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Chapter

Towards a Fuzzy Context Logic
Hedda Schmidtke

Abstract

A key step towards trustworthy, reliable and explainable, AI is bridging the gap
between the quantitative domain of sensor-actuator systems and the qualitative
domain of intelligent systems reasoning. Fuzzy logic is a well-known formalism
suitable for aiming at this gap, featuring a quantitative mechanism that at the same
time adheres to logical principles. Context logic is a two-layered logical language
originally aimed at pervasive computing systems for reasoning about and within
context, i.e., changing logical environments. Both logical languages are linguistically
motivated. This chapter uncovers the close connection between the two logical
languages presenting two new results. First, a proof is presented that context logic
with a lattice semantics can be understood as an extension of fuzzy logic. Second, a
fuzzification for context logic is proposed. The resulting language, which can be
understood as a two-layered fuzzy logic or as a fuzzified context logic, expands both
fields in a novel manner.

Keywords: intelligent systems, fuzzy logic, context logic, context

1. Introduction

Fuzzy logic has been employed successfully in intelligent systems, sensor-
actuator systems, expert systems, and machine learning techniques for more than
50 years [1]. Being a tool for inference at both the logical and the sensor-actuator
systems level its use for reliable and explainable autonomous systems has become a
focus of recent research [2–5]. One key building block for this has been a growing
understanding of fuzzy logic semantics over the past 20 years [6] and the position
this family of logics assumes within the field of logics in general. In particular, the
connection to residuated lattices plays an important role for novel perspectives
[7, 8]. One such new perspective is the connection to context logic, which is
developed in this chapter.

Context logic was introduced in [9–11] as a logic for representing context-
dependency and context phenomena in pervasive computing systems. Recent
developments in context logic focus on a logical actuator control mechanism
[12–14]. This chapter presents the logic with a fuzzy logic lattice semantics
highlighting the close relation between the two formalisms and the close relation
between context logic and the sensory and machine learning components of intelli-
gent sensor actuator systems (ISAS), such as robotics and autonomous vehicles.
We show that context logic can be understood as a fuzzy logic since it can be given
an algebraic semantics like that of fuzzy logic as based upon lattice structures.
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2. Fuzzy logic and context logic

We briefly review the basics of how fuzzy logic handles quantitative informa-
tion and contrast this with the approach chosen in context logic. Here, it may
appear we go into basic aspects at a greater depth than what may seem necessary.
However, to bring the two logics together, establishing the common ground con-
ceptually is a critical first step.

Fuzzy logic [15] was developed as a linguistically motivated logic that was to be
more akin to how human beings reason with uncertain information and how
experts analyze alternatives and act upon them [16]. Its main cognitive motivation
was that human beings are able to relay, for instance, control information without
the use of numerical values. In fact, human language outside scientific and technical
contexts rarely employs quantities to express relations regarding a scale, amounts,
or probabilities. We prefer to say, e.g., rarely rather than giving an estimate about a
concrete percentage, or give a color term, such as yellow, instead of providing RGB
values and we reason with such information. We “compute with words” [17]. One
reason for this is the inherent uncertainty of perceptual or sensory information and
the presence of intersubjective differences. Rules we receive or provide verbally
benefit from this vagueness, as they have a wide applicability, allow a concise
formulation, and allow for intersubjective differences: two people may disagree
whether a certain fruit is yellow or rather a light orange, but they will agree that to
at least some degree, something that has a light orange color is yellow. A rule given
by an expert to a novice, such as “if a fruit is yellow, then it is ripe,” is easy to
understand for a human being, and accordingly fuzzy expert systems, fuzzy sensor-
actuator systems, and the output of some fuzzy learning systems, can be understood
and verified by human beings better than purely numerical systems that operate
with numerical equations.

