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Chapter

Sugarcane Breeding for Enhanced 
Fiber and Its Impacts on Industrial 
Processes
Pietro Sica

Abstract

For centuries, sugar has been virtually the only commercialized product derived 
from sugarcane. Traditionally, sugarcane breeding programs focused exclusively 
on the increase of the sucrose content, abandoning characteristics such as biomass 
yield and fiber content. Recently, sugarcane gained prominence also for its potential 
in terms of biomass production. As a result, some sugarcane breeding programs 
began to look for ways to increase fiber content and biomass yield instead of sugar 
content. In the 1980s, Alexander created the concept of energy cane. Here we 
review the changes in the sugarcane breeding programs related to enhanced fiber 
instead of sugar content. Compare the energy generation of energy cane with 
other biomass crops. Also, the recent changes in the biomass and biofuels scenario, 
focusing on topics as 2G ethanol and the RenovaBio program, from the Brazilian 
Government, which will give carbon credits to biofuels. Although several stud-
ies demonstrate its potential for biomass production, energy cane is still a new 
technology on an experimental scale and has been struggling to reach and establish 
on a commercial scale. However, policies and new technologies are increasing the 
demand for lignocellulosic material. Therefore, this chapter connects these points 
and shows the potential of this new plant material for the coming years.

Keywords: energy cane, bioenergy, 2G ethanol, RenovaBio, cane breeding, biomass

1. Introduction

Sugarcane is the most produced crop in the world, yielding about 1,890 million 
tons on approximately 26.8 million hectares. About 40.6% of the world’s produc-
tion was in Brazil. Asia (38.2%) also stands out, especially with countries such as 
India (18.4%) and China (6.5%), which are the second and third largest producers  
in the world, respectively. However, due to its high yields (70.6 tons/ha), the 
sugarcane harvested area is lower than other production main crops such as wheat, 
maize, and rice [1].

Dry matter of sugarcane is composed of sugar, mostly sucrose, and fiber (cellu-
lose, hemicelluloses, and lignin) [2]. Studies have shown that sugarcane commercial 
hybrids stem is composed of about 14–18% sucrose and 12–15% fiber. The rest 
consists of water, minerals, and other substances [3, 4].

Worldwide, sugarcane is primarily grown as a source of sugar, providing around 
70% of the world’s sugar demand [5]. In 2018/2019, the world sugar production is 
expected to yield about 188 million metric tons of raw sugar, of which 68 million 
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will be produced in Brazil and India [6]. In 2017, world ethanol production was 
about 27.05 billion gallons—the United States was the world’s largest producer 
(58%), followed by Brazil (26%). However, the vast majority of US ethanol is 
produced from corn, while Brazil primarily uses sugarcane [7]. For this reason, 
traditionally, sugarcane breeding programs have focused on increasing the sugar 
content.

Sugarcane bagasse and straw have a high content of fiber and can be used for 
energy purposes according to four platforms: cogeneration, production of second-
generation bioethanol, gasification to produce syngas, or generation of biogas, 
and pyrolysis to produce bio-oil and biochar [8–10]. In 2018, in the Brazilian final 
energy consumption sugarcane products represented 17.2% of all energy consumed 
in Brazil, of which 10.8% was from the sugarcane bagasse and 6.4% from ethanol, 
those products together were higher than mineral coal (14.4%), natural gas (11.4) 
and firewood (9.1%) [11].

Thus, sugarcane has great potential as a source of bioenergy. This review will 
present and discuss the traditional breeding programs that aim to increase sucrose 
content and the shift of this paradigm, focusing on the increase of biomass and 
fiber for bioenergy generation. In addition to the prospects for the use of biomass as 
a renewable and sustainable source of energy in the coming years.

2. Sugarcane breeding

Sugarcane is a crop that belongs to the genus Saccharum L. in the Poaceae 
family. Its genus includes six different species with variable sizes and numbers of 
chromosomes: S. officinarum, S. spontaneum, S. robustum, S. barberi, S. sinense, and 
S. edule. There are four genera closer to Saccharum L. that can readily interbreed 
(Sclerostachya, Miscanthus, Narenga, and Erianthus), forming the ‘Saccharum  
complex`. Three gene pools for sugarcane were proposed (Table 1).

