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Chapter

Compensatory Adaptive Neural
Fuzzy Inference System
Rabah Mellah, Hocine Khati, Hand Talem and Said Guermah

Abstract

The traditional approach to fuzzy design is based on knowledge acquired by
expert operators formulated into rules. However, operators may not be able to
translate their knowledge and experience into a fuzzy logic controller. In addition,
most adaptive fuzzy controllers present difficulties in determining appropriate
fuzzy rules and appropriate membership functions. This chapter presents adaptive
neural-fuzzy controller equipped with compensatory fuzzy control in order to
adjust membership functions, and as well to optimize the adaptive reasoning by
using a compensatory learning algorithm. An analysis of stability and transparency
based on a passivity framework is carried out. The resulting controllers are
implemented on a two degree of freedom robotic system. The simulation results
obtained show a fairly high accuracy in terms of position and velocity tracking,
what highlights the effectiveness of the proposed controllers.

Keywords: control, fuzzy logic, neural-fuzzy, compensatory fuzzy, Kalman filter,
manipulator robot

1. Introduction

The advantage of fuzzy control is that the fuzzy system can model any continu-
ous (sufficiently smooth) nonlinear function in a compact set and the modeling
error decreases [1]. Fuzzy logic resembles human analysis in its use of inaccurate
information to create decisions. Many such problems can be formulated as the
minimization of functional defined over a class of admissible domains [2]. How-
ever, the difficulty in deploying fuzzy clustering strategies along with the high
calculating cost and without update the parameters were their disadvantage [3].

On the other hand, a major concern of researchers is turned towards the
combination of fuzzy logic and neural network. In this combination, a fuzzy rea-
soning is followed within multilayered hierarchical neural network. The parameters
are represented by connection weights or involved in unit functions. They are
learned the actual data [4]. In the near past, ANFIS (Adaptive Neural Fuzzy Infer-
ence System) models have become very popular for two reasons: the first reason is
that in calibrating of non-linear relationships they offer more advantages over
conventional modeling techniques, namely the ability to handle large amounts of
noisy data from dynamic and non-linear systems, particularly when the underlying
physical relationships are not fully understood. The second reason is that they
facilitate the solving of linear systems which include the interpolation modeling
such as time series [5].
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The reason why authors used ANFIS is that it not only includes the characteris-
tics of both methods but also eliminates some disadvantages in case of their lonely
use [6]. Unfortunately, conventional neural fuzzy systems can only optimize the
fuzzy membership functions under specially defined fuzzy operators which are
unchangeable forever, which makes it use the local optimization technique rather
than the global optimization technique [7–8]. Thus an adaptive neural fuzzy
controller with compensatory fuzzy is most suitable in an environment where
system dynamics change dramatically, become highly nonlinear, and in principle
not fully known.

On the ground of these observations, several optimal and systematic methods
have been developed for the design of neural fuzzy controllers with compensatory
fuzzy. Among these methods, we have retained the compensatory adaptive neural
fuzzy inference system approach which consists in adjusting not only fuzzy mem-
bership functions but also dynamically optimize the adaptive fuzzy reasoning.
Besides that, ANFIS is a class of adaptive networks that are functionally equivalent
to a first order Takagi-Sugeno fuzzy model.

Recently compensatory adaptive neural fuzzy inference system control has
gained more attention from the control Community in general, as adaptive fuzzy
systems are of crucial importance in several areas. The compensatory adaptive
neural fuzzy inference system is preferred to deal with nonlinearities and complex-
ity by working on data characterized by incompleteness and inaccuracy. Therefore,
it offers powerful skills, such as adaptive adjustment, parallelism, tolerance error
and generalization for the neural fuzzy controller. Thus the optimal methods are
used to adjust and optimize the parameters of neural fuzzy controllers through an
optimization algorithm in order to improve the control performance [9].

In this chapter, we will present and analyze in section 2 the structure of adaptive
neural fuzzy inference system (ANFIS), based on concepts such as fuzzy logic,
optimization techniques. This approach is carried out in order to remove a control
constraint relating to the need to have a model as faithful as possible, knowing that
the modeling errors and the imperfections of the models, contribute to significantly
degrade the performance of the conventional control laws [10].