In natural language, human beings convey information about continuous sen-
sory domains, such as color or height, by use of adjectives. The phenomena of
vagueness, uncertainty, and context-dependency are the main challenges for for-
malization from a linguistic point of view [18]. Adjectives can be used in several
different ways. The main categories are:

Positive: Anne is tall (for her age).
Comparative: Anne is taller than Betty.
Equative: Ann is as tall as Betty.
Superlative: Ann is the tallest (girl on the team).
While the comparative and equative use are most easily mapped to a

corresponding ordering and equivalence relation for the dimension in question
(here: height), the positive and superlative can change their applicability depending
on context. If we talk about children, 1.50 m (5 ft) may be tall. If we talk about the
average European female adult, this is comparatively small. Likewise, the superla-
tive changes with the context: Ann may be the smallest person in the room and still
be called the tallest while the current topic is her team. Context logic is interesting
from a cognitive science perspective as it enables the modeling of such influence of
the context.

From a cognitive science point of view, fuzzy logic is an interesting formalism as
it addresses issues of vagueness and uncertainty that appear especially in the
semantics of adjectives. But it is also one of only few approaches bridging logical
reasoning and machine learning [19].

Fuzzy logic goes beyond multi-valued logics [20] by proposing semantics for
approximate reasoning. In particular, [15, p.424] proposes to “[view] the process of
inference [...] as the solution of a system of relational assignment equations.” This
emphasizes the connection to both sensor-actuator systems and classical methods of
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system modeling and evaluation with recent advances reaching from explainable
machine learning [5] to advanced uncertainty mechanisms for ontology design [21].
Combining the two languages promises to make the full expressiveness of natural
language adjectives available for modeling, reasoning, and explanation in ISAS
design.

3. Fuzzy logic as a logical language

While the linguistic background facilitates usability of fuzzy logic, it is easier to
see logical connections with respect to a more restrictive and conventional logic
syntax. We therefore use a simple propositional logical language as a classical
background language in this chapter. We adopt the following syntax for the set of
all formulae LF based on a set of variables V F and a set of predicate symbols PF.

For P∈PF and x∈V F, P xð Þ is an  atomicð Þ formula:

For any formula ϕ∈LF, ¬ϕ is a formula:

For any formulae ϕ,ψ ∈LF,ϕ∧ψ ,ϕ∨ψ , and ϕ! ψ  are formula:

Using this syntax, we can formalize a proposition similar to the above example as:

Yellow colorð Þ ! Ripe ripenessð Þ:

We can use the usual semantics for predicate logics to interpret this sentence
based on a structure U, I, iV , iPð Þ. Here U is the universe of discourse, which needs
to contain in this example: the referents for the constants, i.e., concrete colors, e.g.,
as RGB values, and degrees of ripeness, e.g., as sets of tuples containing percentage
of sugar and other substances indicative of degrees of ripeness. The term interpre-
tation function iV : V F ! U maps the variable symbols ripeness and color to
elements from U, distinct measurement values in a measurement value space.

Predicate symbols are interpreted by the function iP : V P ! 2U mapping out regions
in U. The classical formula interpretation function I : LF ! 0, 1f gmaps formulae to
values in 0, 1f g.

3.1 Interpretation of predicates based on fuzzy sets

A fundamental point where fuzzy logic differs from classical predicate logic is in
the interpretation of the predicates and predication: classical logic considers
I Yellow colorð Þð Þ as true iff iV colorð Þ∈ iP Yellowð Þ, realizing predication by set
membership (∈ ). Fuzzy logic, in contrast, interprets predicate symbols such as
Yellow with fuzzy sets μP : U ! 0, 1½ �, e.g., μYellow : U ! 0, 1½ �, i.e., as functions into

0, 1½ �. It then can replace the classical membership function ∈ (of type U � 2U !
0, 1f g), with a fuzzy set membership function μ : U � U ! 0, 1½ �ð Þ ! 0, 1½ � that

simply applies the fuzzy set membership function: μ u, μPð Þ↦μP uð Þ. Being based on
fuzzy sets μP, formulae LF in fuzzy logic can then be interpreted with a fuzzy
semantics using a suitable function I : LF ! 0, 1½ � for complex formulae.

