste plastic [67] 77.10 11.20 0.20 11.50 —

Saw dust [23, 68] 50.9 45.03 0.27 3.7 0.05

Table 4. 
Ultimate analysis of rice husk, waste plastics, and sawdust biomass feed materials.

inorganic components of feed material are converted into a glass-like substance. 
It can also be used to gasify solid wastes mainly generated from municipal and 
households [61].

The plasma type gasifier mainly heats up by using a torch of plasma that is 
usually located at the bottom of the reactor [62]. At atmospheric pressure, feed 
materials are required to add to the reactor. The majority of the plasma gasifier is 
water-cooled on the outer side of the gasifier. In the gasification process of plasma 
gasifier, the generation of tar is usually eliminated by maintaining the temperature 
of the synthetic gas greater than 1000 °C.

4. Different biomass feedstock materials

In the gasification method, carbonaceous materials such as rice husk, coal, waste 
plastics, and sawdust are turned into synthetic gas in the presence of limited air or 
oxygen, carbon dioxide, and steam. The generated synthetic gas includes hydrogen 
(H2), carbon dioxide (CO2), carbon monoxide (CO), Nitrogen (N2), char, tars, ash, 
and bio-oil [63].

This chapter presents the gasification of rice husk, waste plastic, and sawdust as 
biomass feed material due to their availability, high production rate, and reduction 
of environmental pollution. The majority of the world population use rice as their 
main food. Therefore, it was estimated that rice husk generation globally is about 80 
million tons with an annual energy generation potential of 1.2 ~ 109 GJ. The esti-
mated heating value of rice husk is approximately 15 MJ/kg [18]. In Asia and Africa, 
the annual generation of rice husk is 1.5 × 1011 kg [64].

On the other hand, the world’s population uses plastic material in their daily 
activities due to its insolubility in liquid water, availability, resistance to corro-
sion, and lighter weight. The generation of plastic waste materials is increasing 
globally. For example, Asia regions possess maximum plastic waste, and they 
generate around 30% of plastic wastes in the world [65]. Therefore, if the plastic 
waste materials can be used as biomass feed material in the gasification method 
to generate energy, the waste materials are turned into energy. On the other 
hand, world environmental pollution due to waste plastics will also be reduced 
significantly. Waste plastic material can also be converted into oil by using fast 
pyrolysis.

Sawdust material is another potential biomass source use in the gasification 
process. Carbonaceous feed materials are effective for gasification methods. The 
ultimate and proximate analysis of sawdust material shows that sawdust contains 
approximately 50.90% carbon. Table 4 shows the ultimate analysis results of rice 
husks, sawdust, and waste plastic material.
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5. Gasification method using downdraft gasifiers

Downdraft fixed-bed gasifiers generate low tar content synthetic gas that can 
be used to operate an internal combustion engine. Hence, this chapter presents the 
gasification methods using the downdraft fixed-bed gasifier.

5.1 Gasification performance

The performance of the gasification method mainly depends on the reactor 
temperature. With an increase in reactor temperature, the performance and yield 
of the gasification method are also increased. It was observed that with waste 
plastic gasification method using downdraft gasifier, at 600 °C synthetic gas yield 
was 112.4 (wt. %), whereas at 700 °C yield was 166.8% (wt. %), 800 °C generated 
205.7% (wt. %) gaseous yield and maximum synthetic gaseous yield obtained at 
900 °C (234.6 wt. %) [67].

In rice husk and sawdust gasification method, the performance of synthetic gas 
yield generation also depends on the reactor temperature. It was obtained that using 
a total 5 kg rice husk with 3.6 kg/h feed rate for 1.38-hour gasification in a down-
draft fixed-bed gasifier; the generated synthetic gas yield was highest at 810 °C 
(0.27 wt.% CH4 and other gases 61.09 wt.%) [18].