Section 3 presents the mathematical formalism appropriate to the compensatory
neural fuzzy inference system controller proposed. The effectiveness of the pro-
posed control is highlighted by some simulation results in Section 4. Finally this
paper is concluded with a summary and an outlook to future research directions in
Section 5.

2. Presentation of adaptive neural fuzzy inference system (ANFIS)

Jang was the first to present ANFIS as a multi-layer adaptive network-based
fuzzy inference system [11]. One can compare this method to a fuzzy inference
system besides that it uses back- propagation in minimizing the errors. The opera-
tion of a FIS is similar to that of both fuzzy logic (FL) and artificial neural networks
(ANN). ln both (ANN) and (FL), the input passes through the input layer (via the
input membership function) and the output appears in output layer (via the output
membership function). This type of advanced fuzzy logic uses neural networks.
Hence, a learning algorithm can be used to change the parameters until an optimal
solution is found. It follows that ANFIS uses either back-propagation or a combina-
tion of least squares estimation and back-propagation to estimate the membership
function parameters [12]. Neural-Fuzzy system has newly known more attraction
in research communities than other types of fuzzy expert systems. The reason of it
combines the advantages of learning ability of neural network and reasoning ability
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of fuzzy logic to successfully solve many non-linear and complex real-world
problems [13].

The regulator ANFIS is computationally very efficient, as it favors mathematical
analysis, and works well with linear, adaptive, and optimization techniques. The
fuzzy reasoning is performed with operators min and prod [14].

The conclusions of fuzzy rules are numeric values calculated from the inputs, so
the final value is obtained by performing a weighted average of the conclusions
[15, 16].

To simplify understanding and without loss of generalities, let us consider a
fuzzy regulator with two inputs e1 and e2 and one output u. The entry x1 is
associated with two fuzzy sets A1 and A2. As for the two fuzzy sets associated with
the second entry x2 are B1 and B2. The output u is modeled by a fuzzy Sugeno-type
system, composed of the following four rules [17]:

Rule 1 : if x1 is A1 and x2 is B1 then u1 ¼ f 1 x1, x2ð Þ ¼ a1x1 þ b1x2 þ c1 (1)

Rule 2 : if x1 is A1 and x2 is B2 then u2 ¼ f 2 x1, x2ð Þ ¼ a2x1 þ b2x2 þ c2 (2)

Rule 3 : if x1 is A2 and x2 is B1 then u3 ¼ f 3 x1, x2ð Þ ¼ a3x1 þ b3x2 þ c3 (3)

Rule 4 : if x1 is A2 and x2 is B2 then u4 ¼ f 4 x1, x2ð Þ ¼ a4x1 þ b4x2 þ c4 (4)

Let us denote Ok,i the node in the ith position of the kth layer. The node functions
in the same layer are of the same function family as defined below.

The input layer is denoted Layer 1 and any node i in this layer is a square node
with a node function that describes the membership function. Hence O1,i is the
membership function of Ai, and it specifies the degree to which a given variable x
satisfies its quantifier Ai. We select the membership function in such a way the
maximum of which is equal to unity and the minimum equal to zero.

The structure of the regulator ANFIS is given by the following figure (Figure 1):

Figure 1.
Structure of the regulator ANFIS.
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Through this structure we can see five layers described as follows:
Layer 1: The function of node at this layer is identical to the membership

function in the fuzzification process:
Layer 2: generate the degree of activation of a rule.

O2,1 ¼ O1,1:O1,3 ¼ w1

O2,2 ¼ O1,1:O1,4 ¼ w2

O2,3 ¼ O1,2:O1,3 ¼ w3

O2,4 ¼ O1,2:O1,4 ¼ w4

8

>>><

>>>:

(5)

Layer 3: Each node of this layer is a circular node denoted by N. The output node
represents the normalized activation degree according to the ith rule.