One of the biggest challenges for taxonomists and molecular biologists is that 
‘Saccharum complex’ genera have a high level of polyploidy and aneuploidy, that 
is, an unbalanced number of chromosomes. Therefore, the complexity and size of 
the sugarcane genome are limitations in genetic improvement [12, 14]. Excessive 
non-flowering is one of the desirable characteristics of a sugarcane cultivar because 
flowering causes a pithing process in the stalks. However, flowering is a crucial 
characteristic in a breeding program, making it necessary for breeding stations 
to be built in specific locations where these phenotypes may flower regularly and 
have fertility. Another challenge for sugarcane breeders is the time. In Brazil, the 
breeding program takes from 11 to 13 years starting from the first crossbreeding 
performed until the release of a cultivar, since it is necessary to evaluate the clones 
on diseases and pests, as well as their productivity in different environments [15].

Gene pool Genera examples Ease of crossing Hybrids

GP-1 S. officinarum clones, S. robustum,  

S. spontaneum, Erianthus and Miscanthus

Easy Fertile

GP-2 Remainder of ‘Saccharum complex’ Some biological barriers 
make it more difficult

Tend to be sterile

GP-3 Sorghum and Zea Needs techniques to 
enable gene transfer

Weak, lethal, or 
completely sterile

Table 1. 
Proposed gene-pools for sugarcane and potential genera to be used in sugarcane breeding programs (adapted 
from [12, 13]).
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2.1 Traditional sugarcane breeding

Until the 19th century, the most cultivated species was Saccharum officinarum 
because of its high sugar content [12]. Thereafter, sugarcane breeders that were 
interested in increasing disease resistance and yield crossed S. officinarum with a 
wild and vigorous relative, S. spontaneum, and then backcrossed the hybrids to  
S. officinarum [16]. The hybridization of both genera resulted in modern cultivars 
with chromosome numbers ranging from 100 to 130 [17], of which 80% originate 
from S. officinarum and 10–15% from S. spontaneum, with about 5–10% being 
recombinant chromosomes [18, 19].

S. officinarum was first found growing in gardens in the aborigines of New Guinea, 
a humid and high-temperature region. Later, it began to be used as raw material for 
sugar production, playing an important social, economic, and cultural role during the 
colonial period [20]. S. spontaneum is a grassy wild species found in diverse environ-
ments from Africa to Southeast Asia and the Pacific Islands. Since it evolved in such 
different environments, it has a wide gene pool, can adapt to different climate charac-
teristics and is resistant to diseases to which S. officinarum is susceptible [21, 22].

Later, during the 20th century, sugarcane breeding programs were expanded, 
and all the efforts were still concentrated on increasing the sugarcane yield for 
sugar. Current levels of sugar yields are difficult to overcome, especially when 
considering the management systems and the carbon partition between the accu-
mulation of sucrose and plant growth [23, 24]. The initial success of some breeding 
programs and subsequent stagnation in the genetic gains of sugarcane can be seen in 
the yield variation in the US, Brazil, and the World in the last fifty years, especially 
in the last decade [25].

In 1989, [22] described the ‘modern’ (1890–1989) sugarcane breeding process by 
dividing it into three phases. The first phase involved crossing and selecting among  
S. officinarum clones. By that time several clones were used by sugar industries world-
wide. Those clones had commercial milling qualities such as sugar content, low fiber, 
and low impurity levels. However, they were susceptible to some diseases and had 
low vigor and ratooning performance. The second phase required developing inter-
specific hybrids by crossing the selected clone in the first phase with other species, 
which is normally part of the ‘Saccharum complex’. S. spontaneum has high adaptabil-
ity to diverse environments, disease resistance, high vigor, and ratooning capacity. 
Because of this, it was mostly used in the interspecific cross with S. officinarum. To 
increase sugar content and stalk size, breeders used a process called “nobilization”. 
Nobilization was based on backcrossing the initial hybrids with S. officinarum clones 
to increase the sugar content and the stalk size. The third phase was the multiplica-
tion and exploitation of the hybrids obtained in the second phase [12].