Catalytic temperature is another significant parameter of the biomass gasification 
method. With the increase of reactor temperature and catalytic temperature in the 
sawdust gasification method, the synthetic gas yield is also increased. It was found 
that at a constant gasification temperature of 800 °C in a downdraft fixed-bed gasifier, 
the synthetic gas yield was 63.43 (wt. %) at 600 °C catalytic temperature. In contrast, 
the gas yield was 71.35 (wt. %) at 700 °C catalytic temperature, 77.25 (wt. %) at 
800 °C catalytic temperature, and 80.58 (wt. %) at 900 °C catalytic temperature [68].

5.2 Synthetic gas composition

In this chapter, gasification method using downdraft fixed-bed gasifier gener-
ates synthetic gas from rice husk, waste plastic, and sawdust biomass energy 
sources. Among different gases, carbon monoxide, carbon dioxide, methane, 
hydrogen are significant. Carbon dioxide and carbon monoxide form a significant 
portion of synthetic gas, whereas methane generation is lower than carbon dioxide 
and carbon monoxide [18]. In the case of biomass feedstocks, the generation of H2 
and methane is higher for sawdust than rice husk biomass due to its higher heating 
value. In contrast, the heating value of plastic is higher than sawdust and rice husk. 
Therefore, it has a significant potential for H2 (3–18 vol. %) rich and high methane 
synthetic gas generation using a downdraft fixed-bed gasifier. On the other hand, 
the gasification of plastic generates a high quantity of tar that reduces the efficiency 
of the gasification process. In addition, endothermicity is another drawback of the 
plastic gasification process. Overall, the gasification process using plastic material 
is still uncommon in practical cases although the efficiency can be improved by 
adding another feed material with plastic material as co-feedstocks.

5.3 Power generation using gasifier

The generated synthetic gas from the gasification of rice husk, waste plastic, 
and sawdust is collected from the exhaust end by controlling the exhaust valve of 
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the downdraft fixed-bed gasifier. A gas analyzer is needed to analyze the contents 
of synthetic gas. The generated synthetic gas can be utilized to operate the engine, 
boiler, etc. It is possible to operate any prime movers, such as engines and boilers 
by connecting them at the exhaust end of a downdraft fixed-bed gasifier where the 
gasification of rice husk, sawdust, and waste plastic occurs.

The heating value of rice husk, sawdust, and waste plastic is 16.7 MJ/kg, 
18.23 MJ/kg, and 40 MJ/kg, respectively.

However, in the biomass gasification method using downdraft fixed-bed 
gasifier, the heating value is within the range of 5.4 MJ/m3 to 5.7 MJ/m3 [69]. The 
generated synthetic gas from the biomass gasification method can also be used in 
diesel engines, dual-fuel engines, and petrol engines. Moreover, the produced heat 
in the rice husk, waste plastic, and sawdust gasification process can be used to gen-
erate electricity in an off-grid area. The typical size of an off-grid electricity system 
is 10–500 kW for the generated heat in these biomass gasification process [30]. 
The exact size of the off-grid energy system depends on the amount of feedstock 
materials use in the downdraft gasification process.

6. Conclusion

Rice husk, waste plastic, and sawdust were used as feedstock materials in 
the gasification process using a downdraft fixed-bed gasifier. The generation of 
synthetic gas depends on the heating value of biomass feedstocks. It has been 
found that waste plastic has the highest heating value (40 MJ/kg) among the three 
biomasses. Therefore, it has the highest potential of H2 rich (3–18 vol. %) synthetic 
gas generation than rice husk and sawdust biomasses. On the other hand, sawdust 
produces a high H2 and methane content synthetic gas than rice husk. Moreover, the 
generation capacity and quantity of biomass gasification method depends on the 
type of gasifier. Downdraft fixed-bed gasifier is one of the effective gasifiers used in 
the gasification process. The generation of synthetic gas and heat from the biomass 
gasification method using a downdraft gasifier depends on the reactor temperature, 
residence time, catalytic temperature, and gasification duration.
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