O3,i ¼
wi

P4
k¼1wk

for i ¼ 1, 4 (6)

Layer 4: Each node of this layer is a square node with a function described as
follows:

O4,i ¼ O3,if i ¼ vi aieþ biΔeþ cið Þ (7)

where vi is the output of the node I of layer 3 and ai, bi, cif g is the set of update
parameters.

Layer 5: In this layer, there is only one node that determines the overall output
by using the following expression:

O5,i ¼
X

i

O4,if i for i ¼ 1::4 (8)

Considering x1 and x2 are the position error e and its derivative ∆e: x1, x2½ � ¼
e,∆e½ �: We associate two fuzzy sets for each of the inputs x1 and x2 namely N
(Negative) and P (Positive). μN and μP represent the degrees of membership appro-
priate to variables xi with respect to the fuzzy subsets Ai and Bi, defined by the
following membership functions (Figure 2) [17]:

For i ¼ 1, 2

μN xið Þ ¼

1, if xi < � 1

�0:5xi þ 0:5, if � 1< xi < 1

0, if xi > 1

8

>><

>>:

(9)

Figure 2.
Membership functions.
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μP xið Þ ¼

0, if xi < � 1

0:5xi þ 0:5, if � 1< xi < 1

1, if xi > 1

8

>><

>>:

(10)

2.1 Learning algorithm

The learning process consists of identifying the consequence parameters ai, bi
and ci for i = 1,2,… .4. Thus, let us assume yd and y are respectively the desired and
actual outputs of system. In this work, we consider that the consequence parame-
ters are adjusted by the minimization of the following objective function:

e kð Þ ¼
1

2
eð Þ2 (11)

where e ¼ yd � y.
In addition, let be Φi the vector of parameters to be adjusted. Our objective is to

find the parameters ai, bi and ci of the vector Φi using the gradient descent method
combined with the approach of extended Kalman filter. This is equivalent to
writing:

Φi kþ 1ð Þ ¼ Φi kð Þ � α kð Þ
∂J

∂Φi
(12)

We have:

∂J

∂Φi
¼ �e

∂y

∂Φi
¼ �e

∂y

∂u

∂u

∂Φi
(13)

From Eqs. (12) and (13), it follows:

Φi kþ 1ð Þ ¼ Φi kð Þ þ α kð Þ
∂y

∂u

∂u

∂Φi
e (14)

In our case, ∂y
∂u cannot be evaluated, but can be estimated using the extended

Kalman filter equations. Consequently, Eq. (14) can be written as:

Φi kþ 1ð Þ ¼ Φi kð Þ þ K0
Ψie (15)

where

K0 ¼ α kð Þ
∂y

∂u
(16)

Ψi ¼
∂u

∂Φi
¼

∂u

∂ai

∂u

∂bi

∂u

∂ci

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

(17)
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The Eq. (15) can be identified to extended Kalman filter equation:

Φi kþ 1ð Þ ¼ Φi kð Þ þ K kð Þe (18)

Where K kð Þ is the Kalman gain defined as follows:

K kð Þ ¼
P kð ÞHT kð Þ

H kð ÞP kð ÞHT kð Þ þ R kð Þ
(19)

Where H kð Þ is the Jacobian matrix (observation matrix of the system); P kð Þ is
the covariance estimation matrix of the error and is the covariance matrix of the
process noise.

Taking H kð Þ ¼ Ψið ÞT,P kð Þ ¼ λ1 and R kð Þ ¼ λ2, the gain K kð Þ can be written:

K kð Þ ¼
λ1

Ψið ÞTλ1 Ψið Þ þ λ2
Ψið Þ ¼

λ1

λ1 Ψið ÞT Ψið Þ þ λ2
Ψið Þ (20)

Hence Eq. (18) reduces:

Φi kþ 1ð Þ ¼ Φi kð Þ þ
λ1

λ1 Ψið ÞT Ψið Þ þ λ2
Ψið Þe (21)

By identification between Eqs. (15) and (21), we have:

K0 ¼
λ1

λ1 Ψið ÞT Ψið Þ þ λ2
(22)

Finally, the vector of consequence parameters Φi can be adjusted by the
following relation:

Φi kþ 1ð Þ ¼ Φi kð Þ þ K0
Ψið Þe (23)

2.2 Stability analysis of the control system

From Eq. (23), we can consider for a very short time Te, this relation:

_Φi ¼
Φi kþ 1ð Þ �Φi kð Þ

Te
¼

K0
Ψið Þe

Te
¼ K1 Ψið Þe (24)

Where K1 ¼
K0

Te

Hence:

_Φi ¼ K1 Ψið Þeu (25)

Where eu ¼ K1e is the error between the controller’s desired output ud and actual
output u.

Let be ~Φi ¼ Φid �Φi, where Φi is the vector of the consequence parameters and
Φid the vector of the desired consequence parameters.

_~Φi ¼ _Φid � _Φi ¼ � Ψið Þeu (26)

For linear variation, the error eu is defined by [18]:

eu ¼ ud � u ¼
X4

i¼1

Ψið ÞTΦid � Ψið ÞTΦi

� �

¼
X4

i¼1

Ψið ÞT Φid �Φið Þ
� �

¼
X4

i¼1

Ψið ÞT ~Φi

� �

(27)
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Consider the following Lyapunov function [19–21]:

V ¼
1

2

X4

i¼1

~Φi

� �T
~Φi

� �� �

(28)

Differentiating V with respect to time yields, we obtain [17]:

_V ¼
X4

i¼1

_~Φi

� �T
~Φi

� �
� �

(29)

From Eqs. (26), (27) and (29), we obtain:

_V ¼
X4

i¼1

� Ψið Þeuð ÞT ~Φi

� �� �

¼ � euð ÞT
X4

i¼1

Ψið ÞT ~Φi

� �� �

¼ � euð ÞT euð Þ (30)

Consequently, from Eq. (30), we find that _V ≤0, so we conclude that the
system is asymptotically stable in the sense of Lyapunov according to the LaSalle
theorem.

3. Compensatory adaptive neural fuzzy inference system (CANFIS)

The other class of inference systems that can deal this type of analytic informa-
tion in conclusion of rules inference was proposed by Sugeno and his staff.

As for our contribution here, it consists in adding a compensatory fuzzy part to
adjust consequence parameters and as well to dynamically optimize the adaptive
fuzzy reasoning. In addition to this, ANFIS represents a class of adaptive networks
that are functionally equivalent to a first order Takagi-Sugeno fuzzy model. As
performed above, by taking a center-average deffuzzifier mapping, the crisp value
of the output u is given as:

u ¼

P4
i¼1 aieþ bi∆eþ cið Þwi

P4
i¼1wi

(31)

We consider the pessimistic and optimistic operation given respectively as
follows:

zi ¼ wi (32)

mi ¼ wi½ �
1
2 (33)

By using these two operations, our contribution is to add the compensatory form
formulated as [7]:

Ci zi, qi, γi
� �

¼ zið Þ1�γi mið Þγi (34)

Where γiϵ 0 1½ � is compensatory degree. Finally, the crisp value of the
compensatory neural-fuzzy inference is derived as [13, 14]:

u ¼

P4
i¼1 aieþ bi∆eþ cið Þ wi½ �1�

γi
2

P4
i¼1 wi½ �1�

γi
2

(35)
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For simplicity, we define:

αi ¼ 1�
γi

2
(36)

Then we have:

u ¼

P4
i¼1 aieþ bi∆eþ cið Þ wi½ �αi

P4
i¼1 wi½ �αi

(37)

The structure of the CANFIS controller with compensatory fuzzy for two input
and one output, is shown by Figure 3 [9].