This breeding process, however, led to the narrowing of the genetic base of 
sugarcane breeding programs [21, 22]. Backcrossing sugarcane hybrids with  
S. officinarum, despite increasing the sugar content reduces fiber content and 
vigor, as the varieties are more susceptible to abiotic stresses and diseases [26]. 
Thus, the commercial average yield of sugarcane is about 25% of the potential field 
yield of fresh biomass in optimum conditions, 400 tons per hectare [27]. Because 
of these concerns, the interest in genetic diversity increased and sugarcane breed-
ers saw a potential opportunity to introgress new genes into commercial hybrids 
[28]. The ‘Saccharum complex’ fiber and sugar content is presented in Table 2 [29].

2.2 Sugarcane breeding for fiber and the energy cane concept

After more than 100 years of looking to increase sugar yield, by the beginning of 
this century sugarcane breeding programs started to search for a new type of cane, 
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focusing on high yield and fiber for bioenergy generation [9, 30]. Now the goal of 
some breeding programs is to produce hardy plants with less juice and higher fiber 
productivity. A new introgression process is being used, this time replacing sugar 
plants with fibrous plants (see Tables 1 and 2). Reducing the sugar and increasing 
the fiber content would make plants more rustic, bringing about economic and 
environmental benefits as well as increased resistance to pests and diseases [9].

In the 1970s, in Puerto Rico, Alexander [31] already drew attention to “changing 
the focus on the ‘qualitative side’ features of sugarcane, as sugar yield, to the ‘quan-
titative side,’ such as green yield.” He was one of the first breeders to use the energy 
cane concept in 1985. By that time, Alexander affirmed that if the energy cane were 
harvested with leaves and the top, it would increase the total biomass by 100%, 
with a penalty of 25–35% of sucrose [30, 31]. Energy cane can also be cultivated on 
marginal soil, optimizing the use of land [30] because it has a deeper root system, 
exploring better the soil’s nutrients and water. For this reason, it has a big potential 
to be cultivated in 32 million hectares of degraded pastures in Brazil, more than the 
agricultural area of Europe [32].

Energy cane also differs from sugarcane in terms of the stalk morphology and 
the population. Figure 1 summarizes the differences between energy cane and 
sugarcane on the stalk morphology and population. Energy cane stalk height is 
from 4 to 6 m, whereas sugarcane stalk is smaller, from 2 to 2.5 m [33, 34]. However, 
the sugarcane stalk is thicker than the energy cane. The diameter of the sugarcane 
stalk is, on average, 3.5 cm, whereas the energy cane ranges from 1.5 to 2 cm [32]. 
In terms of population, the cultivation of energy cane can have from two to three 
times more plants per area when compared to the traditional cultivation systems of 
sugarcane [32].

According to [35] to obtain energy cane cultivars, breeding programs should:

i. maintain a germplasm collection with high genetic diversity in sugar and 
fiber content.

ii. perform genetic crosses between modern hybrids of sugarcane (high sugar) 
and accesses of the genus Saccharum (high fiber).

iii. produce large amounts of seedlings and select superior individuals.

To better understand sugarcane as an energy crop and to facilitate well-focused 
and effective genetic improvement programs, [36] classified the energy cane into 
three distinctive types. The first is sugarcane, composed primarily of sugars, with 

Species (n) Sucrose (%) Reducing sugar (%) Fiber (%)

Erianthus maximus (3) 2.24 ± 0.44 0.73 ± 0.23 26.4 ± 0.9

Erianthus arundinaceus (2) 0.62 ± 0.16 0.61 ± 0.17 30.3 ± 0.3

Miscanthus floridulus (5) 3.03 ± 0.56 0.79 ± 0.24 51.0 ± 2.0

Saccharum spontaneum (30) 5.35 ± 0.38 1.66 ± 0.06 31.8 ± 0.9

Saccharum robustum (10) 7.73 ± 0.83 0.27 ± 0.02 24.8 ± 1.6

Saccharum sinense (2) 13.45 ± 0.02 0.38 ± 0.08 12.8 ± 2.0

Saccharum officinarum (25) 17.48 ± 0.35 0.32 ± 0.02 9.8 ± 0.4

n = number of evaluated accessions.

Table 2. 
Levels of sucrose, reducing sugars, and fiber in access of ancestral genera and species of sugarcane [9, 29].
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a juice with a high concentration of sucrose, high purity, which can be used in both 
sugar and ethanol production. Type I energy cane is like conventional sugarcane 
but has higher fiber content and less sucrose. Its juice’s purity is lower and is not 
recommended for sugar production. Type II energy cane has only a marginally 
content of sugar and higher fiber than that of Type I, and it should be used exclu-
sively for biomass production.

