
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Chapter

LabView and Connections with
Third-Party Hardware
Giuseppe Porzio

Abstract

Data acquisition is a function that plays a fundamental role in the automatic
supervision and system control, it combine the system (software and hardware) to
the process to be controlled (real world). The field of application starts from research
to automation, from industry to home automation, in practice everything that in
some way must be performed without human supervision. Data acquisition systems
are mainly used to measure physical phenomena such as: temperature, voltage,
current, distance and pressure, shock and vibration, and displacement, RPM, angle
and discrete events, weight. In order to measure it we need a DAQ , Data AcQuisition
System, in this chapter we propose to use a cheap open source hardware: Arduino.

Keywords: Arduino, cheapest hardware, wiring code, LabView code,
producer/consumer, SCADA system

1. Introduction

Data acquisition is a function that has a role of fundamental importance in the
functions of automatic supervision and control because it relates the system (soft-
ware and hardware architecture) with the process to be controlled (real world).
The field of application ranges from research to automation, from industry to home
automation, basically everything that in some way must be performed without
human supervision.

Data acquisition systems are primarily used to measure physical phenomena
such as: temperature, voltage, current, strain and pressure, shock and vibration,
distance and displacement, RPM, angle and discrete events, and weight.

When the engineer is interested in controlling a physical process (light intensity,
sound analysis, mass measure, position check, velocity, PID control, etc.) his first
problem is to acquire the right information coming from one or more sensors, in
some cases we talk about sensor strings or distributed sensors.

The goal is to acquire data that are consistent over time and that correctly
describe the shaping of the physical process. All this allows both the correct
processing of data and a fast action on the control system through its actuators
(motors, LEDs, speakers, etc.).

“Data acquisition” means data exchange in both directions: from the process to
the system and vice versa. In all control systems the “heart” of the process is the
data acquisition that plays a main role but at the same time it must be accompa-
nied by a simple and intuitive user interface, the HMI-Human Machine Interface.
Data acquisition systems are generally referred to by the acronym DAQ (Data
AcQuisition).

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

2

Figure 1 shows the electronic chain to acquire an analog signal. The sensor is the
device sensitive to the physical feature, the analog-to-digital conversion system,
and the computer on which the SW architecture for managing the information is
developed. Both feedback and actuators are missing in this figure as they are not the
subject of this chapter.

This chapter is designed to be a guide for beginners, programming amateurs
and students who wish to approach the world of automation with LabView using
low-cost third-party DAQs such as Arduino.

Arduino is a “machine” capable of working in Stand Alone, it can perform
simple industrial control tasks.

In a SCADA (Supervisory Control And Data Acquisition) system there is a Master
and many Slaves. The Master device carries out the configuration, supervision and
control of the slaves. The slave, a local device very close to the process, is equipped
with a processor and a system of ports to interface with the sensors and actuators.
In this chapter we will write some code to have LabView in the role of Master and
Arduino in the role of Slave.

2. Sensor, filtering and multiplexer

We speak about Data Acquisition process, DAQ , when we refer to the process
of making measurements of physical phenomena with a PC (tablet, smartphone,
workstation, etc). The signals, to be processed, are converted from the analog
domain to the digital domain. Only after the digital acquisition we can process the
data acquired (recording, visualization, analysis). For this purpose, an A/D (Analog
to Digital) subsystem is used to convert the signal.

We report, below, some theoretical hints of the components visible in
Figure 2.

At the sensor output, the electronic chain includes a “signal conditioning
circuit”, a multiplexer, the sampling circuit and finally the A/D converter.

The measurement of a physical phenomenon, such as temperature, sound
level, vibration of motion oscillatory, or wind speed, begins with a sensor. A
sensor is a device that converts the physical phenomenon into a measurable
electrical signal.

For example, an elevator gets to the floor through the installation of position-
ing sensors; a washing machine is equipped with a sensor that measures the rpm
of the motor or the water level in the drum; a twilight light; a TV remote control.
The classic mercury thermometer is also a type of sensor that is used to measure
temperature. In this case, however, the measure is expressed directly on a gradu-
ated scale readable by man and not by the machine: we speak in this case of human
readable type sensor.

Figure 1.
(Acquisition chain) [1].

3

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

The sensors can produce several kind of electrical outputs such as voltage,
current, resistance, or other electrical characteristics modulated from physical
phenomenon. When the signal coming from the sensor or from the transmission
line is noisy or the ground reference is not at 0 volts (as it should) is preferable to
use an isolation system.