3.1 Learning algorithm

Consider as for ANFIS two dimensional data vectors, x ¼ e,∆e½ � and one dimen-
sional output data vector u2. In order to limit the computation time, we have
optimally adjusted the consequence parameters and compensatory degree by mini-
mizing the following objective function:

J ¼
1

2
yd � y
� �2

(38)

Figure 3.
Structure of CANFIS controller.
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Where yd and y are respectively desired and actual values of output system. Now let
Φ2i for i = 1… .4, be the vector of update parameters. We aim to determine vector Φ2i

through the extended Kalman filter which consists in linearizing the output around the
control input at each sampling period. This is equivalent to writing [16, 19, 20]:

∂J

∂Φ2i
¼

∂J

∂u2
¼ � yd � y

� � ∂y

∂u2

∂u2
∂Φ2i

¼ �K0:Ψ2ie (39)

In which

Ψ2i ¼
∂u2
∂Φ2i

(40)

K2 ¼
λ1

λ1Ψ
T
2iΨ2i þ λ2

(41)

Where λ1 and λ2 are adaptation gains for varying the convergence rate. Further,
to eliminate the constraint γi ∈ 0, 1½ �, we redefine γi as follows [7]:

pi
� �2

pi
� �2

þ rið Þ2
(42)

Where pi and ri are update parameters such that γi ∈ 0, 1½ �. Consequently, the

vector of update parameters is given as Φ2ið ÞT ¼ ai, bi, ci, pi, ri
� 	

for CANFIS.
According to the definition, we have [17]:

∂u2
∂ai

¼
e wi½ �αi

P4
i¼1 wi½ �αi

(43)

∂u2
∂bi

¼
∆e wi½ �αi

P4
i¼1 wi½ �αi

(44)

∂u2
∂ci

¼
wi½ �αi

P4
i¼1 wi½ �αi

(45)

∂u2
∂γi

¼ �
1

2

X4

i¼1

aieþ bi∆eþ cið Þ

" #

zi ln wið Þ
P4

i¼1zi
(46)

∂u2
∂pi

¼ �
2pi qi

� �2

pi
� �2

þ qi
� �2

( )

∂u2
∂γi

(47)

∂u2
∂ri

¼
2qi pi

� �2

pi
� �2

þ rið Þ2

( )

∂u2
∂γi

(48)

Finally, the vector of parameters Φ2i is adjusted using the following equation:

Φ2i kþ 1ð Þ ¼ Φ2i kð Þ þ K0
Ψ2ie (49)

Where Ψ2ið ÞT ¼ ∂u2
∂ai

, ∂u2
∂bi

, ∂u2
∂ci

, ∂u2
∂pi

, ∂u2
∂ri

h i

.

3.2 Stability analysis of the control system

From Eq. (48), we can consider for a very short time Te, this relation:
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_Φ2i ¼
Φ2i kþ 1ð Þ �Φ2i kð Þ

Te
¼

K0
Ψ2ið Þe

Te
¼ K1 Ψ2ið Þe (50)

Where K1 ¼
K0

Te

Hence:

_Φ2i ¼ K1 Ψ2ið Þeu (51)

Where eu ¼ K1e is the error between the controller’s desired output ud and actual
output u.

Let be ~Φ2i ¼ Φ2id �Φ2i, where Φ2i is the vector of the consequence parameters
and Φ2id the vector of the desired consequence parameters.

_~Φ2i ¼ _Φ2id � _Φ2i ¼ � Ψ2ið Þeu (52)

For linear variation, the error eu is defined by:

eu ¼ ud � u ¼
X4

i¼1

Ψ2ið ÞTΦ2id � Ψ2ið ÞTΦ2i

� �

¼
X4

i¼1

Ψ2ið ÞT Φ2id �Φ2ið Þ
� �

¼
X4

i¼1

Ψ2ið ÞT ~Φ2i

� �

(53)

Consider the following Lyapunov function:

V ¼
1

2

X4

i¼1

~Φ2i

� �T
~Φ2i

� �� �

(54)

Differentiating V with respect to time yields, we obtain:

_V ¼
X4

i¼1

_~Φ2i

� �T
~Φ2i

� �
� �

(55)

From Eqs. (51), (52) and (54), we obtain:

_V ¼
X4

i¼1

� Ψ2ið Þeuð ÞT ~Φ2i

� �� �

¼ � euð ÞT
X4

i¼1

Ψ2ið ÞT ~Φ2i

� �� �

¼ � euð ÞT euð Þ (56)

Consequently, from Eq. (55), we find that _V ≤0, so we conclude that the system
is asymptotically stable in the sense of Lyapunov according to the LaSalle theorem.

