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Chapter

A Brief Summary of the Finite
Element Method for Differential
Equations
Mahboub Baccouch

Abstract

The finite element (FE) method is a numerical technique for computing approxi-
mate solutions to complex mathematical problems described by differential equations.
The method was developed in the 1950s to solve complicated problems in engineering,
notably in elasticity and structural mechanics modeling involving elliptic partial dif-
ferential equations and complicated geometries. But nowadays the range of applica-
tions is quite extensive. In particular, the FE method has been successfully applied to
many problems such as fluid–structure interaction, thermomechanical, thermochemi-
cal, thermo-chemo-mechanical problems, biomechanics, biomedical engineering, pie-
zoelectric, ferroelectric, electromagnetics, and many others. This chapter contains a
summary of the FEmethod. Since the remaining chapters of this textbook are based on
the FE method, we present it in this chapter as a method for approximating solutions
of ordinary differential equations (ODEs) and partial differential equations (PDEs).

Keywords: the finite element method, initial-value problems, boundary-value
problems, Laplace equation, heat equation, wave equation

1. Introduction

1.1 An overview of the finite element method

Differential equations arise in many disciplines such as engineering, mathemat-
ics, sciences, economics, and many other fields. Unfortunately solutions to differ-
ential equations can rarely be expressed by closed formulas and numerical methods
are needed to approximate their solutions. There are many numerical methods for
approximating the solution to differential equations including the finite difference
(FD), finite element (FE), finite volume (FV), spectral, and discontinuous Galerkin
(DG) methods. These methods are used when the mathematical equations are too
complicated to be solved analytically.

The FE method has become the standard numerical scheme for approximating
the solution to many mathematical problems; see [1–9] and the references therein
just to mention a few. In simple words, the FE method is a numerical method to
solve differential equations by discretizing the domain into a finite mesh. Numeri-
cally speaking, a set of differential equations are converted into a set of algebraic
equations to be solved for unknown at the nodes of the mesh. The FE method
originated from the need to solve complex elasticity and structural analysis prob-
lems in civil and aeronautical engineering. The first development can be traced back
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to the work by Hrennikoff in 1941 [10] and Courant in 1943 [11]. Although these
pioneers used different perspectives in their FE approaches, they each identified the
one common and essential characteristic: mesh discretization of a continuous
domain into a set of discrete sub-domains, usually called elements. Another funda-
mental mathematical contribution to the FE method is represented by Gilbert
Strang and George Fix [12]. Since then, the FE method has been generalized for the
numerical modeling of physical systems in many engineering disciplines including
electromagnetism, heat transfer, and fluid dynamics.

The advantages of this method can be summarized as follows:

1.Numerical efficiency: The discretization of the calculation domain with finite
elements yields matrices that are in most cases sparse and symmetric.
Therefore, the system matrix, which is obtained after spatial and time
discretization, is sparse and symmetric too. Both the storage of the system
matrix and the solution of the algebraic system of equations can be performed
in a very efficient way.

2.Treatment of nonlinearities: The modeling of nonlinear material behavior is
well established for the FE method (e.g., nonlinear curves, hysteresis).

3.Complex geometry: By the use of the FE method, any complex domain can be
discretized by triangular elements in 2D and by tetrahedra elements in 3D.

4.Applicable to many field problems: The FE method is suited for structural
analysis, heat transfer, electrical/magnetical analysis, fluid and acoustic
analysis, multi-physics, etc.

COMSOL Multiphysics (known as FEMLAB before 2005) is a commercial FE
software package designed to address a wide range of physical phenomena. It is
widely used in science and industry for research and development. It excels at
modeling almost any multi-physics problem by solving the governing set of PDEs
via the FE method. This software package is able to solve one, two and three-
dimensional problems. It comes with a modern graphical user interface to set up
simulation models and can be scripted from Matlab or via its native Java API.

In this chapter, we introduce the FE method for several one-dimensional and
two-dimensional model problems. Although the FE method has been extensively
used in the field of structural mechanics, it has been successfully applied to solve
several other types of engineering problems, such as heat conduction, fluid dynam-
ics, seepage flow, and electric and magnetic fields. These applications prompted
mathematicians to use this technique for the solution of complicated problems. For
illustration, we will use simple one-dimensional and two-dimensional model
problems to introduce the FE method.

2. The FE method for ODEs

2.1 The FE method for first-order linear IVPs

We first present the FE method as an approximation technique for solving the
following first-order initial-value problem (IVP) using piecewise linear polynomials

u0 ¼ f xð Þ, x∈ a, b½ �, u að Þ ¼ u0: (1)

2
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In order to apply the FE method to solve this problem, we carry out the
following process.

1.Derive a weak form (variational formulation). This can be done

by multiplying the ODE in (1) by a test function v xð Þ∈V0 ¼

v∈L2 a, b½ � : ∥v∥2 þ ∥v0∥2 <∞, v að Þ ¼ 0
n o

, where ∥v∥2 ¼
Ð b
a v

2 xð Þdx,

integrating from a to b, using integration by parts, and applying v að Þ ¼ 0, to get
Ð b
a fvdx ¼

Ð b
a u

0vdx ¼ �
Ð b
a uv

0dxþ u bð Þv bð Þ � u að Þv að Þ ¼ �
Ð b
a uv

0dxþ u bð Þv bð Þ:

2.Generate a triangulation (also called amesh) of the computational domain a, b½ �.
For a one-dimensional problem, amesh is a set of points in the interval a, b½ �, say,
a ¼ x0 ≤ x1 ≤⋯≤ xN ¼ b. The point xi is called a node or nodal point. The length
of the interval (called an element) Ii ¼ xi�1, xi½ � is hi ¼ xi � xi�1. Let h ¼ max

1≤ i≤N
hi

(called amesh size thatmeasures how fine the partition is). If themesh is uniformly

distributed, then xi ¼ aþ ih, i ¼ 0, 1, … ,N, where h ¼ b�a
N .

3.Define a finite dimensional space over the triangulation: Let the solution u be in

the space V. For the model problem (1), the solution space is V ¼ C1 a, b½ �. We
wish to construct a finite dimensional space (subspace) Vh ⊂V based on the
mesh. When the FE space is a subspace of the solution space, the method is
called conforming. It is known that in this case, the FE solution converges to the
true solution provided the FE space approximates the given space in some sense
[3]. Different finite dimensional spaces will generate different FE solutions.

Define the FE space as the set of all continuous piecewise linear polynomials

Vh ¼ fv : vjIi ∈P1 Iið Þ, i ¼ 1, 2, … ,N, v að Þ ¼ 0g, where P1 Iið Þ is the space of

polynomials of degree ≤ 1 on Ii. Functions in Vh are linear on each Ii, and
continuous on the whole interval a, b½ �. An example of such a function is
shown in Figure 1.

We remark that any function v∈Vh is uniquely determined by its nodal values
v xið Þ.

4.Construct a set of basis functions based on the triangulation. Since Vh

has finite dimension, we can find one set of basis functions. A basis for Vh

is ϕ j

n oN

j¼0
, where ϕ j ∈Vh are linearly independent. Then

Figure 1.
A continuous piecewise linear function v.
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Vh ¼ vh xð Þ∈V, vh xð Þ ¼
PN

j¼0c jϕ j xð Þ
n o

is the space spanned by the basis

functions ϕif gNi¼0. The simplest finite dimensional space is the piecewise
continuous linear function space defined over the triangulation.

Vh ¼ vh xð Þ∈V, vh xð Þ is piecewise continuous linear over a, b½ � with vh að Þ ¼ 0f g:

There are infinite number of sets of basis functions. We should choose a set of
basis functions that are simple, have compact (minimum) support (that is, zero
almost everywhere except for a small region), and meet the regularity require-
ment, that is, they have to be continuous, and differentiable except at nodal
points. The simplest ones are the so-called hat functions satisfying ϕi xið Þ ¼ 1 and

ϕi x j

� �

¼ 0 for i 6¼ j. The analytic form is (see Figure 2)

ϕ0 xð Þ ¼

x1 � x

h
, x∈ I1,

0, else,

(

, ϕN xð Þ ¼

x� xN�1

h
, x∈ IN,

0, else,

(

,

ϕi xð Þ ¼

x� xi�1

h
, x∈ Ii,

xiþ1 � x

h
, x∈ Iiþ1,

0, else:

8

>

>

>

<

>

>

>

:

5.Approximate the exact solution u by a continuous piecewise linear function
uh xð Þ. The FE method consists of finding uh ∈Vh such that

�

ðb

a
uhv

0dxþ uh bð Þv bð Þ ¼

ðb

a
fvdx, ∀ v∈Vh:

This type of FE method (with similar trial and test space) is sometimes called a
Galerkin method, named after the famous Russian mathematician and engineer
Galerkin.

Implementation: The FE solution is a linear combination of the basis functions.

Writing uh xð Þ ¼
PN

j¼0c jϕ j xð Þ, where c0, c1, … , cN are unknowns, and choosing

v ¼ ϕi, i ¼ 1, 2, … ,N to get

�
X

N

j¼0

c j

ðb

a

ϕ jϕ
0
idxþ cNϕi bð Þ ¼

ðb

a

fϕidx, i ¼ 1, 2, … ,N,

Figure 2.
A typical hat function ϕi on a mesh. Also shown is the half hat functions ϕ

0
and ϕN .
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since uh bð Þ ¼ cN . Note that using the hat functions, we have uh x0ð Þ ¼ 0 and

uh xið Þ ¼
PN

j¼0c jϕ j xið Þ ¼ ciϕi xið Þ ¼ ci for i ¼ 1, 2, … ,N. Thus, we get the following

linear system

�
X

N

j¼1

c j

ðb

a
ϕ jϕ

0
idxþ cNϕi bð Þ ¼

ðb

a
ϕ0ϕ

0
idx, i ¼ 1, 2, … ,N:

Finally, we solve the linear system for c1, … , cN . We note that for i ¼
1, 2, … ,N � 1, we have

ðb

a
ϕiϕ

0
idx ¼

ðxiþ1

xi�1

ϕiϕ
0
idx ¼

1

hi

ðxi

xi�1

x� xi�1

hi

� �

dx�
1

hi

ðxiþ1

xi

xiþ1 � x

hi

� �

dx ¼ 0:

However, for i ¼ N, we have

ðb

a
ϕNϕN

0dx ¼

ðxN

xN�1

ϕNϕN
0dx ¼

ðxN

xN�1

x� xN�1

hN

� �

x� xN�1

hN

� �

dx

¼
1

hN

ðxN

xN�1

x� xN�1

hN
dx ¼

1

2
:

Similarly, for i ¼ 1, 2, … ,N, we have

ðb

a

ϕi�1ϕ
0
idx ¼

ðxi

xi�1

ϕi�1ϕ
0
idx ¼

ðxi

xi�1

xi � x

hi

� �

x� xi�1

hi

� �

dx ¼
1

hi

ðxi

xi�1

xi � x

hi
dx ¼

1

2
,

ðb

a
ϕiþ1ϕ

0
idx ¼

ðxiþ1

xi

ϕiþ1ϕ
0
idx ¼

ðxiþ1

xi

x� xi
hiþ1

� �

xiþ1 � x

hiþ1

� �

dx ¼ �
1

hiþ1

ðxiþ1

xi

x� xi
hiþ1

dx

¼ �
1

2
:

We next calculate
Ð b
a fϕidx. Since it depends on f , we cannot generally expect to

calculate it exactly. However, we can approximate it using a quadrature rule. Using

the Trapezoidal rule
Ð b
a f xð Þdx≈ b�a

2 f að Þ þ f bð Þð Þ and using ϕi xi�1ð Þ ¼ ϕi xiþ1ð Þ ¼ 0
and ϕi xið Þ ¼ 1, we get

ðb

a
fϕidx ¼

ðxi

xi�1

fϕidxþ

ðxiþ1

xi

fϕidx≈
hi þ hiþ1

2
f xið Þ, i ¼ 1, 2, … ,N � 1,

ðb

a
f xð ÞϕNdx ¼

ðxN

xN�1

f xð ÞϕNdx≈
hN
2

f xN�1ð ÞϕN xN�1ð Þ þ f xNð ÞϕN xNð Þð Þ ¼
hN
2
f xNð Þ:

Thus, we obtain the following linear system of equations

0
1

2
0 ⋯ 0

�
1

2
0

1

2
⋱ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ �
1

2
0

1

2

0 ⋯ 0 �
1

2

1

2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

c1

c2

⋮

cN�1

cN

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

h1 þ h2
2

f x1ð Þ

h2 þ h3
2

f x2ð Þ

⋮
hN�1 þ hN

2
f xN�1ð Þ

hN
2
f xNð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:
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The determinant of the above matrix is 1
2N
. Thus, the system has a unique

solution c1, c2, … , cN .

Remark 2.1 Suppose that u að Þ ¼ u0, then we let uh xð Þ ¼
PN

j¼0c jϕ j xð Þ. Since u0 ¼

uh x0ð Þ ¼
PN

j¼1c jϕ j x0ð Þ ¼ c0ϕ0 x0ð Þ ¼ c0, we only need to find c1, c2, … , cN . Choosing

v ¼ ϕi, i ¼ 1, 2, … ,N, we get the following linear system

�
X

N

j¼1

c j

ðb

a

ϕ jϕ
0
idxþ cNϕi bð Þ ¼

ðb

a

fϕidxþ u0

ðb

a

ϕ0ϕ
0
idx, i ¼ 1, 2, … ,N:

Finally, we solve the linear system for c1, … , cN . We note that
Ð b
a ϕ0ϕ

0
idx ¼ 0 for

i ¼ 2, … ,N and

ðb

a
ϕ0ϕ1

0dx ¼

ðx1

x0

x1 � x

h1

� �

x� x0
h1

� �0

dx ¼
1

h1

ðx1

x0

x1 � x

h1
dx ¼

1

2
:

Following the same steps used for the case u að Þ ¼ 0, we obtain the following
linear system of equations

0
1

2
0 ⋯ 0

�
1

2
0

1

2
⋱ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ �
1

2
0

1

2

0 ⋯ 0 �
1

2

1

2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

c1

c2

⋮

cN�1

cN

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

h1 þ h2
2

f x1ð Þ þ
u0
2

h2 þ h3
2

f x2ð Þ

⋮
hN�1 þ hN

2
f xN�1ð Þ

hN
2
f xNð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

2.2 The FE method for first-order nonlinear IVPs

Here, we extend the FE method for the nonlinear IVP using piecewise linear
polynomials

u0 ¼ f x, uð Þ, x∈ a, b½ �, u að Þ ¼ u0: (2)

The FE method consists of finding uh ∈Vh ¼ fv : vjIi ∈P1 Iið Þ,

i ¼ 1, 2, … ,N, v að Þ ¼ 0g, such that

uh bð Þv bð Þ �

ðb

a
uhv

0dx ¼

ðb

a
f x, uhð Þvdx, ∀ v∈Vh:

Writing uh xð Þ ¼
PN

j¼0c jϕ j xð Þ and choosing v ¼ ϕi, i ¼ 1, 2, … ,N, we get

cN ϕi �

ðb

a
ϕNϕ

0
idx

� �

�
X

N�1

j¼0

c j

ðb

a
ϕ jϕ

0
idx�

ðb

a
f x,

X

N

j¼0

c jϕ j

 !