One of the pioneer programs for introgression in energy cane started in the 
1980s in Barbados. One hybrid, WI79460, achieved yields of 112 tons of biomass 
and 46 tons of dry mass per hectare, a gain of 73% when compared to a commercial 
cultivar used in sugar production, B77602 (26.7 tons of dry mass per hectare). 
WI79460 also had a relatively high sucrose production per hectare of 10.4 tons, 
77.03% of the sucrose produced by the B77602 [4, 9].

In Brazil, CanaVialis has started an introgression program for fiber content, 
and preliminary studies already show enormous potential. A commercial hybrid 
was crossed with S. spontaneum and the best F1 clone was reproduced and com-
pared with one of the most used commercial hybrids in Brazil, RB72454. The 
number of stalks per linear meter was 40, which is a high value when compared 
with the commercial hybrid that has 14 stalks per linear meter. The total fiber 
per hectare was also higher. The selected clone produced 40.25 tons of fiber per 
hectare, which was 136% higher than that of the commercial hybrid (17 tons 
per hectare). However, the sugar production per hectare and the purity of the 
extracted juice was lower in the energy cane [3]. Figure 2 compares the production 
and potential production of energy cane and sugarcane in tons of stalks, fiber, and 
sugars per hectare.

Since 2001, USDA scientists at the Sugarcane Research Laboratory in Houma, 
Lousiana, are assessing the energy potential of high-fiber sugarcanes. In 2007, in the 
Louisiana sugar belt, three sugarcane varieties with fiber content higher than 16% 
were released for use as feedstocks for the production of bioenergy. These varieties, 
however, are disqualified for use in commercial sugar production operations [37].

Based on the above, energy cane is a result of recent breeding programs and may 
be an alternative to be integrated with the traditional ethanol and sugar production 
processes.

Figure 1. 
Comparison between the characteristics of the stalks of sugar cane and energy cane: height, thickness, and 
population. EC: energy cane and SC: sugarcane. Sources: adapted from [32–34].
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3. Fiber as a source of energy

To be considered a sustainable biomass source, the plant should meet human-
ity’s energy needs, without competing with food production. For that, fibrous 
plants should be prioritized, instead of starch and oilseed plants [38]. In 2014, in 
the review “The potential of energy cane as the main biomass crop for the cellulosic 
industry”, [9] listed five characteristics of the use of fibrous plants as biomass, 
citing [38–43]:

i. C4 plants with high efficiency in assimilate the solar energy and convert it 
into biomass, with the less possible amount of water, nutrients, and other 
inputs.

ii. possibility of application of agricultural technology in large-scale 
production.

iii. perennial but growth and long-term canopy to allow harvest during most of 
the year.

iv. easily and efficiently processed into usable forms of energy.

Figure 2. 
Energy cane and sugarcane biomass, fiber, and sugar production and potential production per hectare. EC: 
energy cane and SC: sugarcane. Sources: adapted from [4, 25, 30, 32].
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v. sustainable economically and environmentally, that is, not compete with 
food production, being able to be cultivated in marginal lands, with social-
benefit consequences and having a high rate of carbon (C) balance.

The fibrous stem with low sugar content makes the energy cane more valuable 
to produce 2G ethanol and bioelectricity. However, the sugarcane price in Brazil 
is determined based on the sugar content and purity, and the sugarcane’s end use, 
either sugar or ethanol [44, 45]. Thus, this payment method still encourages the 
production of the traditional sugarcane, to produce sugar and ethanol, being an 
obstacle to the cultivation of energy cane by sugarcane suppliers. Therefore, it is 
still necessary to have policies and to develop a payment method that considers the 
fiber content and the production of bioelectricity and 2G ethanol.

3.1 Energy cane as biomass and 2G ethanol

In the last decades, due to the increasing prices of electricity sold to the grid, 
specific incentive policies, and public-private initiatives, the Brazilian sugarcane 
industry increased its focus on cogeneration [35]. From 2013, the amount of com-
mercialized surplus electricity from the plant is higher than the self-consumed, 
achieving a ratio of 60% and 40% in 2015 [46].

