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Chapter

Using Trend Extraction and 
Spatial Trends to Improve Flood 
Modeling and Control
Jacob Hale, Suzanna Long, Vinayaka Gude and Steven Corns

Abstract

Effective management of flood events depends on a thorough understanding 
of regional geospatial characteristics, yet data visualization is rarely effectively 
integrated into the planning tools used by decision makers. This chapter considers 
publicly available data sets and data visualization techniques that can be adapted 
for use by all community planners and decision makers. A long short-term memory 
(LSTM) network is created to develop a univariate time series value for river stage 
prediction that improves the temporal resolution and accuracy of forecasts. This 
prediction is then tied to a corresponding spatial flood inundation profile in a 
geographic information system (GIS) setting. The intersection of flood profile and 
affected road segments can be easily visualized and extracted. Traffic decision mak-
ers can use these findings to proactively deploy re-routing measures and warnings 
to motorists to decrease travel-miles and risks such as loss of property or life.

Keywords: trend extraction, spatial and temporal trends, images

1. Introduction

Floods are the most frequently occurring natural disaster. A flood event occurs 
when stream flows exceed the natural or artificial confines at any point along a 
stream [1]. This is often due to heavy rainfall, ocean waves coming on shore, rapid 
snow melting, or failure of manmade structures such as dams or levees [2]. From 
1998–2017, flood events affected more than two billion people globally [3]. Disasters 
of this frequency and magnitude are typified by extreme costs to governments. In 
2019, historic flooding across Missouri, Arkansas, and the Mississippi River basin 
resulted in an estimated cost of 20 billion dollars [4]. These estimates typically 
do not reflect indirect costs such as added travel-miles and the subsequent loss of 
time. Further, floods are among the deadliest natural disasters. From 2010–2020, 
floods resulted in the fatalities of 1089 people in the United States [5]. A majority of 
these deaths were comprised of motorists. Therefore, urban planners such as traffic 
decision makers are tasked with proactively deploying resources that minimize 
motorist risk exposure. At present, traffic decision makers rely on static flash flood 
inundation profiles related to discrete rainfall events. These profiles are often created 
through multiagency cooperation efforts such as [6]. Some studies have begun to 
generate dynamic flood inundation data visualizations based on these profiles [7]. 
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Additionally, integrated approaches that use machine learning and geographic 
information systems (GIS) to track changes in critical infrastructure over time are 
emerging as powerful decision support tools [8]. However, there is limited use of 
state-of-the-art time series prediction models to generate dynamic data visualiza-
tions in a GIS setting for improved flood management. This book chapter explores 
the integration of publicly available data and machine learning models to address 
this gap in the literature.

Precise determination of when and where to deploy re-routing measures is a 
complex task. One approach that improves planning effectiveness is to integrate 
time series characteristics of river behavior and corresponding spatial flood profile. 
In this chapter, a univariate time series prediction of river stage is conducted that 
improves the temporal resolution and accuracy of publicly available forecasts. This 
prediction is then tied to a corresponding spatial flood inundation profile in a GIS 
setting. The resulting geospatial deep learning model provides a data visualiza-
tion tool that traffic decision makers can use to proactively manage road closures 
in the event that a flood is likely to occur. The first section provides an overview 
of relevant river behavior that causes flooding. State-of-the-art trend extraction 
and prediction techniques are then presented and tied to geospatial use cases. The 
methodology section presents the data used, time series prediction model selected, 
and geoprocessing procedures required for data visualization using GIS software. 
Next, an illustrative example is provided for a frequently flooded intersection 
in Missouri. A discussion section is provided that positions the findings in the 
context of improving traffic management in the event of a flood. Lastly, a conclu-
sion is given that summarizes the key findings and outlines model limitations and 
future work.

2. A geospatial deep learning approach

Two key characteristics of streams that relate to flood events are stream stage 
and streamflow. Stream stage refers to height (ft) of the stream and streamflow 
corresponds to discharge (ft3/s) or alternatively, volumetric flowrate. Typically, 
governmental organization such as the United States Geological Survey maintain 
a network of sensors that monitor these characteristics over time for various 
stream segments. The National Weather Service classifies flood categories into 
four groups based on stream stage: Action Stage, Flood Stage, Moderate flood 
Stage, and Major Flood Stage [9]. These values vary for a given segment of stream 
based on analysis of previous floods, local topography, and underlying geological 
properties.