ϕidx ¼ 0,

i ¼ 1, 2, … ,N,

where uh x0ð Þ ¼ c0 ¼ u0. Finally, we solve the nonlinear system for c1, c2, … , cN
using e:g:, Newton’s method for systems of nonlinear equations. The system can be
written as Fi c1, c2, … , cNð Þ ¼ 0, i ¼ 1, 2, … ,N, where

6
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Fi ¼ cN ϕi �

ðb

a
ϕNϕ

0
idx

� �

�
X

N�1

j¼0

c j

ðb

a
ϕ jϕ

0
idx�

ðb

a
f x,

X

N

j¼0

c jϕ j

 !

ϕidx,

i ¼ 1, 2, … ,N:

Let αi ¼
PN

j¼0c j
Ð b
a ϕ jϕ

0
idx and βi ¼

Ð b
a f x,

PN
j¼0c jϕ j

� �

ϕidx. Then, for i ¼

1, 2, … ,N � 1,

αi ¼ ci�1

ðxi

xi�1

ϕi�1ϕ
0
idxþ ci

ðxi

xi�1

ϕiϕ
0
idxþ

ðxiþ1

xi

ϕiϕ
0
idx

� �

þ ciþ1

ðxiþ1

xi

ϕiþ1ϕ
0
idx

¼ ci�1

ðxi

xi�1

xi � x

h2i
dxþ ci

ðxi

xi�1

x� xi�1

h2i
dx�

ðxiþ1

xi

xiþ1 � x

h2iþ1

dx

 !

� ciþ1

ðxiþ1

xi

x� xi

h2iþ1

dx

¼
1

2
ci�1 þ ci

1

2
�

1

2

� �

�
1

2
ciþ1 ¼

1

2
ci�1 �

1

2
ciþ1,

αN ¼ cN�1

ðxN

xN�1

ϕN�1ϕN
0dxþ cN

ðxN

xN�1

ϕNϕN
0dx

¼ cN�1

ðxN

xN�1

xN � x

h2N
dxþ cN

ðxN

xN�1

x� xN�1

h2N
dx ¼

1

2
cN�1 þ

1

2
cN:

Similarly,

βi ¼

ðxiþ1

xi�1

f x,
X

N

j¼0

c jϕ j

 !

ϕidx ¼

ðxi

xi�1

f x,
X

N

j¼0

c jϕ j

 !

ϕidxþ

ðxiþ1

xi

f x,
X

N

j¼0

c jϕ j

 !

ϕidx:

Using Simpson’s Rule
Ð b
a f xð Þdx≈ b�a

6 f að Þ þ 4f aþb
2

� �

þ f bð Þ
� �

, and using

ϕi xi�1ð Þ ¼ ϕi xiþ1ð Þ ¼ 0, ϕi xið Þ ¼ 1,
PN

j¼0c jϕ j xi�1 þ
hi
2

� �

¼ ci�1þci
2 , ϕi xi�1 þ

hi
2

� �

¼ 1
2,

PN
j¼0c jϕ j xið Þ ¼ ci, we have, for i ¼ 1, 2, … ,N � 1,

βi ≈
hi
3
f xi�1 þ

hi
2
,
ci�1 þ ci

2

� �

þ
hi þ hiþ1

6
f xi, cið Þ þ

hiþ1

3
f xi þ

hiþ1

2
,
ci þ ciþ1

2

� �

:

However, for i ¼ N, we have

βN ≈
hN
6

2f xN�1 þ
h

2
,
cN�1 þ cN

2

� �

þ f xN, cNð Þ

� �

:

Next, we compute the Jacobian matrix with entries

Ji,j ¼
∂Fi

∂c j
¼

ðb

a
ϕ jϕ

0
idx�

ðb

a
f u x,

X

N

j¼0

c jϕ j

 !

ϕ jϕi dx ¼ ai,j � bi,j, i ¼ 1, 2, … ,N:

We already computed the entries ai,j as

ai,i�1 ¼

ðb

a
ϕi�1ϕ

0
idx ¼

1

2
, ai,i ¼

ðb

a
ϕiϕ

0
idx ¼ 0, i ¼ 1, 2, … ,N � 1,

aN,N ¼

ðb

a

ϕNϕN
0dx ¼

1

2
, ai,iþ1 ¼

ðb

a

ϕiþ1ϕ
0
idx ¼ �

1

2
:
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Using Simpson’s Rule, we get

bi,i�1 ¼

ðxi

xi�1

ϕi�1ϕi f u x,
X

N

j¼0

c jϕ j

 !

dx≈
hi
6
f u xi�1 þ

hi
2
,
ci�1 þ ci

2

� �

,

bi,iþ1 ¼

ðxiþ1

xi

ϕiþ1ϕi f u x,
X

N

j¼0

c jϕ j

 !

dx≈
hiþ1

6
f u xi þ

hiþ1

2
,
ci þ ciþ1

2

� �

,

bi,i ¼

ðxi

xi�1

ϕ2
i f u x,

X

N

j¼0

c jϕ j

 !

dxþ

ðxiþ1

xi

ϕ2
i f u x,

X

N

j¼0

c jϕ j

 !

dx

≈
hi
6
f u xi�1 þ

hi
2
,
ci�1 þ ci

2

� �

þ
hi þ hiþ1

6
f u xi, cið Þ þ

hiþ1

6
f u xi þ

hiþ1

2
,
ci þ ciþ1

2

� �

,

bN,N ¼

ðxN

xN�1

ϕ2
N f u x,

X

N

j¼0

c jϕ j

 !

dx≈
hN
6

f u xN�1 þ
h

2
,
cN�1 þ cN

2

� �

þ f u xN, cNð Þ

� �

:

2.3 The FE method for two-point BVPs

Here, we shall study the derivation and implementation of the FE method for
two-point boundary-value problems (BVPs). For easy presentation, we consider the

following model problem: Find u∈C2 a, b½ � such that

�u00 þ q xð Þu ¼ f xð Þ, x∈Ω ¼ a, bð Þ, u að Þ ¼ u bð Þ ¼ 0, (3)

where u : Ω ¼ a, b½ � !  is the sought solution, q xð Þ≥0 is a continuous

function on a, b½ �, and f ∈L2 a, b½ �. Under these assumptions, (3) has a unique

solution u∈C2 a, b½ �. For general q xð Þ, it is impossible to find an explicit form
of the solution. Therefore, our goal is to obtain a numerical solution via the FE
method.

2.3.1 Different mathematical formulations for the 1D model

The model problem (3) can be reformulated into three different forms:
(D)-form: the original differential equation (3).

(V)-form: the variational form or weak form:
Ð b
a u

0v0dxþ
Ð b
a quvdx ¼

Ð b
a fvdx,

for any test function v in the Sobolev space H1
0 a, b½ � ¼ v∈L2 a, b½ � :

�

vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0
	

, where vk k2 ¼
Ð b
a v

2 xð Þdx. The corresponding
FE method is often called the Galerkin method. In other words, a Galerkin FE
method is a FE method obtained from the variational form.

(M)-form: the minimization form: min v xð Þ∈H1
0 a,b½ �

Ð b
a

1
2 v0ð Þ2 þ 1

2 qv
2 � fv

� �

dx. The

corresponding FE method is often called the Ritz method.
Under some assumptions, the three different forms are equivalent, that is, they

have the same solution as will be explained in the following theorem.
Theorem 2.1 (Mathematical equivalences) Suppose that u00 exists and continuous

on a, b½ �. Then we have the following mathematical equivalences.
(D) is equivalent to (V), (V) is equivalent to (M), and (M) is equivalent to (D).
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2.3.2 Galerkin method of the problem

To solve (3) using the FE method, we carry out the process described below.
Usually, a FE method is always derived from the weak or variational formulation of
the problem at hand.

Weak formulation of the problem: The Galerkin FE method starts by rewriting
(3) in an equivalent variational formulation. To this end, let us define the vector

space H1
0 ¼ v∈L2 a, bð Þ : vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0

n o

. Multiplying (3)

by a test function v∈H1
0, integrating from a to b, and using integration by parts,

we get

ðb

a
fvdx ¼

ðb

a
� u00vdxþ

ðb

a
quvdx ¼

ðb

a
u0v0dxþ

ðb

a
quvdx,

since v að Þ ¼ v bð Þ ¼ 0. Hence, the weak (or variational) form of (3) reads: Find

u∈H1
0, such that

ðb

a

u0v0dxþ

ðb

a

quvdx ¼

ðb

a

fvdx, ∀ v∈H1
0: (4)

We want to find u∈H1
0 that satisfies (4). We note that a solution u to (4) is less

regular than the solution u (3). Indeed, (4) has only u0 whereas (3) contains u00.
Furthermore, we can easily verify the following:

1.If u is strong solution (i:e:, solves (3)) then u is also weak solution (i:e:,
solves (4)).

2.Conversely, if u is a weak solution with u∈C2 a, b½ �, it is also strong solution.

3.Existence and uniqueness of weak solutions is obtained by the Lax-Milgram
Theorem.

4.We can consider solutions with lower regularity using the weak formulation.

5.FE method gives an approximation of the weak solution.

From now on, we use the notation vk k ¼ vk k
Ω
, where Ω ¼ a, b½ �.

The FE formulation: The FE method is based on the variational form (4). We

note that the space H1
0 contains many functions and it is therefore just as hard to

find a function u∈H1
0 which satisfies the variational Eq. (4) as it is to solve the

original problem (3). Next, we study in details a special Galerkin method called the
FE method. Let a ¼ x0 < x1 <⋯< xN ¼ b be a regular partition of a, b½ �. Suppose
that the length of Ii ¼ xi�1, xi½ � is hi ¼ xi � xi�1. We define h ¼ max

i¼1, 2, … ,N
hi to be the

mesh size. We wish to construct a subspace Vh ⊂V ¼ H1
0. Since Vh has finite

dimension, we can find one set of basis functions ϕ j

n oN�1

j¼1
for Vh, where

ϕ j ∈Vh, j ¼ 1, 2, … ,N � 1 are linearly independent. We remark that Vh is the

space spanned by the basis functions i:e:, Vh ¼ vh xð Þ, vh xð Þ ¼
PN�1

j¼1 c jϕ j xð Þ
n o

.

The FE method consists of choosing a basis for the subspace Vh that satisfies the
following properties
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1.The matrix A must be sparse (e:g: traditional or banded matrix). In this case,
iterative methods for solving linear systems can be adapted to obtain an
efficient solution.

2.uh must converge to the solution u of the original problem as h ! 0.

It is natural to obtain an approximation uh to u as follows: Find uh ∈Vh

such that

ðb

a
u0hv

0dxþ

ðb

a
quhvdx ¼

ðb

a
fvdx, ∀ v∈Vh: (5)

We call uh the FE approximation of u. We say that (5) is the Galerkin approxi-
mation of (4) and the method used to find uh ∈Vh is called Galerkin method.

FE approximation using Lagrange 1 elements: The simplest finite
dimensional space is the piecewise continuous linear function space defined over
the triangulation

V1
h,0 ¼ vh ∈V, vh is piecewise continuous linear over a, b½ � with vh að Þ ¼ vh bð Þ ¼ 0f g:

It is easy to show that V1
h,0 has a finite dimension even although there are infinite

number of elements in V1
h,0. The approximation of the FE method is therefore to

look for an approximation uh within a small (finite dimensional) subspace V1
h,0 ¼

v∈V1
hj v að Þ ¼ v bð Þ ¼ 0

� 	

of H1
0, consisting of piecewise linear polynomials, where

V1
h ¼ v∈C0 a, b½ � vj jIi ∈P1 Iið Þ

n o

.

Let V1
h,0 be the space of all continuous piecewise linear functions, which vanish

at the end points a and b. There are many types of basis functions ϕif gN�1
i¼1 . The

simplest ones are the so-called hat functions satisfying ϕi x j

� �

¼ δij, where δij is the

Kronecker symbol. Note especially that there is no need to construct hat functions

ϕ0 and ϕN since any function of V1
h,0 must vanish at the end points x0 ¼ a and

xN ¼ b.
The explicit expressions for the hat function ϕi xð Þ and its derivative ϕ0

i xð Þ are
given by

ϕi xð Þ ¼

0, a≤ x≤ xi�1,
x� xi�1

hi
, xi�1 ≤ x≤ xi,

xiþ1 � x

hiþ1
, xi ≤ x≤ xiþ1,

0, xiþ1 ≤ x≤ b,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

, ϕ0
i xð Þ ¼

0, a< x< xi�1,
1

hi
, xi�1 < x< xi,

�
hiþ1

, xi < x< xiþ1,

0, xiþ1 < x< b,

8

>

>

>

>

>

<

>

>

>

>

>

:

,

for i ¼ 1, 2, … ,N � 1. The FE approximation of (4) thus reads: Find u∈V1
h,0,

such that

ðb

a
u0hv

0dxþ

ðb

a
quhvdx ¼

ðb

a
fvdx, ∀ v∈V1

h,0: (6)

We call uh the FE approximation of u. We say that (6) is the Galerkin approxi-

mation of (4) and the method used to find uh ∈V1
h,0 is called Galerkin method.

It can be shown that (6) is equivalent to the N � 1 equations
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ðb

a
u0hϕ

0
idxþ

ðb

a
quhϕidx ¼

ðb

a
fϕidx, i ¼ 1, 2, … ,N � 1: (7)

Derivation of the discrete system: Since uh ∈V1
h,0, we can express it as a linear

combination of hat functions i:e:,

uh ¼
X

N�1

j¼1

c jϕ j xð Þ, (8)

where c j are real numbers to be determined. We note that the coefficients
c j, j ¼ 1, 2, … ,N � 1 are the N � 1 nodal values of uh to be determined. Note that
the index is only from 1 to N � 1, because of the zero boundary conditions. We
remark that uh að Þ ¼ uh bð Þ ¼ 0 and uh xið Þ ¼ ci. So ci is an approximate solution to
the exact solution at x ¼ xi.

We can use either the weak/variational form (V), or the minimization form
(M), to derive a linear system of equations for the coefficients c j.