Cellulosic ethanol is a biofuel produced from extracted cellulose from the fibers 
of a vegetable. In the case of sugarcane, the primary input used in Brazil to produce 
2G ethanol is obtained by processing the bagasse after extracting the juice or even 
the straw. As about half of the energy from sugarcane is present in its lignocellulosic 
fibers (bagasse and straw), it would be possible to produce more ethanol and elec-
tricity with the same amount of material and planted area [47, 48]. The energy cane 
can provide more fiber for the industrial process, supplying the cogeneration and 
bioelectricity production, and increasing the amount of bagasse that can be used 
for the 2G ethanol production. In Brazil, three companies already started to use the 
second-generation ethanol technology, with a total capacity of 124 million liters of 
second-generation ethanol per year:

i. Raízen, in a plant located in Piracicaba-SP, since 2014 producing ethanol 
from bagasse and straw, being able to increase by 50% the ethanol produc-
tion without expanding the area of cultivation, producing biofuel even dur-
ing the off-season for sugarcane, from December until March, and reducing 
carbon emissions during production, creating a cleaner fuel. The plant can 
produce 42 million liters of ethanol [49];

ii. GramBio, also started the commercial plant in 2014. The plant, Bioflex 1, is 
in Sao Miguel dos Campos, in the state of Alagoas, in the Northeast region, 
and its initial production capacity is 82 million liters of ethanol per year from 
energy cane bagasse and straw [50].

iii. CTC (Sugarcane Technology Center) has a pilot plant in Sao Manoel-SP, 
producing about 3 million liters of 2G ethanol per year from sugarcane straw 
and bagasse [51].

The 2G ethanol substrate is more diluted than the 1G ethanol, generating higher 
volumes of vinasse per liter of ethanol produced with a chemical composition 
different than the traditional 1G vinasse [52–54]. However, due to the high acetic 
acid concentration and to the low content of furans, which can inhibit the anaerobic 
digestion process, biogas production from 2G ethanol vinasse can have satisfactory 
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performance, when compared to 1G ethanol vinasse [54]. The filter cake is rich in 
nutrients and can also be used integrated with the vinasse to increase the biogas 
production efficiency [55]. If ensiled, the energy cane can be stored for up to six 
months and be used to feed the biogas process in the period when the ethanol plant 
is not in operation [56]. Also, according to [56], in terms of energy generation per 
cultivated area, the production of biogas from sugarcane bagasse is more advanta-
geous than the production of 2G ethanol Thus, it is also possible to consider a biogas 
production plant integrated with a 2G ethanol plant to increase the bioenergy 
generation.

The second-generation ethanol has great potential to increase the biofuel pro-
duction in Brazil without increasing the sugarcane cultivation area [57]. However, 
this technology is not considered viable yet, needing to overcome some challenges, 
including the pretreatment and hydrolysis conditions to release the fermentable 
sugars [58]. Although these challenges need to be faced, the second-generation 
ethanol from sugarcane and energy cane can become a reality in Brazil for three 
reasons:

i. the Federal Government has incentive programs, and the commercialization 
of carbon credits is going to be one more economical and environmental 
advantage for this product [59–61];

ii. this technology is still in a learning curve period, and it is expected that 2G 
technologies are going to become more competitive in the future [62, 63];

iii. the cultivation of energy cane will boost the availability of fiber in the 
industry [64].

However, to process the energy cane in the ethanol plant is still challeng-
ing. Different conditions for milling and pretreatments may be required [9, 37]. 
Although the primary energy and sugar production per hectare is higher for energy 
cane when compared to the traditional sugarcane, the sugar concentration in the 
juice is lower and fiber content is higher. All the extraction process in the plant 
are adapted for sugarcane, thus, these differences raise concerns about processing 
energy cane, as mentioned by [65]:

i. sugar extraction: still need to be studied which process is better for it: mill or 
diffuser; the amount of water required for imbibition; the energy require-
ment for the extraction; and the extraction efficiency, which is expected to 
be reduced as the % of fiber increases;

ii. steam consumption; more imbibition water and increase in % fiber will 
require more steam for the processing of energy cane. However, it is also 
expected that a greater amount of fiber will be supplied to the cogeneration, 
having a positive balance in the steam generation:consumption;