Given that stage is monitored over time, the use of time series forecasting 
methods to predict stage values is appropriate. There are two modeling approaches 
that are useful in this context: statistical and computational intelligence. Statistical 
models use historical data to identify underlying patterns to predict future values 
[10]. Some commonly used techniques for flood forecasting include simple expo-
nential smoothing [11], autoregressive moving average [12], and autoregressive 
integrated moving average [13]. However, one shortcoming of these approaches is 
lack of scalability as the quantity and complexity of data increases [14]. An alterna-
tive approach that addresses these issues is computational intelligence. A key feature 
of computational intelligence approaches is the capacity to manage complexity 
and non-linearity without needing to understand underlying processes [15]. In 
summary, statistical methods rely on precise underlying relationships and exhibit 
decreased performance as the number of variables increases whereas computational 
intelligence approaches identify patterns using large amounts of training data to 



3

Using Trend Extraction and Spatial Trends to Improve Flood Modeling and Control
DOI: http://dx.doi.org/10.5772/intechopen.96347

establish a model capable of accurate predictions [16]. Some commonly used flood 
forecasting computational intelligence models include support vector machines 
[17], artificial neural networks [18], and deep learning [19]. Further, they have 
demonstrated superior performance when compared to conventional statistical 
modeling approaches for flood prediction studies. LSTM models have explicitly 
shown promising results in time series contexts. Therefore, LSTM models provide 
a state-of-the-art trend extraction and prediction technique regarding stream 
stage values.

Stream stage values are categorized based on resulting flood severity. The 
physical reality of these categories is the spatial extent of the flooding event often 
referred to as a flood inundation map [20]. These maps provide decision makers 
with a useful visual reference to determine what specifically has been affected by 
a flood event. An area of research, data visualization, and practical application 
that has not been fully investigated is the integration of computational intelligence 
stream stage predictions with geospatial flood inundation maps. The methodology 
provided in the following section addresses this gap.

3. Methodology

This section consists of three parts: LSTM prediction of stream stage, data 
required, and geoprocessing procedures. First, a brief overview of LSTM will be 
given. This will include explanatory figures and relevant mathematical formulas. 
Second, data required to conduct the LSTM prediction of stream stage will be 
procured. Flood inundation imagery and road network data will also be obtained. 
Lastly, data will be uploaded to a GIS software and processed for end use by traffic 
decision makers. An illustrative example is presented in the next section.

3.1 LSTM prediction of stream stage

Stream stage prediction is a time series forecasting procedure that is dependent 
on previous data to predict future values. As the quantity and quality of data 
continues to increase, more powerful computational approaches can be applied to 
prediction problems. The results of the literature review demonstrated that deep 
learning approaches, namely LSTM networks, are increasingly being applied to 
these problems.

Deep learning is an extension of the conventional neural network by adding 
additional layers and layer types. Figure 1 provides a visual comparison of the 
two approaches [21]. The simple neural network (left) consists of a single input 
layer, hidden layer, and output layer. Alternatively, the deep learning neural net-
work (right) has one input layer followed by three successive hidden layers that 
ultimately feed into a final output layer. This configuration has generated superior 
performance in capturing complex relationships.

Figure 1. 
Simple neural network vs. deep learning neural network.
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However, neither approach retains previous time step information. Recurrent 
neural networks (RNNs) were introduced to address this limitation. LSTM 
networks are the deep learning variant of RNNs. All figures and mathematical 
formulation are borrowed from [15]. The primary benefit of LSTM networks is the 
capacity to retain longer term information. This is accomplished by removing and 
adding information determined by a series of ‘gates’ and vector operations. Figure 2 
provides a visual representation of an LSTM cell. The first gate, illustrated in yellow, 
generates a value between 0 and 1 using the current input (xt) and output from 
the previous step (yt-1) that determines how much information is passed on (forget 
gate). A zero corresponds to no information transfer whereas a one represents a 
complete transfer.

The result of this procedure ( tf ) is presented mathematically in Eq. (1) as a 

sigmoid neural network layer where U (weights) and W (recurrent connections) 
are matrices.

 ( )1

f f
t t tf x U y W−= +σ  (1)

Next, a decision must be made regarding what information needs to be stored. 
This is accomplished by applying an additional sigmoid layer (red, it). New values 

are then added to the cell state ( tĈ ) by using a tanh layer (green). Eqs. (2) and (3) 
present these procedures mathematically.

 ( )1

i i
t t ti x U y W−= +σ  (2)

 ( )g g
t t tyC xU W−= +

1
tˆ anh  (3)

The line at the top of the cell is known as the cell state ( tC ) and has interactions 

with all components. Information has the opportunity of being forgotten when the 
old state (

1tC − ) is multiplied by the result of the first forget gate ( tf ). The product 

of the second (red) and third (green) gates are then added which results in new 
information being provided to the cell state and is represented by Eq. (4).

 t t t t tC f C Ci−= +
1

ˆ  (4)

Figure 2. 
LSTM network cell.
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Lastly, the output layer of the LSTM cell determines the forecast for the current 
time step. A sigmoid layer (blue) and tanh layer are multiplied to generate an 
output ( ty ). This final step is represented by Eqs. (5) and (6).