4. Simulation results and interpretation

We applied in simulation the neural-fuzzy command equipped with a compen-
sator explained above, to the two-joint robot in a performance environment
described by the following joint trajectories:

qir ¼
π

6
1� cos 6tð Þð Þ (57)
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With i ¼ 1… :2.
The compact form of the dynamic model relating to the two-joint robot is given

as follows:

τ ¼
M11 M12

M21 M22

" #

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

M qð Þ

€qþ
C11 q, _qð Þ C12 q, _qð Þ

C21 q, _qð Þ C22 q, _qð Þ

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C q, _qð Þ

_qþ
G1 qð Þ

G2 qð Þ

" #

|fflfflfflfflffl{zfflfflfflfflffl}

G qð Þ

(58)

Where.
q ¼ q1; q2

� 	
: Vector of joint position variables.

_q ¼ _q1; _q2
� 	

: Vector of joint velocity variables.

€q ¼ €q1; €q2
� 	

: Vector of joint acceleration variables.
τ ¼ τ1; τ2½ �: Vector of torques applied to joint.
M qð Þ: Inertial matrix.
C q, _qð Þ: Matrix of terms centripetal and coriolis.
G qð Þ: Vector of gravitational effects

M11 qð Þ ¼ m1l
2
c1 þm2l

2
1 þm2l

2
c2 þm2l1lc2 cos q2

� �
þ I1 þ I2

M12 qð Þ ¼ M21 qð Þ ¼ m2l
2
c2 þm2l1lc2 cos q2

� �
þ I2

M22 qð Þ ¼ m2l
2
c2 þ I2

C11 q, _qð Þ ¼ �m2l1lc2 sin q2
� �

_q2

C12 q, _qð Þ ¼ �m2l1lc2 sin q2
� �

_q1 þ _q2
� 	

C21 q, _qð Þ ¼ m2l1lc2 sin q2
� �

C22 q, _qð Þ ¼ 0

G1 qð Þ ¼ m1lc1 þm2l1½ �gsin q1
� �

þm2glc2 sin q1 þ q2
� �

G2 qð Þ ¼ m2glc2 sin q1 þ q2
� �

The parameters relating to the dynamic model of this robot are given in the
following table (Table 1):

Parameter Value

Mass of the link 1 m1ð Þ 6:5225 kg

Mass of the link 2 m2ð Þ 2:0458 kg

Link length 1 l1ð Þ 0:26 m

Link length 2 l2ð Þ 0:26 m

Gravity gð Þ 9:81 m=s2

Distance to the center of mass of link 1 lc1ð Þ 0:0983 m

Distance to the center of mass of link 2 lc2ð Þ 0:0229 m

Moment of inertia of the center of mass m1 0:1213 kg:m2

Moment of inertia of the center of mass m2 0:0116 kg:m2

Table 1.
Robot parameters.
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Figure 4.
Motion errors tracking and torques behavior with neural-fuzzy without disturbances.

Figure 5.
Motion errors tracking and torques behavior with compensatory neural-fuzzy with without disturbances.
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Figures 4 and 5 show the time evolution position and velocity errors and the
torque applied to each joint of manipulator Robot with neuro-fuzzy controller and
neuro-fuzzy controller respectively. Through these graphics, we can see that, the
Neural –fuzzy controllers and compensatory Neural-fuzzy controllers provide a
good tracking performance.

On the one hand, we can observe that the tracking errors are limited by low
values, and the dynamics of the errors in position vary little compared to that of the
errors in speed. This is physically explained by the fact that the position depends
only on the environment while the velocity in addition to the environment depends
on the Jacobean matrix. On the other hand, the command paths are smooth, which
facilitates their implementation. This is achieved through the appropriate choice of
parameters of the control structures.