In “signal conditioning circuit” we propose a section with electrical isolation
that allows the separation of the signal from other electrical sources. This aspect is
also essential for the measurement of signals with very small amplitude in which
external electrical potentials can affect the quality of the signal considerably,
providing incorrect results.

2.1 Signal conditioner

The signal conditioner circuits are designed to process the analog signal from
the sensors and prepare it to be digitally sampled. The conditioning circuit must
linearize the sensor output, eliminate electrical interference that adds to the signal
(so-called “noise”, as shown in Figure 3), and amplify the small signal (mV, μV) to a
nominal level, to be easily digitized.

2.2 Multiplexing

Multiplexing, on the other hand, is that part of the circuit that allows us to
expand the inputs of our DAQ , thus using a single conversion line on multiple input
channels Figure 4.

Figure 2.
Detail of the complete acquisition scheme.

Figure 3.
Signal conditioning, filtering and amplification.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

4

The multiplexer (commonly called MUX) is a selector of data lines (analog or
digital) able to select different input signals: once selected the channel, the cor-
responding signal is collected and sent on the output line. There are some particu-
larly performing and expensive devices that do not use the MUX but they have a
 complete acquisition chain for each input.

3. Sampling and coding

3.1 Sample and hold

The S&H system is the circuit part that performs the sampling of the signal
(sampling phase). Sampling, in signal theory, is a technique that consists in con-
verting a continuous signal in time into a discrete signal, evaluating its amplitude at
regular time intervals. Therefore, considering that the physical quantity attributed
to the physical phenomenon varies continuously over time without any interrup-
tion, it is necessary to decide with which time interval to interrogate the sensor in
order to have meaningful data for our measurement.

From the definition of the sampling interval (Tc) for the scan we derive the
sampling rate:

 c

c

f
T

=
1

 (1)

The effect of the circuit in Figure 5 is to store the analog value taken at a given
time (sample phase) and keep it constant for as long as it takes the converter to
perform the conversion (hold phase).

But how fast should the sampling rate be? Clearly it depends on the phenomenon
we are observing. See two examples below:

1. We want to monitor the temperature of a room to stabilize it at a value of
Tset ± error. Considering the inertia of the room and the radiators it makes
sense to acquire the temperature every second i.e. fc = 1 Hz.

Figure 4.
Example of a 4-input multiplexer.

5

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

Question:

2. How high has to be the sampling rate if we would like to create automatic
braking for anti-collision car system? Assume that max velocity, for small/
medium sized car, is 180 km/h.

Answer:

:3,6

18 5 /0 / 0km h m s⇒ (2)

Let us assume that the control system reacts in such a time that the car still
travels at maximum for 10 cm (response time).

So, if we make some calculations, the time between one reading and the next
one of the vision sensor must be less 2 ms. These involves

 cf Hz>500 (3)

The proposed cases are at the antipodes: while in the first one we do not have any
criticality, in the second one there is a big responsibility due to the need to manage
the stop of the car before the impact.

In the real world, according to the mathematician J. Fourier, an analogue
signal can be represented by linear combination of sinusoidal functions (called
harmonics).

The first harmonic, called fundamental, has the same frequency as the input sig-
nal, while the following harmonics will have a frequency multiple of the fundamental.

The transition from the analogue to the digital domain, therefore discrete, leads
us to acquire one of these harmonics, of course the first one, therefore a suitable
sampling frequency will be the key to a good acquisition of the analogue signal,
preserving its main characteristic, its frequency.

3.2 Sampling theorem (or Nyquist-Shannon theorem)

In order to have a correct sampling (without loss of information) we must to
choose a correct frequency of sample rate. Supposing that the frequency signal
(first harmonic) is fmax then Nyquist-Shannon Theorem says that the minimum
sampling frequency fs, that preserve the frequency information of a original signal,
should be double of the fmax.

 sf f≥
max

2 (4)

If, in addition to the frequency, we would like to storage also the shape of the
signal we need:

Figure 5.
S&H circuit and example.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

6

 sf f≥
max

5 (5)

The sampling rate is normally expressed in Sample Rate and the unit of measure
is number of samples per second [#S/s].

To understand better how the theorem works in the Figure 6 we report a
sequence of acquiring with several sampling rate. The software used is developed
for university student’s lectures [2].

Figure 6 shows how the sampling frequency acts. We start with a 440 Hz source
signal (resonance frequency of a conventional tuning fork) which is visible in the
first waveform graph of the sequence. In the following sequences the following
sampling frequencies were used: 440 Hz, 600 Hz, 880 Hz and 2200 Hz.