 ( )0 0

1t t to xU y W−= +σ  (5)

 ( )tanht t ty C o= ×  (6)

The result of this computational procedure is a time series forecast of future 
values. However, a large amount of data must be gathered to use as a model input. 
This data is presented in the next section.

3.2 Data required

Historic stream stage height for the location further explained in Section 4 must 
first be gathered. 113,994 data points were procured that correspond to 15-minute 
intervals from May 19, 2016 (5 PM) – September 1, 2019 (4 PM). Stage height is 
herein referred to as ‘gauge height’ to account for the source of the data. This data is 
represented graphically in Figure 3 [22].

Using USGS’ flood inundation mapper (FIM), these gauge heights can be tied 
to a specific flood inundation profile [23]. The FIM is a publicly available tool that 
provides resulting flood inundation maps for one-foot gauge height increments in 
image format (.tif). A sliding bar that accomplishes this is available on the online 
user interface and is presented in Figure 4.

Figure 3. 
Stream stage height for example locations.

Figure 4. 
FIM sliding gauge height tool.
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An example of a flash flood inundation profile being uploaded to a GIS software 
is provided in Figure 5. Purple lines correspond to road network data derived from 
the National Transportation Dataset [24]. Blue raster (grids of pixels) imagery 
denote the depth of water at discrete locations where darker blue reflects deeper 
water. Useful geoprocessing techniques that generate actionable decision support 
tools are presented in the next section.

3.3 Geoprocessing procedures

Traffic decisions makers are tasked with identifying flood affected road segments. 
In Figure 5, it can be observed that the flood inundation profile does overlap certain 
road segments. Relying on visual inspection alone is time consuming and prone to 
inaccuracies due to human error. A solution to this issue is the application of a set of 
straightforward geoprocessing tools that are built-in to most GIS softwares: conver-
sion and intersection.

Some tools do not allow raster and vector data layer interoperability. Therefore, 
it is necessary to convert one of the data layers to establish a consistent data type. 
One approach is to convert the raster layer into a vector layer using the conversion 
tool within ArcGIS. Figure 6 illustrates the result of this operation. The flood 
inundation profile has been converted into several points at 1-m increments. This 
spatial resolution can be modified by the user. The road network has been changed 
from its previous color to improve readability.

Once the raster layer has been converted into vector format, it is eligible for use 
as an input layer for the intersection tool. The intersection tool generates a point at 

Figure 5. 
Flood inundation profile example.

Figure 6. 
Raster layer conversion example.
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every location where there is an intersection between the input layers. In the next 
section, an illustrative example is provided to demonstrate the effectiveness of the 
methodology presented.

4. Illustrative example

Valley Park, Missouri is located at the intersection of I-44 and State Route 
141. This location is the setting for the example figures presented previously. The 
Meramec River winds through this area and has regularly flooded in recent years. In 
2017, the river exceeded its banks and caused significant damage to the surround-
ing area as seen in Figure 7. This location provides a suitable candidate to test the 
methodology presented given the extent of the flood event and data availability.

First, data is gathered from a nearby stream gauge. Figure 8 provides a geo-
graphical point of reference for the gauge denoted by a green square with respect to 
I-44 and State Route 141. The data presented in Figure 5 is then procured and used 
as an input for the LSTM network. Figure 9 presents the prediction results of the 
LSTM model superimposed on the actual data for May 19, 2016-September 1, 2019.

The actual data (blue) can be observed deviating from the prediction results 
for the training (orange) and testing (green) results of the LSTM network. A lack 
of discrepancy between the actual data and predictions demonstrates the model’s 
effectiveness. Further, it is useful to determine how the prediction compares with 
publicly available forecasts for the same location. USGS provides a forecast every six 
hours. Alternatively, the LSTM network provides 24 predictions in the same period. 
Figure 10 provides a comparison of the prediction provided by USGS and the LSTM 
model for September 1, 2019 (6 PM) – September 3, 2019 (6 AM).

The red line represents the original data. Gauge height is initially observed at 
just above six feet. From there, it trends in a downwardly direction until it reaches 

Figure 7. 
Meramec River flood in 2017 [25].

Figure 8. 
Gauge location [9].
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the end of the dataset at less than 3.5 feet. The green line corresponds to the USGS 
prediction. This prediction initially overshoots the original data before briefly cor-
recting and then diverging significantly from the observed trend. Lastly, the blue 
line represents the LSTM prediction. At first, this prediction captures the down-
ward trend missed by the USGS prediction. Ultimately, the prediction flattens out 
and diverges from the original observations but to a lesser extent when compared to 
the USGS prediction. Root Mean Squared Error (RMSE) values for each of the pre-
dictions are provided to further demonstrate the difference in model performance. 
The RMSE value of 0.453 reported by the LSTM model represents superior accuracy 
compared to the 1.065 value reported by the USGS prediction. Therefore, the LSTM 
model presented here improves on the accuracy of publicly available forecasts and 
can be used as an input for the flood inundation tool.