Substituting (8) into (7) yields

X

N�1

j¼1

c j

ðb

a
ϕ0
iϕ

0
jdxþ

ðb

a
qϕiϕ jdx

� �

¼

ðb

a
fϕidx, i ¼ 1, 2, … ,N � 1: (9)

The problem (7) is now equivalent to the following: Find the real numbers
c1, c2, … , cN�1 that satisfy the linear system (9).

We note that the linear system (9) is equivalent to the system in matrix–vector form

Ac ¼ b, (10)

where c ¼ c1, c2, … , cN�1½ �t ∈
N�1 is the unknown vector, A is an N � 1ð Þ �

N � 1ð Þ matrix, the so-called stiffness matrix when q ¼ 0, with entries

aij ¼

ðb

a
ϕ0
iϕ

0
j þ qϕiϕ j

� �

dx, i, j ¼ 1, 2, … ,N � 1, (11)

and b∈
N�1, the so-called load vector, has entries

bi ¼

ðb

a
fϕidx, i ¼ 1, 2, … ,N � 1: (12)

To obtain the approximate solution we need to solve the linear system for the

unknown vector c. We note that aij ¼ a ϕi,ϕ j

� �

and bi ¼ f ,ϕið Þ, where a u, vð Þ ¼
Ð b
a u0v0 þ quvð Þdx is a bi-linear and f , vð Þ ¼

Ð b
a fvdx is a linear form.

2.3.3 Ritz method of the problem

The Ritz method is one of the earliest FE methods. However, not every problem
has a minimization form. The minimization form for the model problem (3) is

min
v xð Þ∈H1

0 a, b½ �
F vð Þ, where F vð Þ ¼

ðb

a

1

2
v0ð Þ

2
þ

1

2
qv2 � fv

� �

dx:
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As before, we look for an approximate solution of the form (8). If we plug this
into the functional form above, we get

F uhð Þ ¼

ðb

a

1

2

X

N�1

j¼1

c jϕ
0
j xð Þ

 !2

þ
1

2
q
X

N�1

j¼1

c jϕ j xð Þ

 !2

� f
X

N�1

j¼1

c jϕ j xð Þ

 !

0

@

1

Adx,

which is a multi-variable function of c1, c2, … , cN�1 and can be written as
F uhð Þ ¼ F c1, c2, … , cN�1ð Þ. The necessary conditions for a global minimum are ∂F

∂ci
¼

0, i ¼ 1, 2, … ,N � 1. Taking the partial derivatives directly with respect to ci, we get

ðb

a
ϕ0
i xð Þ

X

N�1

j¼1

c jϕ
0
j xð Þ þ qϕi xð Þ

X

N�1

j¼1

c jϕ j xð Þ � fϕi xð Þ

 !

dx ¼ 0, i ¼ 1, 2, … ,N � 1:

Exchange the order of integration and the summation, we get

X

N�1

j¼1

c j

ðb

a
ϕ0
i xð Þϕ0

j xð Þ þ qϕi xð Þϕ j xð Þ
� �

dx ¼

ðb

a
fϕi xð Þdx ¼ 0, i ¼ 1, 2, … ,N � 1,

which is exactly the same linear system (9) obtained using the Galerkin method.

2.3.4 Computer implementation

It is straightforward to calculate the entries âi,j ¼
Ð b
a ϕ

0
iϕ

0
jdx. For ∣i� j∣> 1, we

have âi,j ¼ 0, since ϕi and ϕ j lack overlapping support. However, if i ¼ j, then

âi,i ¼

ðb

a
ϕ0
i

� �2
dx ¼

ðxi

xi�1

1

hi

� �2

dxþ

ðxiþ1

xi

�
1

hiþ1

� �2

dx ¼
1

hi
þ

1

hiþ1
, i, j ¼ 1, 2, … ,N � 1:

Furthermore, if j ¼ iþ 1, then

âi,iþ1 ¼

ðb

a
ϕ0
iϕ

0
iþ1dx ¼

ðxiþ1

xi

�
1

hiþ1

� �

1

hiþ1

� �

dx ¼ �
1

hiþ1
, i, j ¼ 1, 2, … ,N � 2:

(13)

By symmetry, we also have

âiþ1,i ¼

ðb

a

ϕ0
iþ1ϕ

0
idx ¼ �

1

hiþ1
, i, j ¼ 1, 2, … ,N � 2:

To obtain ~ai,j ¼
Ð b
a qϕiϕ jdx and bi ¼

Ð b
a fϕidx, we use the composite trapezoidal rule

ðb

a

f xð Þdx ¼
X

N

i¼1

ðxi

xi�1

f xð Þdx≈
1

2
h1f x0ð Þ þ

X

N�1

i¼1

hi þ hiþ1ð Þf xið Þ þ hNf xNð Þ

" #

:

So, we can easily verify that

~ai,j ¼

ðb

a

qϕiϕ jdx≈

qi
2

hi þ hiþ1ð Þ, i ¼ j

0, i 6¼ j

(

, bi ¼

ðb

a

fϕidx≈
1

2
hi þ hiþ1ð Þ f i,
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where qi ¼ q xið Þ and f i ¼ f xið Þ. Thus, the matrix A ¼ âi,j þ ~ai,j
� �

is tridiagonal

and has the form

A ¼

1

h1
þ

1

h2
þ
q1
2

h1 þ h2ð Þ �
1

h2
0 ⋯ 0

�
1

h2

1

h2
þ

1

h3
þ
q2
2

h2 þ h3ð Þ �
1

h3
⋱ 0

0 �
1

h3
⋱ ⋯ 0

⋮ ⋱ ⋱ ⋱ �
1

hN�1

0 ⋯ 0 �
1

hN�1

1

hN�1
þ

1

hN
þ
qN�1

2
hN�1 þ hNð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Finally, we obtain the following system: c0 ¼ cN ¼ 0 and

�
1

hi
ci�1 þ

1

hi þ hiþ1
ci �

1

hiþ1
ciþ1 þ

qi hi þ hiþ1ð Þ

2
ci ¼

1

2
hi þ hiþ1ð Þ f i, i ¼ 1, 2, … ,N � 1,

Remark 2.2 Suppose that the partition is uniform i:e:, hi ¼ h ¼ b�a
N for all

i ¼ 1, 2, … ,N. Then the stiffness matrix A and the load vector b have the form:

A ¼

2

h
þ hq1 �

1

h
0 ⋯ 0

�
1

h

2

h
þ hq2 �

1

h
⋱ 0

0 �
1

h
⋱ ⋯ 0

⋮ ⋱ ⋱ ⋱ �
1

hN�1

0 ⋯ 0 �
1

h

2

h
þ hqN�1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, b ¼ h

f 1
f 2
f 3
⋮

fN�1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

Finally, we obtain the following system: c0 ¼ cN ¼ 0 and

�c j�1 þ 2c j � c jþ1

h
þ hqic j ¼ hf i ) �

c j�1 � 2c j þ c jþ1

h2
þ qic j ¼ f i, i ¼ 1, 2, … ,N � 1,

which is the same system obtained using the finite difference method,
where u00 is approximated using the second-order midpoint formula

u00 x j

� �

≈
u x j�1ð Þ�2u x jð Þþu x jþ1ð Þ

h2
. We conclude that the above FE method using the

composite trapezoidal rule is equivalent to the finite difference method of order 2.

2.3.5 Existence, uniqueness, and basic a priori error estimate

Lemma 2.1 The matrix A with entries ai,j ¼
Ð b
a ϕ

0
iϕ

0
jdx is symmetric positive definite

i:e:, ai,j ¼ aj,i and

xtAx ¼
X

N�1

i, j¼1

xiai,jx j >0, for all nonzero x ¼ x1, … , xN�1½ �t ∈
N�1:

Theorem 2.2 The linear system (10) obtained using the FE method has a unique
solution. Consequently, the FE method solution uh is unique.
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Next, we state a general convergence result for the Galerkin method. We first

define the following norm and semi-norm: For v∈H1
0, we define

vk k ¼

ðb

a
v2 xð Þdx

� �1=2

, vj j1 ¼ v0k k ¼

ðb

a
v0 xð Þð Þ

2
dx

� �1=2

:

Theorem 2.3 Suppose that q xð Þ≥0, ∀ x∈ a, b½ �. Let u be the solution to (4) and uh
be the solution to (6). Then there exists a constant C such that

u� uhð Þ0










≤C u� vhð Þ0










, ∀ vh ∈V1
h,0, (14)

where C is given by C ¼ 1þ max x∈ a,b½ �∣q xð Þ∣, which is independent of the

choice of V1
h,0.

Remark 2.3 From (14), taking the minimum over all vh ∈V1
h,0, we get

u� uhð Þ0










≤C min
vh ∈Vh,0

u� vhð Þ0










. Thus, u� uhj j1 ≤Cmin vh ∈Vh,0
u� vhj j1, where

C ¼ 1þ max x∈ a,b½ �∣q xð Þ∣.

Next, we study the convergence of uh to u. Let u∈H1
0. Define the piecewise

linear interpolant by

πu ¼
X

N

j¼1

u x j

� �

ϕ j xð Þ∈V1
h,0, x∈ a, b½ �:

Since πu∈V1
h,0, the estimate (14) gives

u� uhð Þ0










≤C u� πuð Þ0










:

This inequality suggest that the error between u and uh is controlled by the
interpolation error u� πu in the �j j1-norm.

Theorem 2.4 (A priori error estimate) Suppose that q xð Þ≥0 ∀ x∈ a, b½ �. Let u
be the solution to (4) and uh be the solution to (6). Then there exists a constant C such
that

u� uhð Þ0












2
≤C

X

N

i¼1

h2i u00k k
2
Ii
,

where C is a constant independent of h. Consequently, if h ¼ max ihi, then

u� uhð Þ0












2
≤Ch2 u00k k

2
:

Remark 2.4

1.If the partition is not uniform then we obtain the same error estimate with
h ¼ max i¼1,2,… ,N xi � xi�1ð Þ.

2.The error is expressed in terms of the exact solution u. If it is expressed in
terms of the computed solution uh it is an a posteriori error estimate (this yields
a computable error bound).

3.uh ! u in the v0k k-norm as h ¼ max i hið Þ ! 0. If u� uhð Þ0










 ¼ 0 then u� uh
is constant, but since u 0ð Þ ¼ uh 0ð Þ we also have u� uh ¼ 0 and therefore
uh ¼ u.
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4.uh is the best approximation within the space V1
h,0 with respect to the v0k k-

norm.

5.The norm v0k k is referred to as the energy norm and has often a physical
meaning.

2.3.6 Boundary conditions

In problem (3) we considered a homogeneous Dirichlet boundary conditions.
Here, we extend the FE method to boundary conditions of different types. There
are three important types of boundary conditions (BCs):

1.Dirichlet BCs: u að Þ ¼ α and u bð Þ ¼ β for two real numbers α and β. This BC is
also known as strong BC or essential BC.

2.Neumann BCs: u0 að Þ ¼ α and u0 bð Þ ¼ β for two real numbers α and β. This BC
is also known as natural BCs.

3.Robin BCs: u0 að Þ ¼ αu að Þ and u0 bð Þ ¼ βu bð Þ for two real numbers α and β.

Note that any combination is possible at the two boundary points.
Nonhomogeneous Dirichlet boundary conditions: Let us consider the follow-

ing two-point BVP: find u∈C2 a, bð Þ such that

�u00 ¼ f xð Þ, x∈ a, bð Þ, u að Þ ¼ α, u bð Þ ¼ β, (15)

where α and β are given constants and f ∈C a, bð Þ is a given function. In this case,

the admissible function space H1
0 ¼ v : vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0

n o

and

the FE space V1
h,0 defined earlier remain the same. Multiplying (15) by a test

function v∈H1
0 and integrating by parts gives

ðb

a
fvdx ¼

ðb

a
� u00vdx ¼ �u0 bð Þv bð Þ þ u0 að Þv að Þ þ

ðb

a
u0v0dx ¼

ðb

a
u0v0dx,

since v að Þ ¼ v bð Þ ¼ 0. Hence, the weak or variational form of (15) reads: Given

u að Þ ¼ α, u bð Þ ¼ β, find u∈H1 ¼ v : vk k2 þ v0k k2 <∞
n o

, such that

ðb

a
u0v0dx ¼

ðb

a
fvdx, ∀ v∈H1

0: (16)

Let V1
h and V1

h,0, respectively, be the space of all continuous piecewise

linear functions and the space of all continuous piecewise linear functions
which vanish at the endpoints a and b. We also let a ¼ x0 < x1 <⋯< xN ¼ b be a
uniform partition of the interval a, b½ �. Moreover let ϕif g be the set of hat basis
functions of Vh associated with the N þ 1 nodes x j, j ¼ 0, 1, … ,N, such that

ϕi x j

� �

¼ δij. The FE approximation of (16) thus reads: Find uh ∈V1
h such that

uh að Þ ¼ α, uh bð Þ ¼ β, and

ðb

a
u0hv

0dx ¼

ðb

a
fvdx, ∀ v∈V1

h,0: (17)
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It can be shown that (17) is equivalent to the N � 1 equations

ðb

a

u0hϕ
0
idx ¼

ðb

a

fϕidx, i ¼ 1, 2, … ,N � 1: (18)

Expanding uh as a linear combination of hat functions

uh ¼
X

N

j¼0

c jϕ j xð Þ ¼ αϕ0 xð Þ þ
X

N�1

j¼1

c jϕ j xð Þ þ βϕN xð Þ, (19)

where the coefficients c j, j ¼ 1, 2, … ,N � 1 are the N � 1 nodal values of uh to
be determined.

Substituting (19) into (18) yields

X

N�1

j¼1

c j

ðb

a

ϕ0
iϕ

0
jdx

� �

¼

ðb

a

fϕi � αϕ0
0ϕ

0
i � βϕ0

Nϕ
0
i

� �

dx, i ¼ 1, 2, … ,N � 1,

which is a N � 1ð Þ � N � 1ð Þ system of equations for c j. In matrix form we write

Ac ¼ b, (20)

where A is a N � 1ð Þ � N � 1ð Þ matrix, the so-called stiffness matrix, with
entries

ai,j ¼

ðb

a
ϕ0
iϕ

0
jdx, i, j ¼ 1, 2, … ,N � 1, (21)

c ¼ c1, c2, … , cN�1½ �t is a N � 1ð Þ vector containing the unknown coefficients
c j, j ¼ 1, 2, … ,N � 1, and b is a N � 1ð Þ vector, the so-called load vector, with entries

bi ¼

ðb

a

fϕi � αϕ0
0ϕ

0
i � βϕ0

Nϕ
0
i

� �

dx, i ¼ 1, 2, … ,N � 1: (22)

Computer Implementation: The explicit expression for a hat function ϕi xð Þ is
given by

ϕi xð Þ ¼

0, a≤ x≤ xi�1,

x� xi�1

hi
, xi�1 < x≤ xi,

xiþ1 � x

hiþ1
, xi < x≤ xiþ1,

0, xiþ1 < x≤ b,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

, i ¼ 1, 2, … ,N � 1,

ϕ0 xð Þ ¼

x1 � x

h1
, x0 < x≤ x1,

0, x1 < x≤ b,

8

<

:

, ϕN xð Þ ¼

0, x0 < x≤ xN�1,

x� xN�1

hN
, xN�1 < x≤ b:

8

<

:

For simplicity we assume the partition is uniform so that hi ¼ h for i ¼ 1, 2, … ,N.
Hence the derivative ϕ0

i xð Þ is either � 1
h,

1
h, or 0 depending on the interval.