In the first and second cases the fs is not adequate, in fact we have an under-
sampling. In the third case we have a result that preserves the frequency of the input
signal. Finally, in the last case, we have reconstructed quite faithfully the profile of
the original signal.

3.3 Coding

The last sequence in the DAQ chain (Figure 2) consists of the operations
performed by the A/D converter: quantization and encoding. First we need to
introduce the concept of signal dynamics. The dynamics of the signal indicates the
maximum excursion of the signal and, therefore, also the maximum and minimum
values it can reach, the range of Vin (also defined as the Full Scale value):

 FSV V V= −
max min

 (6)

(we have assumed a voltage signal)

The input signal, being continuous in time, can by definition take on an infinity
of values. As well as the sampler has discretized the signal in time (X axis) we now
need another circuit which discretizes the values of the physical quantity which
represents the information (Y axis). So the technique is to approximate the value
acquired in the sampling phase to a discrete value. The number of discrete values
available for these approximations is given by a very simple calculation. If we
choose n bit to make a digital conversion then the number of discrete value is 2n.

At this point we have to define the unit of quantization that we call quantum
or quantization step, that is the smallest approximation interval that we use to
compare the sampled signal to discretize it.

 [] FS

n

V
Q V =

2
 (7)

Q is called quantization step. It is possible to assert, at this point, that a higher
bit number and a smaller VFS interval implies the greater number of intervals
available. This means that the size of the interval will tend to be an extremely small
value with increasingly accurate measure.

The simplest coding (commonly used for unipolar signals, i.e. always positive
ones), natural binary code (straight binary), consists in making each quantization
interval correspond to a progressive binary number, starting from 0 (corresponding
to the lowest level) up to 2n-1.

7

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

Figure 6.
Signal sampled with different fs.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

8

In Figure 7 we show what we have said, on the X-axis we put the intervals
between Vmax and Vmin and beside them the bit combinations. The first level consists
of all bit to zero, so the word 000...00 corresponds to Vmin while the last level is
given by the word with all ones 111....11 i.e. Vmax.

A different number of resolution bits clearly produces different quantization
ranges, some data is shown in Figure 8.

Clearly the measurement of Q is affected by error and corresponds precisely to
Q/2 and is defined as quantization error.

Recapitulate, in order to perform a correct measurement through a DAQ system,
the following points must be satisfied:

1. Prefer a sensor with a linear response and that the maximum and minimum
values are compatible with the dynamics of the DAQ;

2. Choose an appropriate sampling rate;

3. Choose an appropriate resolution;

The premises made so far are useful to better understand the code written for the
Master unit and the slave unit. In this chapter we propose an cheap and open source
prototyping board for which we will write some code to transform it into a DAQ .
The proposed board is Arduino UNO rev.3. In the next paragraph, the Arduino
technology will be presented [3].

Figure 7.
Quantization and coding.

Figure 8.
Resolution example.

9

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

4. Arduino UNO rev. 3

Arduino Uno (Figure 9) is a microcontroller board (Italian open source project)
based on the ATmega328P (resolution @10 bit; input range 0÷5 V). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a
16 MHz like internal clock (sample rate = ~10 kS/s), a USB high speed connection,
a power jack 9 Volt input, an ICSP header, reset button and several states LED like
Tx/Rx serial communication.

It contains all interfaces needed to support the microcontroller and its function-
ality; You can use prototype board with your Uno without worrying about doing
something wrong, worst case you can replace chip with a new one and start over
again. The Uno board is the first USB Arduino boards, today are available several
models of it: with wifi o ethernet, compact or large model, wearable, etc.

Wiring is an open-source programming framework for microcontrollers C/C++
based.

The developer, under conditions of classical use, writes code for Arduino in
order to have a “machine” that works in Stand Alone, in Figure 10 is shown his
working scheme, the code runs on Arduino, through the code reads the sensors and
produces actions on the physical world. In the next paragraph will be discussed the
code to transform Arduino from Master to Slave.

The new role of Arduino will be to be used in LabView environment as a real
data acquisition system (Figure 11).

Figure 9.
Arduino UNO rev.3.

Figure 10.
Arduino-stand alone mode.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

10

4.1 From master to slave

Among of programmer “sketch” is the name that Arduino’s programmer uses
for a program. It’s of code written in like C, compiled and, then, uploaded on the
board. After it is possible to run on an Arduino board the code. There are two
distinct functions available in Arduino sketch: setup() and loop().