Valley Park has 43 flood inundation profiles available in one-foot increments 
from 11–54 feet. The highest stage value recorded at this location is 44.11 feet on 
December 31, 2015. Figure 11 provides the flood inundation profile for 45 feet to 
approximate this event. Note that 45 feet is used instead of 44. This is due to the 

Figure 10. 
USGS and LSTM prediction comparison.

Figure 11. 
Flood inundation profile for 45 ft. stage value for Valley Park, Missouri.

Figure 9. 
LSTM training and testing results.
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flood inundation profile incremental limitation and opting for a rounding approach 
that provides a more conservative risk assessment. The inundation profile is then 
converted to point format and intersected with the road network as illustrated by 
Figure 12.

5. Discussion

At present, urban planners such as traffic decision makers rely on static flood 
inundation maps and post hoc planning to reroute traffic in the event that a flood 
occurs. This approach puts motorists already in-transit at risk to rapidly changing 
road conditions. To address these risks, a field of research has emerged to provide 
decision makers with real-time decision-making tools. However, using time series 
prediction models that capture river characteristics and integrating them with flood 
inundation profiles has received limited attention. The methodology provided here 
addresses this gap.

Traffic decision makers can use the data visualization presented in Figure 12 as 
a powerful decision support tool. The flood affected road segments can be easily 
identified (orange) and rerouting measures can be promptly dispatched. With the 
improved temporal resolution and accuracy of the LSTM prediction of stage height, 
traffic decision makers can deploy resources proactively to avoid unnecessary risk 
to motorists and improve traffic flow. Concluding remarks, limitations, and future 
work are presented in the next section.

6. Conclusion

Flash floods are a frequent and devastating natural disaster. The impetus to 
manage these events belongs to local decision makers that work in a resource 
constrained environment. To improve their decision-making effectiveness, a frame-
work was presented that integrates machine learning and geospatial data to extract 
spatial and temporal trends using publicly available data. An illustrative example 
was provided to demonstrate the effectiveness of the framework provided. Valley 
Park, Missouri is located near the intersection I-44 and State Route 141. These roads 
represent major traffic throughputs and persistent flooding of the Meramec River 
has jeopardized the safety of motorists and the flow of commercial goods. Using 
113, 994 river stage observations procured from a nearby sensor, an LSTM network 
was developed to improve the accuracy of publicly available forecasts. The result 
was an improvement in both the frequency and accuracy of forecasts provided. 

Figure 12. 
Flood affected road segments for flood inundation profile corresponding to 45 ft. stage value for Valley Park, 
Missouri.
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Once the stage value is predicted it can be tied to a spatial flood inundation profile 
using the publicly available FIM. Using the flood inundation profile for 45 feet 
observed at Valley Park as a proxy for the historic crest at this location, data visual-
ization of flood affected road segments was generated in a GIS setting. The key ben-
efit of this output is the ease with which traffic decision makers can use the results 
presented to inform urban planning and decision making. Traffic decision makers 
can use the resulting data visualization presented here to guide real-time decision 
making in the event that a river stage value is predicted to reach a flood event stage 
for a specified river segment. Despite the usefulness of the findings, there remain a 
number of model limitations that represent areas of future work.

Model limitations can be divided into two categories: data gathering and 
model extension. Deep learning models are dependent on large amounts of data. 
Therefore, sensors that collect data need to be installed and active for an extended 
period. The cost to install and maintain an enlarged sensor network might be 
prohibitive for some locations. Due to this fact, model implementation is limited 
to river locations where sensors are already installed. Additionally, FIM coverage is 
confined to a small number of locations nationwide. Similarly, to sensor coverage, 
if there are not already-available flood inundation maps, then the model cannot be 
applied to those locations. Model extension includes options to improve the model 
in a material way. One recommendation would be to determine the best locations 
for road signage that will provide optimal re-routing to motorists given a finite 
amount of signage. Another approach would involve working with local decision 
makers to determine re-routing effectiveness based on how quickly resources are 
deployed given model predictions. Areas of future work not related to model exten-
sions include alternative prediction approaches in river networks with no sensors 
and refinement of the model to account for flash floods. Each of these components 
represent considerable opportunity for model enrichment that further improve the 
decision-making effectiveness for traffic management professionals.

The results presented here demonstrate the utility of using machine learning 
models and geospatial data to generate data visualization tools that key stakeholders 
can use to improve planning effectiveness. As data becomes increasingly avail-
able, use of comparably sophisticated methods can be applied to a suite of natural 
disaster phenomena. The outcome of such an undertaking will be the widespread 
use of data visualization tools that will reduce the risk motorists are exposed to and 
mitigate the accompanying economic fallout.
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