It is straightforward to calculate the entries of the stiffness matrix. For ∣i� j∣> 1,
we have ai,j ¼ 0, since ϕi and ϕ j lack overlapping support. However, if i ¼ j, then
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ai,j ¼

ðb

a
ϕ0
i

� �2
dx ¼

ðxi

xi�1

1

h

� �2

dxþ

ðxiþ1

xi

�
1

h

� �2

dx ¼
2

h
, i, j ¼ 1, 2, … ,N � 1,

where we have used that xi � xi�1 ¼ xiþ1 � xi ¼ h. Furthermore, if j ¼ iþ 1, then

ai,iþ1 ¼

ðb

a
ϕ0
iϕ

0
iþ1dx ¼

ðxiþ1

xi

�
1

h

� �

1

h

� �

dx ¼ �
1

h
, i, j ¼ 1, 2, … ,N � 2:

Changing i to i� 1 we also have

ai�1,i ¼

ðb

a

ϕ0
i�1ϕidx ¼

ðxi

xi�1

1

h

� �

�
1

h

� �

dx ¼ �
1

h
, i, j ¼ 2, 3, … ,N � 1:

Thus the stiffness matrix is

A ¼
1

h

2 �1 0 ⋯ 0

�1 2 �1 ⋱ 0

0 �1 2 ⋯ 0

⋮ ⋱ ⋱ ⋱ �1

0 ⋯ 0 �1 2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

The entries bi of the load vector must often be evaluated using quadrature, since
they involve the function f which can be hard to integrate analytically. For example,
using the trapezoidal rule one obtains the approximate load vector entries

b1 ¼

ðb

a

fϕ1 � αϕ0
0ϕ

0
1 � βϕ0

Nϕ
0
1

� �

dx ¼

ðx1

x0

fϕ1 � α �
1

h

� �

1

h

� �� �

dxþ

ðx2

x1

fϕ1

¼
α

h
þ

ðx2

x0

fϕ1 ≈
α

h
þ hf x1ð Þ,

bi ¼

ðb

a

fϕi � αϕ0
0ϕ

0
i � βϕ0

Nϕ
0
i

� �

dx ¼

ðxiþ1

xi�1

fϕidx≈ hf xið Þ, i ¼ 2, … ,N � 2,

bN�1 ¼

ðb

a
fϕ0

N�1 � αϕ0
0ϕN�1 � βϕ0

Nϕ
0
N�1

� �

dx

¼

ðxN�1

xN�2

fϕN�1dxþ

ðxN

xN�1

fϕN�1 � β
1

h

� �

�
1

h

� �� �

dx ¼

ðxN

xN�2

fϕN�1dxþ
β

h
≈ hf xN�1ð Þ þ

β

h
:

Assembly: We rewrite (20), (21), (22) as

1

h

2 �1 0 ⋯ 0

�1 2 �1 ⋱ 0

0 �1 2 ⋯ 0

⋮ ⋱ ⋱ ⋱ �1

0 ⋯ 0 �1 2

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

c1

c2

c3

⋮

cN�1

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

¼

hf x1ð Þ þ
α

h

hf x2ð Þ

hf x3ð Þ

⋮

hf xN�1ð Þ þ
β

h

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5
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We note that uh að Þ ¼ α ¼ u að Þ and uh bð Þ ¼ β ¼ u bð Þ. Therefore, we see that the
system matrix A remains the same, and only the first and last entries of the load
vector b need to be modified because of the definition of the basis functions
ϕ0, … ,ϕNf g. An alternative approach is to use all the basis functions ϕ0, … ,ϕNf g to

form a larger system of equation, i:e:, and N þ 1ð Þ � N þ 1ð Þ system. The procedure
for inserting the boundary conditions into the system equation is: enter zeros in the
first and N þ 1ð Þ-th rows of the system matrix A except for unity in the main
diagonal positions of these two rows, and enter α and β in the first and N þ 1ð Þ-th
rows of the vector b, respectively.

General boundary conditions: Let us consider the following two-point BVP:

find u∈C2 a, bð Þ such that

�u00 ¼ f xð Þ, x∈ a, b½ �, u að Þ ¼ α, γu bð Þ þ u0 bð Þ ¼ β, (23)

where α, β and γ are given numbers and f ∈C a, bð Þ is a given function. The
boundary condition at x ¼ b is called a Robin boundary condition (combination and
u and u0 is prescribed at x ¼ b). In this case, the admissible function space is
modified to

H1
0 ¼ v : vk k2 þ v0k k

2
<∞, v að Þ ¼ 0

n o

:

Multiplying (23) by a function v∈H1
0 and integrating by parts gives

ðb

a
fvdx ¼

ðb

a
� u00vdx ¼ �u0 bð Þv bð Þ þ u0 að Þv að Þ þ

ðb

a
u0v0dx

¼ � β � γu bð Þð Þv bð Þ þ u0 að Þv að Þ þ

ðb

a

u0v0dx:

Since v að Þ ¼ 0, we are left with

ðb

a
u0v0dxþ γu bð Þv bð Þ ¼

ðb

a
fvdxþ βv bð Þ:

Hence, the weak or variational form of (23) reads: Given u að Þ ¼ α, find the

approximate solution u∈H1
0, such that

ðb

a
u0v0dxþ γu bð Þv bð Þ ¼

ðb

a
fvdxþ βv bð Þ, ∀ v∈H1

0: (24)

The FE space V1
h is now the set of all continuous piecewise linear functions

which vanish at the end point a. The FE approximation of (24) thus reads: Find the
piecewise linear approximation uh to the solution u satisfies

ðb

a
u0hv

0dxþ γuh bð Þv bð Þ ¼

ðb

a
fvdxþ βv bð Þ, ∀ v∈V1

h, (25)

with uh að Þ ¼ α. As before, (25) can be formulated in matrix form.

2.4 Model problem with coefficient and general Robin BCs

Let us consider the following two-point BVP: find u∈C2 a, bð Þ such that
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� p xð Þu0ð Þ0 ¼ f xð Þ, x∈ I ¼ a, b½ �, p að Þu0 að Þ ¼ κ0 u að Þ � αð Þ,

p bð Þu0 bð Þ ¼ κ1 u bð Þ � βð Þ,
(26)

where p ¼ p xð Þ with p xð Þ≥ p0 >0, f ∈L2 Ið Þ, κ0, κ1 ≥0, and α, β are given
numbers. Let

V ¼ v∈C0 Ið Þ : vk k2 þ v0k k
2
<∞

n o

:

Multiplying (26) by a function v∈V and integrating by parts gives

ðb

a
fvdx ¼

ðb

a
� pu0ð Þ

0
vdx ¼

ðb

a
pu0v0dx� p bð Þu0 bð Þv bð Þ þ p að Þu0 að Þv að Þ

¼

ðb

a
pu0v0dx� κ1 u bð Þ � βð Þv bð Þ þ κ0 u að Þ � αð Þv að Þ:

We gather all u-independent terms on the left and obtain

ðb

a

pu0v0dx� κ1u bð Þv bð Þ þ κ0u að Þv að Þ ¼

ðb

a

fvdx� κ1βv bð Þ þ κ0αv að Þ, ∀ v ∈V:

The FEmethod consists of finding uh ∈Vh ¼ v∈C0 a, bð Þ vj jIi ∈P1 Iið Þ
n o

such that

ðb

a
pu0hv

0dx� κ1uh bð Þv bð Þ þ κ0uh að Þv að Þ ¼

ðb

a
fvdx� κ1βv bð Þ þ κ0αv að Þ, ∀v∈Vh:

(27)

Implementation: We need to assemble a stiffness matrix A and a load vector b.

Substituting uh ¼
PN

i¼0ciϕi into (27) and taking v ¼ ϕ j for j ¼ 0, 1, … ,N yields

X

N

i¼0

ðb

a
pϕ0

iϕ
0
jdx� κ1ϕi bð Þϕ j bð Þ þ κ0ϕi að Þϕ j að Þ ¼

ðb

a
fϕ jdx� κ1βϕ j bð Þ þ κ0αϕ j að Þ,

∀ j ¼ 0, 1, … ,N:

which is a N þ 1ð Þ � N þ 1ð Þ system of equations for ci. In matrix form we write

Ac ¼ b, where c ¼ c0, … , cN½ �t is a N þ 1ð Þ vector containing the unknown coeffi-
cients ci, i ¼ 0, 1, … ,N, A is a N þ 1ð Þ � N þ 1ð Þ matrix with entries

ai,j ¼

ðb

a
pϕ0

iϕ
0
jdx� κ1ϕi bð Þϕ j bð Þ þ κ0ϕi að Þϕ j að Þ, i, j ¼ 0, 1, … ,N,

and b is a N þ 1ð Þ vector with entries

b j ¼

ðb

a
fϕ jdx� κ1βϕ j bð Þ þ κ0αϕ j að Þ, j ¼ 0, 1, … ,N:

Let for simplification p ¼ 1. Then the matrix A and the vector b (when using the
trapezoidal rule) are given by
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A ¼

κ0 þ
1

h1
�

1

h1
0 ⋯ 0

�
1

h1

1

h1
þ

1

h2
�

1

h2
⋱ 0

0 �
1

h2
⋱ ⋯ 0

⋮ ⋱ ⋱ ⋱ �
1

hN

0 ⋯ 0 �
1

hN

1

hN
� κ1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, b ¼

h1
2

f 0 þ κ0α

h1 þ h2
2

f 1

⋮

hN�1 þ hN
2

fN�1

hN
2

fN � κ1β

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

2.5 The FE method using Lagrange 2 elements

Let a ¼ x0 < x1 <⋯< xN ¼ b be a regular partition of the interval a, b½ �. Suppose

that the length of Ii ¼ xi�1, xi½ � is hi ¼ xi � xi�1. Let P
k ¼ p xð Þ ¼

Pk
j¼0c jx

j, c j ∈

n o

denotes the vector space of polynomials in one variable and of degree less than or

equal to k. The FE method for Lagrange P2 elements involves the discrete space:

V2
h ¼ fv xð Þ∈C0 a, b�, v½ jIi ∈P2 Iið Þ, i ¼ 1, … ,Ng,

and its subspace V2
0,h ¼ v∈V2

hj v að Þ ¼ v bð Þ ¼ 0
� 	

: These spaces are composed

of continuous, piecewise parabolic functions (polynomials of degree less than or

equal to 2). The P2 FE method consists in applying the internal variational
approximation approach to these spaces.

Lemma 2.2 The space V2
h is a subspace of H1 a, b½ � of dimension 2N þ 1. Every

function vh ∈V2
h is uniquely defined by its values at the mesh vertices x j, j ¼ 0, 1, … ,N

and at the midpoints x jþ1
2
¼

x jþx jþ1

2 ¼ x j þ
h jþ1

2 , j ¼ 0, 1, … ,N � 1, where h jþ1 ¼

x jþ1 � x j:

vh xð Þ ¼
X

N

j¼0

vh x j

� �

ϕ j xð Þ þ
X

N�1

j¼0

vh x jþ1
2

� �

ϕ jþ1
2
xð Þ, ∀ x∈ a, b½ �,

where ϕ j

n oN

j¼0
is the basis of the shape functions ϕ j defined as:

ϕ j xð Þ ¼ ϕ
x� x j

h jþ1

� �

, j ¼ 0, 1, … ,N, ϕ jþ1
2
xð Þ ¼ ψ

x� x jþ1
2

h jþ1

� �

,

j ¼ 0, 1, … ,N � 1,

with

ϕ ξð Þ ¼

1þ ξð Þ 1þ 2ξð Þ, ξ∈ �1, 0½ �,

1� ξð Þ 1� 2ξð Þ, ξ∈ 0, 1½ �,

0, ∣ξ∣> 1,

8

>

<

>

:

ψ ξð Þ ¼
1� 4ξ2, ∣ξ∣ ≤

1

2
,

0, ∣ξ∣>
1

2
,

8

>

<

>

:

(28)

Figure 3 shows the global shape functions for the space V2
h and the three

quadratic Lagrange P2 shape functions on the reference interval �1, 1½ �.
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Remark 2.5 Notice that we have:

ϕ j x j

� �

¼ δij, ϕ j x jþ1
2

� �

¼ 0, ϕ jþ1
2
x j

� �

¼ 0, ϕ jþ1
2
x jþ1

2

� �

¼ δij:

Corollary 2.1 The space V2
0,h is a subspace of H1

0 a, b½ � of dimension 2N � 1 and every

function vh ∈V2
0,h is uniquely defined by its values at the mesh vertices x j, j ¼

1, 2, … ,N � 1 and at the midpoints x jþ1
2
, j ¼ 0, 1, … ,N � 1:

vh xð Þ ¼
X

N�1

j¼1

vh x j

� �

ϕ j xð Þ þ
X

N�1

j¼0

vh x jþ1
2

� �

ϕ jþ1
2
xð Þ, ∀ x∈ a, b½ �,

where ϕ j

n oN

j¼0
is the basis of the shape functions ϕ j defined as:

ϕ j xð Þ ¼ ϕ
x� x j

h jþ1

� �

, j ¼ 0, 1, … ,N, ϕ jþ1
2
xð Þ ¼ ψ

x� x jþ1
2

h jþ1

� �

, j ¼ 0, 1, … ,N � 1,

with ϕ ξð Þ and ψ ξð Þ are defined by (28).