In order to test the capacity of adaptation and robustness of the proposed
approach, we have added in our simulation at time t ¼ 5s the combined friction and
external torque disturbance for each joint, given as follows.

τfi ¼ 38:3 _qi þ 18:9 cos qi
� �

(59)

The results obtained are illustrated by Figures 6 and 7, where we note that the
tracking errors show peaks especially at the moment of the introduction of the
disturbances, which are rejected quickly, by the Neural – fuzzy controllers and
Compensatory Neural-fuzzy structure of the regulator, which allows to conclude
that the tracking performance is very little affected by these disturbances. This is
due to the low sensitivity to disturbance of the input data of the proposed control
strategy.

Figure 6.
Motion errors tracking and torques behavior with neural –fuzzy with disturbances.
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5. Conclusion

In this chapter, we have proposed and presented a control strategy based on a
neuro-fuzzy inference system regulator with a fuzzy compensator to control the
manipulator robot with two joints.

It is important to note that the compensatory neural fuzzy inference system is
more powerful than fuzzy systems or neural networks, since it can incorporate
these advantages:

• Adaptive fuzzy reasoning method using fuzzy compensator can make the
fuzzy system adaptive and efficient more.

• The neuro-fuzzy compensation system tolerates errors, because it is effective
regardless of the choice of initial fuzzy rules (good or bad) for learning.

• The speed of convergence of the learning algorithm is faster than that of the
back propagation algorithm.

• The learning algorithm not only adjusts membership functions, but also
optimizes the dynamics of fuzzy reasoning by adjusting the degree of
compensation. As a result, fuzzy neuro systems with a fuzzy compensator are
more efficient than conventional neuro-fuzzy systems.

This control strategy has the advantage of requiring only measurements of
output variables. The simulations indicate that a complete stabilization of the
system is indeed observed.

Figure 7.
Motion errors tracking and torques behavior with compensatory neural –fuzzy with disturbances.
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In conclusion, we wanted, at the end of this chapter, to try to identify a broad-
spectrum methodology that opens the field to a possible standardization of the
design of control laws based on a neuro-fuzzy structure equipped with a compen-
sator, in order to controlling a poorly understood and imprecise dynamic system. It
would be interesting in the context of experimental tests to judge the performance
of the methods proposed on real systems.

Author details

Rabah Mellah*, Hocine Khati, Hand Talem and Said Guermah
Design and Control Laboratory Automated Systems, Faculty of Electrical
Engineering and Computer Science, UMMTO, Tizi-Ouzou, Algeria

*Address all correspondence to: mellah.rab@gmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

15

Compensatory Adaptive Neural Fuzzy Inference System
DOI: http://dx.doi.org/10.5772/intechopen.96050



References

[1] JYH-SHING R., CHUEN-TSAI S.,
“Neuro-Fuzzy Modeling and Control”
Procedings of the IEEE, Vol. 83, N0 3,
March 1995 pp. 378–404.

[2] S. Ghosh, M. Majumder. “Prediction
of Wave Energy Potential in India: a
Fuzzy–ANN Approach.” Intech-2019,
DOI: http://dx.doi.org/10.52772/intech
open.84676.

[3] S.D. Nguyen. “ANFIS: Establishing
and Applying to Managing Online
Damage.” Intech-2019, DOI: http://dx.
doi.org/10.5772/intechopen.83453.

[4] B. Ergün, C. Sahin and U. Kaplan.
“ANFIS Definition of Focal Length for
Zoom Lens Via Fuzzy Logic Functions.”
Intechopen-2017, DOI: http://dx.doi.
org/10.5772/67823

[5] L. Moradi and R. Ehtehamrasi.
“ANFIS to Quantify Maintenance Cost
of IT Services in Telecommunication
Company.” Intechopen-2020, DOI:
http://dx.doi.org/10.5772/intechope
n.82827

[6]HAO Y. “Constructing Nonlinear
Variable Gain Controllers via the Takagi -
Sugeno Fuzzy Control.” IEEE
Transactions on Fuzzy Systems, Vol. 6,
No. 2, May 1998, pp. 226–234.