The setup() is called once time only at beginning when the sketch goes in run. It’s
a correct place to make setup tasks like setting pin modes or initializing libraries.

The loop() function is a infinite loop and is heart of most sketches. You need to
include your algorithm and functions in it.

Normally in the setup() section there is the sequence of instructions to configure
all the Arduino peripherals and features that will be used in the project such as:
Analog input, PWM, i2c. In loop(), instead, is written all the control algorithm that
will be characterized by an infinite loop.

In this paragraph we propose the development of a code from a different per-
spective, Arduino will be used as a DAQ system. So inside the setup() there will be a
pre-cycle in which the Arduino waits for the USB connection to LabView and waits
for the ASCII character sequence to configure the Arduino ports as desired.

The ASCII code, we call op-code from now, to send for configuration are print-
able characters, so you can always test the Arduino code from any serial terminal or
using the serial monitor of the IDE.

For example, to configure the Analog Input channel zero (A0) just send the code
“a”. Arduino will remain in the setup() section until the master sends the character
“z” on the serial which will end the setup cycle to execute the code in the loop().

The code proposes a scenario in which analog inputs A0÷A5, DIO pin2 and pin4
and a PWM channel on pn3 are configurable. Clearly it is possible to extend the
“offer” by adding other input or output lines. The complete management of a sensor
through Arduino libraries could also be included.

Regarding the sampling time Ts it is possible to define through the ASCII codes
A,B,C,D a time delay equal respectively to 100 msec, 10 msec, 1 msec, 500 μsec. If it
is omitted the acquisition time is 1000 msec.

Figure 11.
Control hierarchy with LabView-Arduino.

11

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

The code developed in the loop() section collects data from the previ-
ously configured input line ports, maps them to the following format
#A0#A1#A2#A3#A4#A5$D0$D1 and sends the message continuously to the USB

Figure 12.
Code- SerialEvent() and blinking().

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

12

port. The message will contain as many strings as there are lines configured. In the
syntax #Ai (i = 0…5) the value of Ai corresponds to the decimal decoding of the
combination of the 10 bits, so there will be 2n combinations. At value 0 will corre-
spond 0 (zero) Volt and at value 1023 will correspond 5 Volt.

WE suggest to the reader to test own system velocity before to set 500 μsec of
sample rate. Usually, for my experience, it is very rare to follow with a LabView (not
real time) Loop code that velocity. In case the system is not fast enough, one way of not
losing data could be the following: change the Arduino’s code to collect the msg (mea-
sured value) in a vector of 100 elements and send it to LabView each 50 msec. You can
choose different size of vector but you have avoid to saturate the Arduino memory.

The op-code (operation code) we have written does not belong to any standard
communication protocol. We have invented a sequence of simple ASCIII strings
to be sent over serial. So the Master will have at his disposal a set of instructions,
which can be extended by the reader, to change the status of a digital output:
D0_ON\n, D0_OFF\n, D1_ON\n, D1_OFF\n.

In order to avoid a slowdown loop() for sensors reading, due at continuous
polling on the receipt of messages from the Master, an event-driven solution has
been considered.

The reception on the serial line of a request from the Master is triggered by the
event generated by the chip that manages the USB communication. When a byte
arrives on RX an event is generated and triggered by a software procedure. When
this occurs the Master message will be read (Figure 12).

In the end we can send a message to set a Analog output by pin3 in PWM mode.
The Pulse Width Modulation [4], or PWM, is a powerful technique to control

analogic circuits (applied to a load) using a digital signal. It is a type of digital
modulation, in particular we speech of pulse width modulation which allows to
obtain a variable average voltage depending on the ratio between the duration of the
high pulse and the entire period (duty cycle).

In electronics it is used to change the voltage, and therefore the power, on a
generic load. For example, to change the speed of a direct current electric motor,
to vary the brightness of light bulbs, especially LEDs. A useful duty cycle of 0%
indicates a pulse of zero duration, in practice no signal (Vout = 0 volts), while a value
of 100% indicates that the pulse ends when the next one begins (Vout = Vcc). To use

Figure 13.
PWM example.

13

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

this technique with Arduino is very simple, with the analogWrite (PIN, VALUE)
function it is possible to modulate the work cycle. The PIN corresponds at PWM
pins and VALUE is scale from 0 to 255. For example analogWrite (pin, 255) corre-
sponds to a 100% duty cycle and analogWrite (191) is a 75% duty cycle (Figure 13).