2.5.1 Homogeneous boundary conditions

The variational formulation of the internal approximation of the Dirichlet BVP

(3) consists now in finding uh ∈V2
0,h, such that:

ðb

a
u0hv

0dxþ

ðb

a
quhvdx ¼

ðb

a
fvdx, ∀ v∈V2

h,0:

Here, it is convenient to introduce the notation x j
2
, j ¼ 1, … , 2N � 1 for the mesh

points and ϕ j
2
, j ¼ 1, … , 2N � 1 for the basis of V2

0,h. Using these notations, we have:

uh ¼
X

2N�1

j¼1

c j
2
ϕ j

2
xð Þ,

where c j
2
¼ uh x j

2

� �

≈ u x j
2

� �

are the unknowns coefficients. This formulation

leads to solve in 
2N�1 a linear system:

Figure 3.
(left) global shape functions for the space V2

h. (right) the three quadratic Lagrange P
2 shape functions on the

reference interval �1, 1½ �.
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Ac ¼ b,

where c ¼ c1
2
, c1, … , cN�1

2

h it
∈

2N�1 is the unknown vector containing the coef-

ficients c j
2
, j ¼ 1, 2, … , 2N � 1, A is an 2N � 1ð Þ � 2N � 1ð Þ matrix with entries

aij ¼

ðb

a
ϕ i

2

0ϕ j
2

0 þ qϕ i
2
ϕ j

2

� �

dx, i, j ¼ 1, 2, … , 2N � 1,

and load vector b∈
2N�1 has entries

b i
2
¼

ðb

a
fϕ i

2
dx, i ¼ 1, 2, … , 2N � 1:

Since the shape functions ϕi have a small support, the matrix A is mostly

composed of zeros. However, the main difference with the Lagrange P1 FE method,
the matrix A is no longer a tridiagonal matrix.

Computer Implementation: The coefficients of the matrix A can be computed
more easily by considering the following change of variables, for ξ∈ �1, 1½ �:

x ¼
x j þ x j�1

2
þ
x j � x j�1

2
ξ ¼ x j�1

2
þ
x j � x j�1

2
ξ, ∀ x∈ x j�1, x j

� �

,

j ¼ 1, 2, … ,N:

Hence, the shape functions can be reduced to only three basic shape functions
(Figure 3):

ϕ̂�1 ξð Þ ¼
ξ ξ� 1ð Þ

2
, ϕ̂0 ξð Þ ¼ 1� ξð Þ 1þ ξð Þ, ϕ̂1 ξð Þ ¼

ξ ξþ 1ð Þ

2
:

Their respective derivatives are

dϕ̂�1 ξð Þ

dξ
¼

2ξ� 1

2
,

dϕ̂0 ξð Þ

dξ
¼ �2ξ,

dϕ̂1 ξð Þ

dξ
¼

2ξþ 1

2
:

This approach consists in considering all computations on an interval Ii ¼
xi�1, xi½ � on the reference interval �1, 1½ �. Thus, we have:

dϕi xð Þ

dx
¼

dϕi xi�1=2 þ
xi�xi�1

2 ξ
� �

dξ

dξ

dx
¼

2

xi � xi�1

dϕ̂k ξð Þ

dξ
¼

2

hi

dϕ̂k ξð Þ

dξ
:

In this case, the elementary contributions of the element Ii to the stiffness matrix

and to the mass matrix are given by the 3� 3 matrices KIi and MIi :

KIi ¼

ð

Ii

ϕ0
i�1ϕ

0
i�1 ϕ0

i�1ϕ
0
i�1

2
ϕ0
i�1ϕ

0
i

ϕ0
i�1

2
ϕ0
i�1 ϕ0

i�1
2
ϕ0
i�1

2
ϕ0
i�1

2
ϕ0
i

ϕ0
iϕ

0
i�1 ϕ0

iϕ
0
i�1

2
ϕ0
iϕ

0
i

2

6

6

6

6

4

3

7

7

7

7

5

dx ¼
2

hi

ð1

�1

ϕ̂
0

�1ϕ̂
0

�1 ϕ̂
0

�1ϕ̂
0

0 ϕ̂
0

�1ϕ̂
0

1

ϕ̂
0

0ϕ̂
0

�1 ϕ̂
0

0ϕ̂
0

0 ϕ̂
0

0ϕ̂
0

1

ϕ̂
0

1ϕ̂
0

�1 ϕ̂
0

1ϕ̂
0

0 ϕ̂
0

1ϕ̂
0

1

2

6

6

4

3

7

7

5

dξ

¼
1

3hi

7 �8 1

�8 16 �8

1 �8 7

2

6

4

3

7

5
,
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MIi ¼

ð

Ii

ϕi�1ϕi�1 ϕi�1ϕi�1
2

ϕi�1ϕi

ϕi�1
2
ϕi�1 ϕi�1

2
ϕi�1

2
ϕi�1

2
ϕi

ϕiϕi�1 ϕiϕi�1
2

ϕiϕi

2

6

6

6

4

3

7

7

7

5

dx ¼
hi
2

ð1

�1

ϕ̂�1ϕ̂�1 ϕ̂�1ϕ̂0 ϕ̂�1ϕ̂1

ϕ̂0ϕ̂�1 ϕ̂0ϕ̂0 ϕ̂0ϕ̂1

ϕ̂1ϕ̂�1 ϕ̂�1ϕ̂0 ϕ̂1ϕ̂1

2

6

6

6

4

3

7

7

7

5

dξ

¼
hi
30

4 2 �1

2 16 2

�1 2 4

2

6

4

3

7

5
:

Coefficients of the right-hand side b: Usually, the function f is only known by
its values at the mesh points x i

2
, i ¼ 0, 1, … , 2N and thus, we use the decomposition

of f in the basis of shape functions ϕ i
2
, i ¼ 0, 1, … , 2N as f xð Þ ¼

P2N
j¼0f x j

2

� �

ϕ j
2
.

Each component b i
2
of the right-hand side vector is obtained as b i

2
¼
PN

k¼1

Ð xk
xk�1

fϕ i
2
dx.

Using the previous decomposition of f , we obtain:

b i
2
¼
X

N

k¼1

ðxk

xk�1

X

2N

j¼0

f x j
2

� �

ϕ j
2
ϕ i

2
dx ¼

X

2N

j¼0

f x j
2

� �

X

N

k¼1

ðxk

xk�1

ϕ i
2
ϕ j

2
dx

 !

:

Thus, the problem is reduced to computing the integrals
Ð xk
xk�1

ϕ i
2
ϕ j

2
dx. It is easy to

see that we obtain expressions very similar to that of the mass matrix. More
precisely, the element Ii ¼ xi�1, xi½ � will contribute to only three components of
indices i� 1, i� 1

2 and i as:

bIi ¼
hi
30

4 2 �1

2 16 2

�1 2 4

2

6

4

3

7

5

f xi�1ð Þ

f xi�1
2

� �

f xið Þ:

2

6

6

4

3

7

7

5

:

2.5.2 Nonhomogeneous boundary conditions

Consider the following two-point BVP: find u∈C2 a, bð Þ such that

�u00 þ q xð Þu ¼ f xð Þ, x∈ a, b½ �, u að Þ ¼ α, u bð Þ ¼ β, (29)

where α and β are given constants and f ∈C a, bð Þ is a given function.

Multiplying (29) by a function v∈H1
0 ¼ v : vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0

n o

and integrating by parts gives

ðb

a
fvdx ¼

ðb

a
�u00 þ quð Þvdx ¼ �u0 bð Þv bð Þ þ u0 að Þv að Þ þ

ðb

a
u0v0 þ quvð Þdx ¼

ðb

a
u0v0dx:

Hence, the weak or variational form of (29) reads: Given u að Þ ¼ α, u bð Þ ¼ β,

find u∈H1 ¼ v : vk k2 þ v0k k2 <∞
n o

, such that

ðb

a
u0v0 þ quvð Þdx ¼

ðb

a
fvdx, ∀ v∈H1

0:

Let V2
h and V2

h,0, respectively, be the space of all continuous piecewise quadratic

functions and the space of all continuous piecewise quadratic functions which
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vanish at the end points a and b, on a uniform partition a ¼ x0 < x1 <⋯< xN ¼ b of
the interval a, b½ �.

The FE method scheme consists of finding uh ∈V2
h, such that:

ðb

a
u0hv

0dxþ

ðb

a
quhvdx ¼

ðb

a
fvdx, ∀ v∈V2

h,0:

Introduce the notation x j
2
, j ¼ 0, 1, … , 2N � 1, 2N for the mesh points and

ϕ j
2
, j ¼ 0, 1, … , 2N � 1, 2N for the basis of V2

h and ϕ j
2
, j ¼ 1, … , 2N � 1 for the

basis of V2
0,h. Using these notations, we have:

uh ¼
X

2N

j¼0

c j
2
ϕ j

2
xð Þ,

where c j
2
¼ uh x j

2

� �

≈ u x j
2

� �

are the unknowns coefficients. We note that c0 ¼

uh x0ð Þ ¼ α and c2N ¼ uh xNð Þ ¼ β. This formulation leads to solve in 
2N�1 a linear

system:

Ac ¼ b,

where c ¼ c1
2
, c1, … , cN�1

2

h it
∈

2N�1 is the unknown vector containing the

coefficients c j
2
, j ¼ 1, 2, … , 2N � 1, A is an 2N � 1ð Þ � 2N � 1ð Þ matrix with entries

aij ¼

ðb

a

ϕ i
2

0ϕ j
2

0 þ qϕ i
2
ϕ j

2

� �

dx, i, j ¼ 1, 2, … , 2N � 1,

and the load vector b∈
2N�1 has entries

b i
2
¼

ðb

a
fϕ i

2
dx� α

ðb

a
ϕ i

2

0ϕ0
0 þ qϕ i

2
ϕ0

� �

dx� β

ðb

a
ϕ i

2

0ϕN
0 þ qϕ i

2
ϕN

� �

dx, i ¼ 1, 2, … , 2N � 1:

Clearly, the only extra terms are given in the vector with entries

~b i
2
¼ �α

ðb

a
ϕ i

2

0ϕ0
0 þ qϕ i

2
ϕ0

� �

dx� β

ðb

a
ϕ i

2

0ϕN
0 þ qϕ i

2
ϕN

� �

dx, i ¼ 1, 2, … , 2N � 1:

Suppose q ¼ 0 then for N ≥ 2, we have

~b1
2
¼ �α

ðb

a
ϕ0

1
2
ϕ0
0dx� β

ðb

a
ϕ0

1
2
ϕ0
Ndx ¼ �α

ðx1

x0

ϕ0
1
2
ϕ0
0 ¼

8α

3h1
,

~b1 ¼ �α

ðb

a
ϕ0
1ϕ

0
0dx� β

ðb

a
ϕ0
1ϕ

0
Ndx ¼ �α

ðx1

x0

ϕ0
1ϕ

0
0 ¼ �

α

3h1
,

~b i
2
¼ �α

ðb

a

ϕ0
i
2
ϕ0
0dx� β

ðb

a

ϕ0
i
2
ϕ0
Ndx ¼ 0, i ¼ 3, … , 2N � 3,

~bN�1 ¼ �α

ðb

a
ϕ0
N�1ϕ

0
0dx� β

ðb

a
ϕ0
N�1ϕ

0
Ndx ¼ �β

ðxN

xN�1

ϕ0
N�1ϕ

0
Ndx ¼ �

β

3h1
,

~bN�1
2
¼ �α

ðb

a
ϕ0
N�1

2
ϕ0
0dx� β

ðb

a
ϕ0
N�1

2
ϕ0
Ndx ¼ �β

ðxN

xN�1

ϕ0
N�1

2
ϕ0
Ndx ¼

8β

3h1
:
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3. The FE for elliptic PDEs

Here, we apply the FE method for two-dimensional elliptic problem: Find u
such that

�∇ � a∇uð Þ þ bu ¼ f xð Þ, x∈Ω, a∇u � n ¼ κ g � uð Þ, on ∂Ω, (30)

where a>0, b≥0, κ≥0, f ∈L2
Ωð Þ and g∈C0 ∂Ωð Þ.

3.1 Meshes

Let Ω⊂
2 bounded with ∂Ω assumed to be polygonal. A triangulation T h of Ω is

a set of triangles T such that Ω ¼ ⋃T ∈T h
T, and two triangles intersect by either a

common triangle edge, or a corner, or nothing. Corners will be referred to as nodes.
We let hT ¼ diam Tð Þ the length or the largest edge.

Let T h have N nodes and M triangles. The data is stored in two matrices. The

matrix P∈
2�N describes the nodes ( x1, y1

� �

, … , xN, yN
� �

Þ and the matrix K ∈
3�M

describes the triangles, i:e:, it describes which nodes (numerated from 1 to N) form
a triangle T and how it is orientated:

P ¼
x1 x2 ⋯ xN

y1 y2 ⋯ yN

" #

, K ¼

nα1 nα2 ⋯ nαM

nβ1 nβ2 ⋯ nβM

nγ1 nγ2 ⋯ nγM

2

6

6

4

3

7

7

5

:

This means that triangle Ti is formed by the nodes nαi , n
β
i , and nγi (enumeration

in counter-clockwise direction).
The Delaunay algorithm determine a triangulation with the given points as

triangle nodes. Delaunay triangulations are optimal in the sense that the angles of all
triangles are maximal.

Matlab has a built in toolbox called PDE Toolbox and includes a mesh generation
algorithm.

3.2 Piecewise polynomial spaces

Let T be a triangle with nodes N1 ¼ x1, y1
� �

, N2 ¼ x2, y2
� �

, and N3 ¼ x3, y3
� �

.
We define

P1 Tð Þ ¼ v∈C0 Tð Þj v x, yð Þ ¼ c1 þ c2xþ c3y, c1, c2, c3 ∈
� 	

:

Now let vi ¼ v Nið Þ for i ¼ 1, 2, 3. Note that v∈P1 Tð Þ is determined by vif g3i¼1.
Given vi we compute ci by

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

c1

c2

c3

2

6

6

4

3

7

7

5

¼

v1

v2

v3

2

6

6

4

3

7

7

5

:

This is solvable due to
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det

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

¼ 2∣T∣ 6¼ 0,

1 x1 y1
1 x2 y2
1 x3 y3

2

6

4

3

7

5

�1

¼
1

2∣T∣

x2y3 � x3y2 x3y1 � x1y3 x1y2 � x2y1

y2 � y3 y3 � y1 y1 � y2

x3 � x2 x1 � x3 x3 � x1

2

6

6

4

3

7

7

5

,

where ∣T∣ ¼ 1
2 x2y3 � x3y2 � x1y3 þ x3y1 þ x1y2 � x2y1
� �

, which is � the area of

the triangle T.