[7] YAN-QING., ABRAHIM K.,
“Compensatory Neurofuzzy Systems with
Fast Learning Algorithms.” IEEE
Transactions On Neural Networks, Vol.
9, N0 1, January 1998 pp. 83–105.

[8] BYUNG K., WOON C. H., “Adapive
Control of Robot Manipulator Using
Fuzzy Compensator.” IEEE Transactions
on Fuzzy Systems, Vol. 8, No. 2,
April 2000.

[9] R. Mellah, S. Guermah, and R.
Toumi. “Adaptive control of bilateral
teleoperation system with
compensatory neural fuzzy controllers.”

International Journal of Control,
Automation and Systems, vol. 15, no. 4,
pp. 1949–1959, 2017.

[10] R. Mellah and R. Toumi,
“Compensatory neuro-fuzzy control of
bilateral teleoperation system,” Proc. of
20th Internationale Conference on
Methods and Models in Automation an
Robotic, 24–27 August 2015,
Miedzyzdroje, Poland, pp. 382–387.

[11] J. R. Jang. “ANFIS: adaptive-
network based fuzzy inference system.”
IEEE Transactions on Systems, Man and
Cybernetics N° 23, vol. 13 pp 665–685,
1993.

[12] S. R. Jang and C. T. Sun. “Neuro-
fuzzy and Soft Computing: A
Computational Approach to Learning
and Machine Intelligence.” Prentice
Hall, Englewood Cliffs, NJ, 1997.

[13]M. N. M. Salleh, N. Talpur and K. H.
Talpur. “A Modified Neuro-Fuzzy
System Using Metaheuristic Approach
for Data classification.” Intechopen-
2018, DOI: http://dx.doi.org/10.5772/
intechopen.75575

[14] KARAKASOGLU A.,
SUNDARESHAN M., “A Recurrent
Network-based Adaptive Variable
structure Model- following Control of
Robotic Manipulators.” Automatica,
Vol. 31, N0 10, pp. 1495–1507, 1995.

[15] YIH-GUANG L., WEI-YEN W.,
TSU-TIAN L., "Robust Adaptive Fuzzy-
Neural Controllers for Uncertain
Nonlinear Systems” IEEE Transactions on
Robotics and Automation, Vol. 15, No. 5
Oct 1999.

[16] JEAN B. M., “Robust Neuro-Fuzzy
Sensor-Based Motion Control Among
Dynamic Obstacles for Robot
Manipulators.” IEEE Transactions on
Fuzzy Systems, Vol. 11, NO. 2,
April 2003, pp. 249–261.

16

Fuzzy Systems - Theory and Applications



[17]MENG J., “Robust Adaptive Control
of Robot Manipulators Using Generalized
Fuzzy Neural Networks.” IEEE on
Industrial Electronics, Vol. 50, N°. 3,
June 2003.

[18] R. Mellah and R. Toumi, “Control
bilateral teleoperation by compensatory
ANFIS,” Advanced Mechatronics
Solutions, vol. 393, pp. 167–172, 2016.

[19] LIMIN P., PENG-YUNG W.,
“Neural-Fuzzy Control System for Robotic
Manipulators.” IEEE Control Systems
Magazine, February 2002. pp. 53–63

[20]H Khati, R Mellah, H Talem. “Ne
uro-fuzzy Control of a Position-Position
Teleoperation System Using FPGA.”
24th International Conference on
Methods and Models in Automation and
Robotics, 26–29 August 2019,
Miedzyzdroje, Poland, pp. 64–69.

[21]H Khati, H Talem, R Mellah, A
Bilek. “Neuro-fuzzy control of bilateral
teleoperation system using FPGA.”
Iranian Journal of Fuzzy Systems vol.
16, N°. 6, pp. 17–32, 2019.

17

Compensatory Adaptive Neural Fuzzy Inference System
DOI: http://dx.doi.org/10.5772/intechopen.96050