4.2 Arduino code

In the following boxes (Figure 15) we’ll show some code that you can use to
create a communication Master–Slave from LabView and Arduino [5].

In Figure 14 it is possible to understand the functionally of declarations reading
the comments.

In Figure 15 is possible to verify the setup() code, inside it there are the com-
ments to understand it. The code in Figure 15 has been conceived to be very static
and the expansion is very simple for the novice programmer. The serial speed
has been set at 2 * 106 bit/s in order to have the maximum communication speed
between Arduino and the Master.

The code written in the “WHILE LOOP” could be redesigned to treat
the Arduino channels dynamically. We want to say that configuration strings
(like pinMode(4, OUTPUT)) can be sent directly from the MASTER unit.

Figure 14.
CODE-variable declaration.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

14

Figure 16.
Example code for dynamic configuration.

Figure 15.
Code-slave mode setup().

15

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

Figure 17.
Loop() code.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

16

 Figure 16 shows a small piece of code that is a good starting point for complet-
ing the dynamic channel configuration.

At this point we show the code about the blinking procedure and the Serial
events procedure, respectively both in Figure 12.

In the end we report the loop() code, Figure 17. The code is very simple, the
final message is made-up by concatenating the message in each “if” statement.

5. LabView architecture

In this section we show you the architecture that we use to run LabView code in
Mater mode. We have chosen the Producer/Consumer Architecture [6].

The Producer/Consumer design pattern (Figure 18) is based on the Master/Slave
pattern, and is geared towards enhanced data sharing between multiple loops running
at different rates. The Producer/Consumer pattern is commonly used when acquiring
multiple sets of data to be processed in order. Suppose you want to write an applica-
tion that accepts data while processing them in the order they were received. Because
queuing up (producing) this data is much faster than the actual processing (consum-
ing), the Producer/Consumer design pattern is best suited for this application. In our
project we can set a high sample rate (up to fs = 10 kHz) so in this can we can occur in a
data loss case. With Producer/Consumer is sure that we are implementing a data loss-
less LabView architecture. But we have considerated also an architecture Event-Driven
to catch the write instance from LabView vs. Arduino only if asked from the operator.

In Figure 19 we show the front panel developed in LabView [7].

5.1 Front panel

On the left side of front panel are present a several controls to configure the DAQ
(Arduino in Slave mode) in according with previous paragraphs. Instead on the
right side we found a control to set the PWM value (analog output) and the digital
output state. We use Waveform chart like oscilloscope to view the six signal.

Figure 18.
Event structure in producer/consumer design pattern.

17

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

After defined the configuration you have to send a message at the serial VISA
communication by the pressing of “SEND CONFIGURATION” button.

After that the cycle Producer/Consumer starts and the sensor reading is shown
on the Waveform Chart.

5.2 Block diagram

Inside the LabView Code (block diagram) there are three nodes. The first one
composed by “While Loop” (Figure 20a) that waiting for user’s hardware configu-
ration. In this Loop we create a Boolean array with all hardware instance, at the end
of the configuration the user pushes the button and send the array to subvi “open
and configure.vi” (second node). It makes a rights sequence of op-code, open the
Serial Port communication (in this case com3) and send it at Arduino (Figure 20b).
During this phase you can observe the blinking LED on Arduino board, this means
that the configuration message has correctly reached Arduino and it is processing
the op-code.

From Figure 20b is possible to verify that the serial port velocity
is 2Mbps.

In this way the communication between Master and Slave does not make
interference with acquiring. In fact one character, in ASCII encoding (1 byte),
from Arduino to LabView is sent in 4 μsec. If we would configure all analog inputs
(6) and all digital inputs (14) the maximum number of characters would be = 6
prefixes (#) + 6*4 (digits of value among 0÷1023) + 14 prefixes (&) + 14 digital
states = 58 bytes.

Maximum time to transmit the entire message is 58 Byte * 4 μsec = 232 μsec.
This time is half of the minimum sampling time set in the code, that is 500 μsec.
You could also reach 100 μsec of sampling rate that corresponds to 10 kHz of
sampling frequency, in this case you have to merge the bits of the digital input,
so it is possible to save 26 bytes but it is not enough. We have to modify the
syntax of sending analog input values to reach at least 80 μsec of transmission
time. This modification to the Arduino code we leave to the reader as an
exercise.