Let λ j ∈P1 Tð Þ be given by the nodal values λ j Nið Þ ¼ δij, where δij is the
Kronecker symbol. This gives us v x, yð Þ ¼ α1λ1 x, yð Þ þ α2λ2 x, yð Þ þ α3λ3 x, yð Þ, where
αi ¼ v Nið Þ for i ¼ 1, 2, 3: We can compute λi x, yð Þ as follows: Let λi x, yð Þ ¼
ai þ bixþ ciy. Using λ j Nið Þ ¼ δij, we get

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

a1

b1

c1

2

6

6

4

3

7

7

5

¼

1

0

0

2

6

6

4

3

7

7

5

,

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

a2

b2

c2

2

6

6

4

3

7

7

5

¼

0

1

0

2

6

6

4

3

7

7

5

,

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

a3

b3

c3

2

6

6

4

3

7

7

5

¼

0

0

1

2

6

6

4

3

7

7

5

:

Solving the systems, we get

λ1 x, yð Þ ¼
1

2∣T∣
x2y3 � x3y2 þ y2 � y3

� �

xþ x3 � x2ð Þy
� �

,

λ2 x, yð Þ ¼
1

2∣T∣
x3y1 � x1y3 þ y3 � y1

� �

xþ x1 � x3ð Þy
� �

,

λ3 x, yð Þ ¼
1

2∣T∣
x1y2 � x2y1 þ y1 � y2

� �

xþ x3 � x1ð Þy
� �

:

Let T h be a triangulation of Ω, then we let

Vh ¼ v∈C Ωð Þ vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

:

Functions in Vh are piecewise linear and continuous. We know that v∈Vh is
uniquely determined by v Nið Þ, i ¼ 1, 2, … ,Nf g. We let ϕ j Nið Þ ¼ δij and let

ϕ j, j ¼ 1, 2, … ,N
n o

⊂Vh be a basis for Vh (hat functions), i:e:,

v x, yð Þ ¼
X

N

i¼1

αiϕi x, yð Þ, αi ¼ v Nið Þ, i ¼ 1, 2, … ,N:

3.3 Interpolation

Given u∈C Tð Þ on a single triangle with nodes Ni ¼ xi, yi
� �

, i ¼ 1, 2, 3, we let

πu x, yð Þ ¼
X

3

i¼1

u Nið Þϕi x, yð Þ,

in particular πu Nið Þ ¼ u Nið Þ, i ¼ 1, 2, … ,N. We want to estimate the interpola-
tion error u� πu. Let
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uk k2L2
Ωð Þ ¼

ð

Ω

u xð Þj j2dxdy, Duk k2L2
Ωð Þ ¼ uxk k2L2

Ωð Þ þ uy












2

L2
Ωð Þ
,

D2u












2

L2
Ωð Þ

¼ uxxk k2L2
Ωð Þ þ 2 uxy













2

L2
Ωð Þ

þ uyy












2

L2
Ωð Þ
:

Theorem 3.1 Suppose that u∈C2 Tð Þ. Then the following hold

u� πuk kL2 Tð Þ ≤Ch2T D2u












L2 Tð Þ
, D u� πuð Þk kL2 Tð Þ ≤ChT D2u













L2 Tð Þ
,

where C is a generic constant independent of hT and u, but it depends on the
ratio between smallest and largest interior angle of the triangle T.

Now, we consider the piecewise continuous interpolant πu ¼
PN

i¼1u Nið Þϕi.

Theorem 3.2 Suppose that u∈C2 Tð Þ for all T ∈ T h. Then the following hold

u� πuk k2L2
Ωð Þ ≤C

X

T ∈ T h

h4T D2u












2

L2 Tð Þ
, D u� πuð Þk k2L2

Ωð Þ ≤C
X

T ∈ T h

h2T D2u












2

L2 Tð Þ
,

where C is a generic constant independent of h and u, but it depends on the ratio
between smallest and largest interior angle of the triangles of T h. Here

D u� πuð Þk k2L2
Ωð Þ ¼

P

T ∈ T h
D u� πuð Þk k2L2 Tð Þ.

3.4 L2-projection

Let Ω⊂
2. We consider the space L2

Ωð Þ ¼ vj
Ð

Ω
v2 x, yð Þdxdy<∞

� 	

. Let

u∈L2
Ωð Þ: We define the L2-projection Ph : L2

Ωð Þ ! Vh ¼

v∈C0
Ωð Þ vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

by Phu∈Vh such that

ð

Ω

u� Phuð Þvhdxdy ¼ 0, ∀vh ∈Vh:

The problem of finding Phu∈Vh is equivalent to solve the following linear
system

ð

Ω

u� Phuð Þϕidxdy ¼ 0, i ¼ 1, 2… ,N,

where ϕif gNi¼1 is a basis of Vh.

Since Phu∈Vh we can express it as Phu ¼
PN

i¼1ciϕi x, yð Þ, where ci ∈. There-
fore, to find Phu∈Vh we need to find c1, c2, … , cN ∈ such that

X

N

i¼1

ci

ð

Ω

ϕiϕ jdxdy ¼

ð

Ω

uϕ jdxdy, j ¼ 1, 2, … ,N:

The problem can be expressed as a linear system of equations Mc ¼ b, where

c ¼ c1, c2, … , cN½ �t and the entries of the matrix M∈
N�N and the vector b∈

N are
given by

mij ¼

ð

Ω

ϕiϕ jdxdy, b j ¼

ð

Ω

uϕ jdxdy:
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In general, we use a quadrature rule to approximate integrals. The general
form is

ð

T
f x, yð Þdxdy≈

X

n

j¼1

ω jf N j

� �

,

where the ω j
0s denote the weights and the N j

� �

0s the quadrature points.

Lemma 3.1 The mass matrix M with entries mij ¼
Ð

Ω
ϕiϕ jdxdy is symmetric and

positive definite.

Theorem 3.3 For any u∈L2
Ωð Þ the L2-projection Phu exists and is unique.

3.5 A priori error estimate

Theorem 3.4 Let u∈L2
Ωð Þ and let Phu be the L2-projection of u, then

u� Phuk kL2
Ωð Þ ≤ u� vhk kL2

Ωð Þ, ∀ vh ∈Vh:

Theorem 3.5 Suppose that u∈C2
Ωð Þ with u∈C2 Tð Þ for all T ∈ T h. Then there

exists a constant C such that

u� Phuk k2L2
Ωð Þ ≤C

X

T ∈T h

h4T D2u












2

L2 Tð Þ
:

3.6 The FE method for general elliptic problem

The FE method was designed to approximate solutions to complicated equations
of elasticity and structural mechanics, usually modeled by elliptic type equations,
with complicated geometries. It has been developed for other applications as well.

Consider the following two-dimensional elliptic problem: Find u such that

�∇ � a∇uð Þ þ bu ¼ f , in Ω, a∇u � n ¼ κ g � uð Þ, on ∂Ω, (31)

where a>0, b≥0, κ≥0, f ∈L2
Ωð Þ and g∈C0 ∂Ωð Þ. We seek a weak solution u in

V ¼ H1
Ωð Þ ¼ v∈L2

Ωð Þj v has a weak derivative and vk kL2
Ωð Þ þ ∇vk kL2

Ωð Þ <∞

n o

:

In order to derive the weak formulation, we multiply (31) with v∈V, integrate
over Ω and use Green’s formula to obtain

ð

Ω

fvdxdy ¼ �

ð

Ω

v∇ � a∇uð Þdxdyþ

ð

Ω

buvdxdy

¼

ð

Ω

a∇u � ∇vdxdy�

ð

∂Ω
v a∇uð Þ � ndsþ

ð

Ω

buvdxdy

¼

ð

Ω

a∇u � ∇vdxdyþ

ð

Ω

buvdxdyþ

ð

∂Ω
κ u� gð Þvds:

We obtain the weak form: Find u∈V such that

ð

Ω

a∇u � ∇vdxdyþ

ð

Ω

buvdxdyþ

ð

∂Ω
κuvds ¼

ð

Ω

fvdxdyþ

ð

∂Ω
κgvds, v∈V: (32)
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We can formulate the method as in the 1D case by using the weak formulation
(32). The FE method in 2D is defined as follows: Find uh ∈Vh such that

ð

Ω

a∇uh � ∇vhdxdyþ

ð

Ω

buhvhdxdyþ

ð

∂Ω
κuhvhds ¼

ð

Ω

fvhdxdyþ

ð

∂Ω
κgvhds, vh ∈Vh,

(33)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

.

Implementation: Let a ¼ 1 and b ¼ g ¼ 0. Substituting uh ¼
PN

j¼1c jϕ j into (33)

and picking vh ¼ ϕi, we obtain

X

N

j¼1

c j

ð

Ω

∇ϕ j � ∇ϕidxdyþ

ð

∂Ω
κϕ jϕids

� �

¼

ð

Ω

fϕidxdy, i ¼ 1, 2, … ,N:

This gives us the system Aþ Rð Þc ¼ b, where c ¼ c1, c2, … , cN½ �t ∈
N is the

unknown vector and the entries of A∈
N�N, R∈

N�N, and b∈
N are given by

aij ¼

ð

Ω

∇ϕ j � ∇ϕidxdy, rij ¼

ð

∂Ω
κϕ jϕids, bi ¼

ð

Ω

fϕidxdy, i, j ¼ 1, 2, … ,N:

Assembly of the stiffness matrix A: We can again identify the local contribu-
tions that come form a particular triangle T

aTij ¼

ð

Ω

∇ϕ j � ∇ϕidxdy, i, j ¼ 1, 2, 3:

where T is an arbitrary triangle with vertices Ni ¼ xi, yi
� �

and ϕi are the hat
functions i:e:, ϕ j Nið Þ ¼ δij. Let ϕi x, yð Þ ¼ αi þ βixþ γiy, for i ¼ 1, 2, 3. Then, we

compute αi, βi, γi by

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

α1

β1

γ1

2

6

6

4

3

7

7

5

¼

1

0

0

2

6

6

4

3

7

7

5

,

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

α2

β2

γ2

2

6

6

4

3

7

7

5

¼

0

1

0

2

6

6

4

3

7

7

5

,

1 x1 y1

1 x2 y2

1 x3 y3

2

6

6

4

3

7

7

5

α3

β3

γ3

2

6

6

4

3

7

7

5

¼

0

0

1

2

6

6

4

3

7

7

5

:

In general we have Bαi ¼ ei for i ¼ 1, 2, 3, where

B ¼

1 x1 y1
1 x2 y2
1 x3 y3

2

6

4

3

7

5
, αi ¼

αi

βi

γi

2

6

4

3

7

5
, e1 ¼

1

0

0

2

6

4

3

7

5
, e2 ¼

0

1

0

2

6

4

3

7

5
, e3 ¼

0

0

1

2

6

4

3

7

5
:

Furthermore, we obviously have ∇ϕi ¼ βi, γi½ �t, which gives

aTij ¼

ð

Ω

βiβ j þ γiγ j

� �

dx ¼ βiβ j þ γiγ j

� �

∣T∣, i, j ¼ 1, 2, 3:

Assembly of boundary matrix R: Let Γout
h denote the set of boundary edges of

the triangulation, i:e: Γout
h ¼ Ej E ¼ T ∩ ∂Ω, for T ∈ T hf g. Assume that κ is constant

on E. For an edge E∈Γ
out
h , we define RE ∈

2�2 by the entries
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rEij ¼

ð

E
κϕ jϕids ¼

κ

6
1þ δij
� �

∣E∣, i, j ¼ 1, 2,

where ∣E∣ is the length of E and δij is 1 for i ¼ j and 0 else.
Assembly of load vector: We use a corner quadrature rule for approximating

the integral. We obtain for T ∈ T h

bTi ¼

ð

T

fϕidxdy≈
∣T∣

3
f Nið Þ, i ¼ 1, 2, … ,N:

Given A, R and b, we can solve Aþ Rð Þc ¼ b and write uh ¼
PN

j¼1c jϕ j.

3.7 The Dirichlet problem

Consider the following Dirichlet Problem: Find u such that

�Δu ¼ f , in Ω, u ¼ g, on ∂Ω, (34)

where f ∈L2
Ωð Þ and g∈C0 ∂Ωð Þ. We seek a weak solution u in Vg ¼

v∈V vj j∂Ω ¼ g
� 	

: Multiplying (34) by a test function v∈V0 and integrating over Ω,

we get

ð

Ω

fvdxdy ¼ �

ð

Ω

vΔudxdy ¼

ð

Ω

∇u � ∇vdxdy�

ð

∂Ω
v∇u � nds ¼

ð

Ω

∇u � ∇vdxdy:

So the weak problem reads: Find u∈Vg such that

ð

Ω

∇u � ∇vdxdy ¼

ð

Ω

fvdxdy, v∈V0:

Assume that g is piecewise linear on ∂Ω with respect to the triangulation.

Then the FE method in 2D is defined as follows: Find uh ∈Vh,g ¼ v∈Vh vj j∂Ω ¼ g
� 	

such that

ð

Ω

∇uh � ∇vhdxdy ¼

ð

Ω

fvhdxdy, vh ∈Vh,0:

Assume that we have N nodes and J boundary nodes, then the matrix form of
the FE method problem reads:

A0,0 A0,g

Ag,0 A0,g

 �

c0

c1

 �

¼
b0

b1

 �

,

where A0,0 ∈
N�Jð Þ� N�Jð Þ, Ag,g ∈

J�J, A0,g ∈
N�Jð Þ�J, Ag,0 ∈

J� N�Jð Þ. Note that

c1 ∈
J is known (it contains the values of g in the boundary nodes). We can therefore

solve the simplified problem reading: find c0 ∈
N�J with A0,0c0 ¼ b0 � A0,gc1.

3.8 The Neumann problem

Consider the following Neumann Problem: Find u such that

�Δu ¼ f , in Ω, ∇u � n ¼ g, on ∂Ω, (35)
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where f ∈L2
Ωð Þ and g∈C0 ∂Ωð Þ. Let us try to seek a solution to this problem in

the space V ¼ vj vk kL2
Ωð Þ þ ∇vk kL2

Ωð Þ <∞

n o

. Multiplying (35) by a test function

v∈V, integrating over Ω, and using Green’s formula, we get

ð

Ω

fvdxdy ¼ �

ð

Ω

vΔudxdy ¼

ð

Ω

∇u � ∇vdxdy�

ð

∂Ω
v∇u � nds

¼

ð

Ω

∇u � ∇vdxdy�

ð

∂Ω
vgds:

Thus, the variational formulation reads: find u∈V such that

ð

Ω

∇u � ∇vdxdy�

ð

∂Ω
vgds ¼

ð

Ω

fvdxdy, ∀ v∈V:

In order to guarantee solvability, we note that if v ¼ 1 then we have

0 ¼

ð

Ω

∇u � ∇1dxdy ¼

ð

Ω

fdxdyþ

ð

∂Ω
gds:

Therefore we need to assume the following compatibility condition

ð

Ω

fdxdyþ

ð

∂Ω
gds ¼ 0,

to ensure that a solution can exist. Note that if u exists, it is only determined up
to a constant, since uþ c is a solution if u is a solution and c∈. To fix this constant
and obtain a unique solution a common trick is to impose the additional constraint
Ð

Ω
udxdy ¼ 0. We therefore define the weak solution space

V̂ ¼ v∈Vj

ð

Ω

vdxdy ¼ 0

� �

,

which contains only functions with a zero mean value. This is a called a quotient
space. This space guarantees a unique weak solution (with weak formulation as

usual with test functions in V). So the weak problem reads: Find u∈ V̂ such that

ð

Ω

∇u � ∇vdxdy�

ð

∂Ω
vgds ¼

ð

Ω

fvdxdy, ∀ v∈V:

Now, the FE method takes the form: find uh ∈ V̂h ⊂ V̂ such that

ð

Ω

∇uh � ∇vhdxdy�

ð

∂Ω
vhgds ¼

ð

Ω

fvhdxdy, ∀ vh ∈ V̂h,

where V̂h is the space of all continuous piecewise linear functions with a zero mean.