iii. processing: needs to be reevaluated to maximize the products revenue

3.2 RenovaBio and energy cane

It is expected that the second-generation ethanol production in Brazil will 
increase and achieve about 2 billion liters in 2030, almost 20 times more than 
the current production [59] due to a new Federal Government program, the 
RenovaBio. In the RenovaBio, biofuel producers will receive one financial title 
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equivalent to carbon credits called CBIO, which corresponds to one ton of CO2 
that is no longer emitted due to the biofuel production. Fuels distributors will 
have an obligation to buy CBIOs and it will also be available to any interested 
investor [60, 61]. The energy cane juice contains 9.8% of fermentable sugars, 
less than half of the traditional sugarcane. With these incentives of the Brazilian 
government and advances on the 2G technologies, the energy cane can potentially 
triple the productivity of biomass per hectare and reduce the production costs, 
also increasing the production of biofuel in the same area. The theoretical ethanol 
yields of sugarcane is 3,609 kg per hectare, while the energy cane are 12,938 kg of 
ethanol per hectare [61, 66]. However, it is important to find ways to ensure that 
these incentives reach the sugarcane producers, and not just stop in the sugarcane 
industry.

Regarding the amount of energy per area per year, the energy cane has almost 
four times more energy content than the traditional sugarcane, more than double 
of the sweet sorghum content, and almost the same as eucalyptus. However, the 
energy cane also provides the juice with a considerable amount of fermentable sug-
ars and the eucalyptus cycle can take more than eight years (Table 3). The energy 
cane also has higher yields than the elephant grass and erianthus [73, 74].

4. Final remarks

Sugarcane breeding programs began in the 19th century when a focus on 
increasing sugar yield surfaced and have continued until recently. However, in the 
last few decades, various policies around the world have started aiming to reduce 
dependence on petroleum and other fossil energy sources. Thus, many breeders 
around the world have turned their attention to increasing productivity and fiber 
content. In this scenario, Brazil appears as the ideal country to start its commercial 
cultivation, because, in addition to being tropical, the RenovaBio program will give 
financial incentives to increase the production of second-generation ethanol. The 
energy cane is a crop with higher fiber production potential in marginal soil. In 
addition to that, the literature presented in this chapter shows that the energy cane 
can be stored and used to keep a continuous biogas production from December 
until March when the ethanol plant is not operating, and vinasse is not being 
produced.

Sugarcanea Energy canea Sweet sorghumb Eucalyptusc

Crop cycles (months) 10 to 12 10 to 15 3.5 96

Number of cycles year−1 1 1 2 0.125

Yield (t ha−1 year−1) 70 200 60 24

Brix (% juice) 13 to 15 10 to 12 11 to 13 —

Fiber (% cane) 13.5 26.7 13 —

Biomass (t ha−1 year−1) 17.5 50 15.6 24

Calorific power (Mcal t−1) 2,275 2,275 3,281 4,600

Mcal ha−1 year−1 39,813 113,750 51,184 110,400
a[3, 25, 66–68].
b[66, 69].
c[70–72].

Table 3. 
Comparison of the potential energy generation per hectare per year among biomass crops.
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However, energy cane faces several challenges to be implemented commercially. 
In the RenovaBio context, it is still necessary to find ways that the incentives do not 
end in the industry. CBIOs should also achieve producers, as a form of incentive for 
more sustainable production, closing the producer-industry-consumer cycle, and 
stimulating a more sustainable biomass production in the field and, consequently, 
the adoption of energy cane. The industrial processes and sugarcane management 
in the field have already been established for decades, and the implementation of 
energy cane would imply several changes throughout the chain—this is still a reason 
for resistance from producers and mill managers. Also, the low purity of its juice 
does not allow it to be used for sugar production and the current sugarcane method 
valorizes high sugar content and purity, to produce sugar and ethanol. In this sense 
it is also necessary to develop a new payment method, considering the fiber content 
in order to stimulate producers to adopt the energy cane. In addition, cellulosic 
ethanol is still a very new technology and needs adjustments to reach industrial 
scales and become profitable.

Energy cane is still an experimental technology and its cultivation is starting to 
be adopted on larger scales; however, it demonstrates the potential to be expanded 
to commercial scales. To do this, further steps need to be taken in breeding pro-
grams and new technologies, and changes will be necessary for its implementation 
in the field as well as its processing in the industry.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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