In last one node, Figure 21, we can see the Producer Loop and the Consumer
Loop. Both are connected by the queue, in queue process we read the Arduino’s

Figure 19.
LabView front panel.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

18

Figure 20.
First node and second node in block diagram (a and b).

19

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

Figure 21.
Producer/consumer event-driven LabView CODE.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

20

message at maximum frequency and by consumer loop we process the data. The
Event-Driven statement is configurated with the following events.

5.3 Timeout

The timeout terminal of “Event Structure” is connected, of course, at local
variable”Ts (Sampling Rate)” in according with sample rate configurated in
Arduino in node 1. In this “case” we read with “msg read from ARDUINO.vi” the
Arduino’s message from serial (Figure 22). It is very simple code. The data are
available on serial port (hardware) and the code read it using a Bytes at Port
function.

5.4 Analog output [PWM]

in this case we send a message to Arduino by serial port, remember that Arduino
reads the message with a SerialEvent() function. Here we make a message with a

Figure 22.
Block diagram of msg read from ARDUINO.Vi.

Figure 23.
Analog output [PWM] code.

21

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

word PWM followed with “ANALOG OUTPUT [PWM]” control knob converted in
ASCII code (Figure 23).

5.5 Pin2 state and Pin4 state

In this “case” (Figure 24) we build the message to send Arduino by serial port
to change the digital pin state, remember that Arduino reads the message with a
SerialEvent() function Figure 12.

Now we go back at Figure 21 where we have to talk about the Consumer Loop.
Through the enqueue function we read the data from the head of the queue with
the FIFO method (first in first out). If we have not error the data read are processed
with the subvi “data extraction from Arduino message.vi”.

In Figure 25 there is the screen code. The code scan the message, check if pres-
ent special ID char (#) or (&) and collect the data by indexing it on the loop edge.
With Conditional indexing we choose where collect the data: Analog Array or
Digital Array.

The subvi “data extraction from Arduino message.vi” returns the status
of the digital inputs and the numerical values of the analogue inputs, if
configured.

To convert the integer values reads from analog ports we need to perform a
simple conversion. According to what we have studied in the previous paragraphs
having a 10 bit ADC and a dynamic of 5 volts we obtain:

[] []

10

5 V
 = 0,00488 V

2
 (8)

At this point, in the consumer loop, before displaying the analogue signals on
the Waveform chart we multiply the output by the value 0.00488.

Figure 24.
Pin2 & pin4 event.

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

22

Figure 25.
Data extraction from Arduino message.vi.

23

LabView and Connections with Third-Party Hardware
DOI: http://dx.doi.org/10.5772/intechopen.96056

6. Conclusions

In this chapter we have seen one of the many ways of how LabView can be used
with third parties hardware. The idea is to have an inexpensive tool not for industrial
use but for High School applications where it is possible with a few euros to set up
a laboratory for the analysis of an RC/RLC circuit, voltage divider, diode/transistor
characterization. With a cheap sensors, connected at Analogue inputs, you can prepare
laboratory experiments such as the pendulum oscillation, spring characterization,
measurements of angles in uniform angular motion, etc.

In the end you could organize LabView CORE I and CORE II training courses
in e-learning where the DAQ board is very cheap and easily purchased on the web
from the students.

Conflict of interest

The authors declare no conflict of interest.

Thanks

Dedicated to My wife and my daughters for encouraging and supporting me.
I would like to thank, my friend, the Director of the Department of Mathematics

and Physics at my University, Prof. Lucio Gialanella, for supporting my initiative
and for his precious advice.

Author details

Giuseppe Porzio
University of Study Of Campania “Luigi Vanvitelli”, Caserta, Italy

*Address all correspondence to: giuseppe.porzio@unicampania.it

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

24

LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use

[1] LabVIEW™ Core I PN 326292A-01

[2] Giuseppe Porzio is the author of
LabView SW for didactic experience

[3] Alan GS. Introduction to Arduino: a
piece of cake. ISBN: 1463698348

[4] Jian S. Dynamics and Control of
Switched Electronic Systems Pulse-
Width Modulation. pp. 25-61. ASIN:
B00A9YGCWC

[5] Available from: https://github.com/
gporziog/LabView-and-connections-
with-third-party-hardware/tree/master/
Ardunio_Like_DAQ

[6] LabVIEW™ Core II PN 326293A-01

[7] Available from: https://github.com/
gporziog/LabView-and-connections-
with-third-party-hardware/tree/master/
LabView%20Master%20CODE

References