3.9 Finite elements for mixed Dirichlet-Neumann conditions

Here we describe briefly how Neumann conditions are handled in two-

dimensional finite elements. Suppose Ω is a domain in either 2 or 3 and assume
that ∂Ω has been partitioned into two disjoint sets: ∂Ω ¼ Γ1 ∪Γ2. We consider the
following BVP:
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�∇ � κ xð Þ∇uð Þ ¼ f xð Þ, x∈ Ω, u ¼ 0, x∈ Γ1, ∇u � n ¼ 0, x∈ Γ2,

(36)

where f ∈L2
Ωð Þ. As for the 1-D case, Dirichlet conditions are termed essential

boundary conditions because they must be explicitly imposed in the FE method,
while Neumann conditions are called natural and need not be mentioned. We
therefore define the space of test functions by

V̂ ¼ v∈C2
Ω
� �

: v xð Þ ¼ 0, x∈Γ1

� 	

:

Multiplying (36) by a test function v∈ V̂ and integrating over Ω, we get

ð

Ω

fvdxdy ¼ �

ð

Ω

v∇ � κ xð Þ∇uð Þdxdy ¼

ð

Ω

κ xð Þ∇u � ∇vdxdy�

ð

∂Ω
κ xð Þv∇u � nds

¼

ð

Ω

κ xð Þ∇u � ∇vdxdy�

ð

Γ1

κ xð Þv∇u � nds�

ð

Γ2

κ xð Þv∇u � nds

¼

ð

Ω

κ xð Þ∇u � ∇vdxdy,

since v ¼ 0 on Γ1 and ∇u � n on Γ1. Thus the weak form of (36) is: Find u∈ V̂
such that

ð

Ω

κ xð Þ∇u � ∇vdxdy ¼

ð

Ω

fvdxdy, v∈ V̂: (37)

We now restrict our discussion once more to two-dimensional polygonal
domains. To apply the FE method, we must choose an approximating subspace of

V̂. Since the boundary conditions are mixed, there are at least two points where the
boundary conditions change from Dirichlet to Neumann. We will make the
assumption that the mesh is chosen so that all such points are nodes (and that all
such nodes belong to Γ1, that is, that Γ1 includes its “endpoints”). We can then

choose the approximating subspace of V̂ as follows:

Vh ¼ v∈C Ω
� �

: v is linear on T h, v zð Þ ¼ 0 for all nodes z∈Γ1

� 	

:

A basis for Vh is formed by including all basis functions corresponding to
interior boundary nodes that do not belong to Γ1. If the BVP includes only Neumann
conditions, then the stiffness matrix will be singular, reflecting the fact that BVP
either does not have a solution or has infinitely many solutions. Special care must be
taken to compute a meaningful solution to the resulting linear system.

3.10 The method of shifting the data

3.10.1 Inhomogeneous Dirichlet conditions on a rectangle

In a two-dimensional problem, inhomogeneous boundary conditions are han-
dled just as in one dimension. Inhomogeneous Dirichlet conditions are addressed
via the method of shifting the data (with a specially chosen piecewise linear func-
tion), while inhomogeneous Neumann conditions are taken into account directly
when deriving the weak form. Both types of boundary conditions lead to a change
in the load vector.
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The method of shifting the data can be used to transform an inhomogeneous
Dirichlet problem to a homogeneous Dirichlet problem. This technique works just
as it did for a one-dimensional problem, although in two dimensions it is more
difficult to find a function satisfying the boundary conditions. We consider the BVP

�Δu ¼ f xð Þ, x∈ Ω ¼ 0, að Þ � 0, bð Þ, u xð Þ ¼ g xð Þ ¼

g1 xð Þ, x∈Γ1,

g2 xð Þ, x∈Γ2,

g3 xð Þ, x∈Γ3,

g4 xð Þ, x∈Γ4,

8

>

>

>

<

>

>

>

:

(38)

where Γ1, Γ2, Γ3, and Γ4 are, respectively, the bottom, right, top, and left
boundary edges of the rectangular domain Ω ¼ 0, að Þ � 0, bð Þ. We will assume that
the boundary data are continuous, so

g1 0ð Þ ¼ g4 0ð Þ, g1 að Þ ¼ g2 0ð Þ, g2 bð Þ ¼ g3 að Þ, g3 0ð Þ ¼ g4 bð Þ:

Suppose we find a function w defined on Ω and satisfying w xð Þ ¼ g xð Þ for all
x∈∂Ω. We then define v ¼ u�w and note that

�Δv ¼ �Δuþ Δw ¼ f xð Þ þ Δw ¼ f̂ xð Þ,

and v xð Þ ¼ u xð Þ �w xð Þ ¼ 0 for all x∈∂Ω. We can then solve

�Δv ¼ f̂ xð Þ, x∈ Ω, v xð Þ ¼ 0, x∈∂Ω: (39)

Finally, the solution u will be given by u ¼ vþw.
We now describe a method for computing a function w that satisfies the given

Dirichlet conditions. We first note that there is a polynomial of the form q x, yð Þ ¼
c0 þ c1xþ c2yþ c3xy, which assumes the desired boundary values at the corners:

q 0, 0ð Þ ¼ g1 0ð Þ ¼ g4 0ð Þ, q a, 0ð Þ ¼ g1 að Þ ¼ g2 0ð Þ, q a, bð Þ ¼ g2 bð Þ
¼ g3 að Þ, q 0, bð Þ ¼ g3 0ð Þ ¼ g4 bð Þ:

A direct calculation shows that

c0 ¼ g1 0ð Þ, c1 ¼
g1 að Þ � g1 0ð Þ

a
, c2 ¼

g4 bð Þ � g4 0ð Þ

b
,

c3 ¼
g2 bð Þ þ g1 0ð Þ � g1 að Þ � g4 bð Þ

ab
:

We then define

h xð Þ ¼

h1 xð Þ ¼ g1 xð Þ � g1 0ð Þ þ
g1 að Þ � g1 0ð Þ

a
x

� �

, x∈Γ1,

h2 yð Þ ¼ g2 yð Þ � g2 0ð Þ þ
g2 bð Þ � g2 0ð Þ

b
y

� �

, x∈Γ2,

h3 xð Þ ¼ g3 xð Þ � g3 0ð Þ þ
g3 að Þ � g3 0ð Þ

a
x

� �

, x∈Γ3,

h4 yð Þ ¼ g4 yð Þ � g4 0ð Þ þ
g4 bð Þ � g4 0ð Þ

b
y

� �

, x∈Γ4:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:
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We have thus replaced each gi by a function hi which differs from gi by a linear
function, and which has value zero at the two endpoints:

h1 0ð Þ ¼ h1 að Þ ¼ h2 0ð Þ ¼ h2 bð Þ ¼ h3 0ð Þ ¼ h3 að Þ ¼ h4 0ð Þ ¼ h4 bð Þ ¼ 0:

Finally, we define

w x, yð Þ ¼ c0 þ c1xþ c2yþ c3xyð Þ þ h1 xð Þ þ
h3 xð Þ � h1 xð Þ

b
y

� �

þ h4 yð Þ þ
h2 yð Þ � h4 yð Þ

a
x

� �

:

The reader should notice how the second term interpolates between the bound-
ary values on Γ1 and Γ3, while the third term interpolates between the boundary
values on Γ2 and Γ4. In order for these two terms not to interfere with each other, it
is necessary that the boundary data be zero at the corners. It was for this reason that
we transformed the gi

0s into the hi 0s. The first term in the formula for w undoes this
transformation. It is straightforward to verify that w satisfies the desired boundary
conditions.

3.10.2 Inhomogeneous Neumann conditions on a rectangle

We can also apply the technique of shifting the data to transform a BVP with
inhomogeneous Neumann conditions to a related BVP with homogeneous Neu-
mann conditions. However, the details are somewhat more involved than in the
Dirichlet case. Consider the following BVP with the Neumann conditions

�Δu ¼ f xð Þ, x∈ Ω ¼ 0, að Þ � 0, bð Þ, n � ∇u xð Þ ¼ g xð Þ ¼

g1 xð Þ, x∈Γ1,

g2 xð Þ, x∈Γ2,

g3 xð Þ, x∈Γ3,

g4 xð Þ, x∈Γ4,

8

>

>

>

<

>

>

>

:

(40)

where Γ1, Γ2, Γ3, and Γ4 are, respectively, the bottom, right, top, and left
boundary edges of the rectangular domain Ω ¼ 0, að Þ � 0, bð Þ. We first note that
this is equivalent to

�uy xð Þ ¼ g1 xð Þ, x∈Γ1, ux xð Þ ¼ g2 yð Þ, x∈Γ2, uy xð Þ
¼ g3 xð Þ, x∈Γ3, � ux xð Þ ¼ g4 yð Þ, x∈Γ4:

We make the following observation: If there is a twice-continuously differentia-
ble function u satisfying the given Neumann conditions, then, since uxy ¼ uyx, we
have

�uxy x, 0ð Þ ¼ g01 xð Þ, � uyx 0, yð Þ ¼ g40 yð Þ,

which together imply that g01 0ð Þ ¼ g40 0ð Þ. By similar reasoning, we have all of the
following conditions:

g01 0ð Þ ¼ g40 0ð Þ, g01 0ð Þ ¼ g40 0ð Þ, � g01 að Þ ¼ g02 0ð Þ, g02 bð Þ ¼ g03 að Þ: (41)

We will assume that (41) holds.
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We now explain how to compute a function that satisfies the desired Neumann
conditions. The method is similar to that used to shift the data in a Dirichlet
problem: we will “interpolate” between the Neumann conditions in each dimension
and arrange things so that the two interpolations do not interfere with each other.
We use the fact that

ψ xð Þ ¼ �αxþ
αþ β

2a
x2 satisfies ψ 0 0ð Þ ¼ �α, ψ 0 að Þ ¼ β: (42)

The first step is to transform the boundary data gl xð Þ to a function h1 xð Þ

satisfying h10 0ð Þ ¼ h10 að Þ ¼ 0, and similarly for g2, g3, g4 and h2, h3, h4. Since these
derivatives of the boundary data at the corners are (plus or minus) the mixed partial
derivatives of the desired function at the corners, it suffices to find a function q x, yð Þ
satisfying the conditions

uxy 0, 0ð Þ ¼ �g01 0ð Þ, uxy a, 0ð Þ ¼ �g01 að Þ, uxy 0, bð Þ ¼ �g03 0ð Þ, uxy a, bð Þ ¼ �g02 bð Þ:

We can satisfy these conditions with a function of the form q x, yð Þ ¼ c0xyþ

c1x
2yþ c2xy

2 þ c3x
2y2. The reader can verify that the necessary coefficients are

c0 ¼ �g01 0ð Þ, c1 ¼
g01 0ð Þ � g01 að Þ

2a
, c2 ¼

g03 0ð Þ þ g01 0ð Þ

2b
,

c3 ¼
g02 bð Þ þ g01 að Þ � g03 0ð Þ � g01 0ð Þ

4ab
:

If w is to satisfy the desired Neumann conditions, then w� q ¼ hi on Γi, i ¼
1� 4, where

h1 xð Þ ¼ g1 xð Þ þ c0xþ c1x
2, h2 yð Þ ¼ g2 yð Þ � c0 þ 2ac1ð Þy� c2 þ 2ac3ð Þy2,

h3 xð Þ ¼ g3 xð Þ � c0 þ 2bc2ð Þx� c1 þ 2bc3ð Þx2, h4 yð Þ ¼ g4 yð Þ þ c0yþ c2y
2:

We can now define w� q by the interpolation described by (42):

w x, yð Þ ¼ q x, yð Þ � h1 xð Þyþ
h3 xð Þ þ h1 xð Þ

2b
y2 � h4 yð Þxþ

h2 yð Þ þ h4 yð Þ

2a
yx2:

Then w satisfies the original Neumann conditions, as the interested reader can
verify directly.

3.11 Eigenvalue problem

Consider the following Eigenvalue Problem: Find λ∈ and u such that

�Δu ¼ λu, in Ω, ∇u � n ¼ 0, on ∂Ω: (43)

In order to derive the weak formulation, we multiply (43) with v∈V, integrate
over Ω and use Green’s formula to obtain

λ

ð

Ω

uvdxdy ¼ �

ð

Ω

vΔudxdy ¼

ð

Ω

∇u � ∇vdxdy�

ð

∂Ω
v∇u � nds ¼

ð

Ω

∇u � ∇vdxdy:
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We obtain the weak form: Find u∈V such that

ð

Ω

∇u � ∇vdxdy ¼ λ

ð

Ω

uvdxdy, v∈V: (44)

The FE method in 2D is defined as follows: Find λh ∈ and uh ∈Vh such that

ð

Ω

∇uh � ∇vhdxdy ¼ λh

ð

Ω

uhvhdxdy, vh ∈Vh, (45)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

.

Implementation: Substituting uh ¼
PN

j¼1c jϕ j into (45) and picking vh ¼ ϕi, we

obtain

X

N

j¼1

c j

ð

Ω

∇ϕ j � ∇ϕidxdy� λh

ð

Ω

ϕiϕ jdxdy

� �

¼ 0, i ¼ 1, 2, … ,N:

This leads to an algebraic system of the form Ac ¼ λhMc, i:e: an algebraic
eigenvalue problem.

3.12 Error analysis

Consider the following model Problem: Find u such that

�Δu ¼ f , in Ω, u ¼ 0, on ∂Ω:

The weak form: Find u∈V0 such that

ð

Ω

∇u � ∇vdxdy ¼

ð

Ω

fvdxdy, v∈V0:

The FE approximation is defined as follows: Find uh ∈Vh,0 such that

ð

Ω

∇uh � ∇vhdxdy ¼

ð

Ω

fvhdxdy, vh ∈Vh,0,

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

. Expressing uh ¼
PN

j¼1c jϕ j and

picking vh ¼ ϕi, we obtain

X

N

j¼1

c j

ð

Ω

∇ϕ j � ∇ϕidxdy

� �

¼

ð

Ω

fϕidxdy, i ¼ 1, 2, … ,N:

This leads to system of the form Ac ¼ b, where the entries of A∈
N�N and

b∈
N are

aij ¼

ð

Ω

∇ϕ j � ∇ϕidxdy, bi ¼

ð

Ω

fϕidxdy, i, j ¼ 1, 2, … ,N:

Theorem 3.6 The stiffness matrix A is symmetric and positive definite.
Theorem 3.7 (Galerkin orthogonality) Let u∈V0 denote the weak solution and

uh ∈Vh,0 the corresponding FE method approximation. Then

ð

Ω

∇ u� uhð Þ � ∇vhdxdy ¼ 0, vh ∈Vh,0:
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Now, let vj jj jj j2 ¼
Ð

Ω
∇v � ∇vdxdy ¼

Ð

Ω
∇vj j2dxdy be the energy norm on V0.

There are two different kinds of error estimates, a priori estimates, where the
error is bounded in terms of the exact solution, and a posteriori error estimates,
where the error is bounded in terms of the computed solution.

Theorem 3.8 (A priori error bound) Let u∈V0 denote the weak solution and
uh ∈Vh,0 the corresponding FE method approximation. Then

u� uhj jj jj j≤ u� vhj jj jj j, vh ∈Vh,0:

Theorem 3.9 Let u∈V0 denote the weak solution and uh ∈Vh,0 the corresponding

FE method approximation. If u∈C2
Ωð Þ, then there exists C independent of hT and u

such that

u� uhj jj jj j2L2
Ωð Þ ≤C

X

T ∈ T h

h2T D2u












2

L2 Tð Þ
:

3.13 The FE method for elliptic problems with a convection term

Consider the following convection-diffusion problem: Find u such that

�∇ � a∇uð Þ þ b � ∇uþ cu ¼ f , in Ω, u ¼ 0, on ∂Ω: (46)

We seek a weak solution u in V0 ¼ v∈V vj j∂Ω ¼ 0
� 	

. In order to derive the
weak formulation, we multiply (46) with v∈V0, integrate over Ω and use Green’s
formula to obtain

ð

Ω

fvdxdy ¼ �

ð

Ω

v∇ � a∇uð Þdxdyþ

ð

Ω

vb � ∇udxdyþ

ð

Ω

cuvdxdy

¼

ð

Ω

a∇u � ∇vdxdy�

ð

∂Ω
v∇u � ndsþ

ð

Ω

vb � ∇udxdyþ

ð

Ω

cuvdxdy

¼

ð

Ω

a∇u � ∇vdxdyþ

ð

Ω

vb � ∇udxdyþ

ð

Ω

cuvdxdy:

Note that there is no need to apply Green’s formula to
Ð

Ω
vb � ∇udxdy. We obtain

the weak form: Find u∈V0 such that

ð

Ω

a∇u � ∇vdxdyþ

ð

Ω

vb � ∇udxdyþ

ð

Ω

cuvdxdy ¼

ð

Ω

fvdxdy, v∈V0:

The FE method in 2D is defined as follows: Find uh ∈Vh,0 ¼ v∈Vh vj j∂Ω ¼ 0
� 	

such that

ð

Ω

a∇uh � ∇vhdxdyþ

ð

Ω

vhb � ∇uhdxdyþ

ð

Ω

cuhvhdxdy ¼

ð

Ω

fvhdxdy, vh ∈Vh,0,

(47)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

.

Implementation: Substituting uh ¼
PN

j¼1c jϕ j into (47) and picking vh ¼ ϕi, we

obtain

X

N

j¼1

c j

ð

Ω

a∇ϕ j � ∇ϕidxdyþ

ð

Ω

ϕib � ∇ϕ jdxdyþ

ð

Ω

cϕiϕ jdxdy

� �

¼

ð

Ω

fϕidxdy, i ¼ 1, 2, … ,N:
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This gives us the system Aþ Bþ Cð Þc ¼ d, where c ¼ c1, … , cN½ �t ∈
N is the

unknown vector and the entries of A,B,C∈
N�N and d∈

N are given by

aij ¼

ð

Ω

a∇ϕ j � ∇ϕidxdy, bij ¼

ð

Ω

ϕib � ∇ϕ jdxdy, cij ¼

ð

Ω

cϕiϕ jdxdy, di ¼

ð

Ω

fϕidxdy,

for i, j ¼ 1, 2, … ,N. Note that B is not symmetric, i:e: bij 6¼ bji.

4. The FE method for the heat equation

Consider the following heat/diffusion problem: Find u x, tð Þ such that

_u� Δu ¼ f , in Ω⊂
2, t∈ 0,T½ �, (48)

u �, tð Þ ¼ 0, on ∂Ω and t∈ 0,T½ �, (49)

u x, 0ð Þ ¼ u0 xð Þ, for x∈Ω and t ¼ 0: (50)

We seek a weak solution u in V0 ¼ v vk k þ ∇vk k<∞, vj j∂Ω ¼ 0
� 	

. In order to
derive the weak formulation, we multiply (48) with v∈V0, integrate over Ω and
use Green’s formula to obtain, for t∈ 0,T½ �,

ð

Ω

fvdx ¼

ð

Ω

_uvdxþ

ð

Ω

∇u � ∇vdx�

ð

∂Ω
v∇u � nds ¼

ð

Ω

_uvdxþ

ð

Ω

∇u � ∇vdx:

The weak form therefore reads: Find u �, tð Þ∈V0 such that for t>0

ð

Ω

_uvdxþ

ð

Ω

∇u � ∇vdx ¼

ð

Ω

fvdx, v∈V0: (51)

The semi-discrete FE method in 2D is defined as follows: Find uh �, tð Þ∈Vh,0 ¼

v∈Vh vj j∂Ω ¼ 0
� 	

such that

ð

Ω

_uhvhdxþ

ð

Ω

∇uh � ∇vhdx ¼

ð

Ω

fvhdx, vh ∈Vh,0, (52)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

.

Implementation: Substituting uh x, tð Þ ¼
PN

j¼1c j tð Þϕ j xð Þ into (52) and choosing

vh ¼ ϕi, we obtain

X

N

j¼1

_c j

ð

Ω

ϕ jϕidxþ
X

N

j¼1

c j

ð

Ω

∇ϕ j � ∇ϕidx ¼

ð

Ω

fϕidx, i ¼ 1, 2, … ,N:

This gives us the system of ODEs

M _c tð Þ þ A tð Þc tð Þ ¼ b tð Þ, t∈ 0,Tð �, c 0ð Þ ¼ c0,

where c ¼ c1, c2, … , cN½ �t ¼ uh N1, tð Þ, … , uh NN, tð Þ½ �t ∈
N (here Ni denotes the

node that belongs to the basis function ϕi) is the unknown vector and the entries of

M, A∈
N�N and b∈

N are given by

mij ¼

ð

Ω

ϕiϕ jdx, aij ¼

ð

Ω

∇ϕ j � ∇ϕidx, bi ¼

ð

Ω

fϕidx, i, j ¼ 1, 2, … ,N:
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Finally, the system of ODEs can be solved with e:g:, the backward Euler method
as follows: Let 0 ¼ t0 < t1 <⋯< tM ¼ T be a discretization, let km ¼ tm � tm�1 for
m ¼ 1, 2, … ,M be the time step size and let cm ≈ c tmð Þ for m ¼ 1, 2, … ,M denote
corresponding approximations. Then, we can compute cm using

Mþ kmAmð Þcm ¼ Mcm�1 þ kmbm, m ¼ 1, 2, … ,M,

where c0 is obtained from u0 xð Þ. We can either use c0 ¼ c1 0ð Þ, … , cN 0ð Þ½ �t ¼

u0 N1ð Þ, … , u0 NNð Þ½ �t, or we can let c0 to be the L2-projection of u0. We set u0h ¼
PN

j¼1c
0
jϕ j xð Þ and solve for c0j using

X

N

j¼1

c0j

ð

Ω

ϕ jϕidx ¼

ð

Ω

u0ϕidx, i ¼ 1, 2, … ,N:

Theorem 4.1 (Stability) There hold continuous and discrete stability estimates

u �, tð Þk k≤ u �, 0ð Þk k þ

ðt

0
f �, sð Þk kds, umh











≤ um�1
h











þ km fm










≤ u0h










þ
X

m

i¼1

ki f i










:

5. The FE method for the wave equation

Many physical phenomena exhibit wave characteristics. For instance light which
is an electromagnetic wave have the ability to disperse and create diffraction pat-
terns, which is typical of waves.

Consider the following wave problem: Find u x, tð Þ such that

€u� ∇ � ε∇uð Þ ¼ f , in Ω⊂
2, t∈ 0,T½ �, (53)

n � ∇u �, tð Þ ¼ 0, on ∂Ω and t∈ 0,T½ �, (54)

u x, 0ð Þ ¼ u0 xð Þ, _u x, 0ð Þ ¼ v0 xð Þ, for x∈Ω and t ¼ 0, (55)

where f is a given load, ε ¼ ε x, tð Þ is a positive parameter, u0 and v0 are a
prescribed initial conditions, and Ω is a bounded domain with boundary ∂Ω and unit
outward normal n.

We seek a weak solution u in V ¼ H1
Ωð Þ ¼ vj vk k þ ∇vk k<∞f g. Multiplying

the wave Eq. (53) with v∈V, integrating over Ω, and using Green’s formula, we
obtain, for t∈ 0,T½ �,

ð

Ω

fvdx ¼

ð

Ω

€uvdx�

ð

Ω

v∇ � ε∇uð Þdx ¼

ð

Ω

€uvdxþ

ð

Ω

ε∇u � ∇vdx�

ð

∂Ω
vε∇u � nds

¼

ð

Ω

€uvdxþ

ð

Ω

ε∇u � ∇vdx:

The weak form (variational formulation) therefore reads: Find u �, tð Þ∈V ¼

H1
Ωð Þ such that for all t>0

ð

Ω

€uvdxþ

ð

Ω

ε∇u � ∇vdx ¼

ð

Ω

fvdx, v∈V: (56)

Let Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h

� 	

⊂V be the space of all continuous

piecewise linear functions on a triangle mesh of Ω. The semi-discrete FE method in
2D is defined as follows: Find uh �, tð Þ∈Vh such that
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ð

Ω

€uhvhdxþ

ð

Ω

ε∇uh � ∇vhdx ¼

ð

Ω

fvhdx, vh ∈Vh: (57)

Implementation: Substituting uh x, tð Þ ¼
PN

j¼1c j tð Þϕ j xð Þ into (57) and choosing

vh ¼ ϕi, we obtain

X

N

j¼1

€c j

ð

Ω

ϕ jϕidxþ
X

N

j¼1

c j

ð

Ω

ε∇ϕ j � ∇ϕidx ¼

ð

Ω

fϕidx, i ¼ 1, 2, … ,N:

This gives us the system

M€c tð Þ þ A tð Þc tð Þ ¼ b tð Þ, t∈ 0,Tð �, (58)

where c ¼ c1, … , cN½ �t ¼ uh N1, tð Þ, … , uh NN, tð Þ½ �t ∈
N (here Ni denotes the

node that belongs to the basis function ϕi) is the unknown vector and the entries

of the mass and stiffness matrices M, A∈
N�N and the load vector b∈

N are
given by

mij ¼

ð

Ω

ϕiϕ jdx, aij ¼

ð

Ω

ε∇ϕ j � ∇ϕidx, bi ¼

ð

Ω

fϕidx, i, j ¼ 1, 2, … ,N:

Eq. (58) is a semi-discretization of the wave equation in the sense that it does not
contain any unknowns with spatial derivatives.

Time discretization: We first transform the system of ODEs into a first-order
system. Let d tð Þ ¼ _c tð Þ, we get the new coupled system

M _c tð Þ �Md tð Þ ¼ 0, M _d tð Þ þ A tð Þc tð Þ ¼ b tð Þ, t∈ 0,Tð �:

Let w ¼ c,d½ �t then the system is equivalent to M̂ _w tð Þ þ Â tð Þw tð Þ ¼ b̂ tð Þ,
t∈ 0,Tð �, where

M̂ ¼
M 0

0 M

 �

, Â ¼
0 �M

A 0

 �

, b̂ ¼
0

b

 �

:

Finally, the system of ODEs can be solved with e:g:, the backward Euler method
as follows: Let 0 ¼ t0 < t1 <⋯< tM ¼ T be a discretization, let km ¼ tm � tm�1 for
m ¼ 1, 2, … ,M be the time step size and let wm ≈w tmð Þ for m ¼ 1, 2, … ,M denote
corresponding approximations. Then, we can compute wm using

M̂þ kmÂm

� �

wm ¼ M̂wm�1 þ kmb̂m, m ¼ 1, 2, … ,M,

where w0 is obtained from u0 xð Þ and v0 xð Þ.

There are several possible choices of initial data. We can either use w0 ¼

w1 0ð Þ, … , c2N 0ð Þ½ �t ¼ u0 N1ð Þ, … , u0 NNð Þ, v0 N1ð Þ, … , v0 NNð Þ½ �t, or we can let w0 ¼

w0
1 ,w

0
2

� �t
, where w0

1 and w0
2 are the L

2-projection of u0 and v0, respectively. We set

w0
h,1 ¼

PN
j¼1w

0
j,1ϕ j xð Þ and w0

h,2 ¼
PN

j¼1w
0
j,2ϕ j xð Þ and solve for w0

j,1, w
0
j,2 using

X

N

j¼1

w0
j,1

ð

Ω

ϕ jϕidx ¼

ð

Ω

u0ϕidx,
X

N

j¼1

w0
j,2

ð

Ω

ϕ jϕidx ¼

ð

Ω

v0ϕidx, i ¼ 1, 2, … ,N:
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We can also use Crank–Nicolson scheme

M̂þ
km
2
Âm

� �

wm ¼ M̂�
km
2
Âm�1

� �

wm�1 þ
km
2

b̂m�1 þ b̂m

� �

� gm:

Theorem 5.1 (Conservation of energy) If f ¼ 0, then

_uh �, tð Þk k2L2
Ωð Þ þ ε ∇uh �, tð Þk k2L2

Ωð Þ ¼ _u �, 0ð Þk k2L2
Ωð Þ þ ε ∇u �, 0ð Þk k2L2

Ωð Þ:

6. Conclusion

In this chapter, we introduced the finite element (FE) method for approxima-
tion the solutions to ODEs and PDEs. More specifically, the FE method is presented
for first-order initial-value problems for OEDs, second-order boundary-value
problems for ODEs, second-order elliptic PDEs, second-order heat and wave equa-
tions. The remaining chapters of this textbook are based on the FE method. The
derivation of the FE method for other problems is straightforward. In the remaining
chapters, the FE method will developed to solve complicated problems in engineer-
ing, notably in elasticity and structural mechanics modeling involving elliptic par-
tial differential equations and complicated geometries. For more details, we refer
the reader to [1–4, 6–9] and the references therein.
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