3.2 Interpretation of connectives based on t-norms

To evaluate complex formulae, fuzzy logic requires extended semantics for the
propositional connectives that can handle arbitrary values in 0, 1½ �, while remaining
true to the classical interpretation in the cases 0, 1f g. A general strategy in fuzzy
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logic is to allow different semantics to take the place of the classical semantics for
propositional connectives (¬, ∧ ,∨, !), in particular, as t-norms (functions t :

0, 1½ � � 0, 1½ � ! 0, 1½ �) with corresponding t-conorms (functions s : 0, 1½ � � 0, 1½ � !
0, 1½ �), and their residuals (r : 0, 1½ � � 0, 1½ � ! 0, 1½ �), respectively [6]. These func-
tions are described and discussed in more detail below. A t-norm based semantics
interprets the logical language we defined above in the following way:

For Q ∈PF and x∈V F: I Q xð Þð Þ ¼ μ iV xð Þ; iP Qð Þð Þ ¼ μQ iV xð Þð Þ

For any formula ϕ∈LF: I ¬ϕð Þ ¼ 1� I ϕð Þ

For any formulae ϕ,ψ ∈LF: I ϕ∧ψð Þ ¼ t I ϕð Þ; I ψð Þð Þ

I ϕ∨ψð Þ ¼ s I ϕð Þ; I ψð Þð Þ

I ϕ! ψð Þ ¼ r I ϕð Þ; I ψð Þð Þ

3.3 Properties of t-norms

If the semantics for ∧ are based on a t-norm, this guarantees that important

semantic properties of the classical conjunction are retained. A t-norm 0, 1½ �2 !
0, 1½ � is a commutative (1), associative (2), and monotone function (3), with a
neutral element 1 (4).

t x, yð Þ ¼ t y, xð Þ (1)

t t x, yð Þ, zð Þ ¼ t x, t y, zð Þð Þ (2)

If  x⪯ y then t x, zð Þ⪯ t y, zð Þ (3)

t 1, xð Þ ¼ x (4)

Examples are the minimum t-norm (5), used in Gödel logics, and the product t-
norm (6), used in probability theory:

tmin a, bð Þ ¼ min a, bð Þ (5)

tprod a, bð Þ ¼ a ∗ b (6)

The corresponding t-conorms, denoted by the symbol s and accordingly also
called s-norms, can be obtained by applying De Morgan’s laws assuming the
semantics of negation of a value t to be 1� t. Their neutral element is 0.

s a, bð Þ ¼ 1� t 1� a, 1� bð Þ (7)

The corresponding s-norms for the above example t-norms are then smin, the
minimum s-norm (8), and the product s-norm sprod (9):

smin a, bð Þ ¼ max a, bð Þ (8)

sprod a, bð Þ ¼ aþ b� a ∗ b (9)

There are several ways to interpret the implication and different approaches are
suitable for different purposes (cf. [22], for a detailed overlook and comparison). As
with other operators, fuzzy implication should be conservative for values in 0, 1f g.
A widely used notion is the left-residual [23]:

r a, bð Þ ¼ sup z∈ 0, 1½ �jt a, zð Þ≤ bf g (10)
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The relation between the residual and the t-norm/s-norm are covered by two
additional axioms, continuity (11) and pre-linearity (12):

t x, yð Þ⪯ z iff  x⪯ r y, zð Þ (11)

s r x, yð Þ, r y, sð Þð Þ ¼ 1 (12)

For the above two t-norms tmin, tprod the following are corresponding residuals:

rmin a, bð Þ ¼
1 iff  a≤ b

b otherwise:

�

(13)

rprod a, bð Þ ¼
1 iff  a≤ b

b=a otherwise:

�

(14)

3.4 Generalized t-norms: the set-theoretic lattice

The most widely used examples of functions μP map elements of U to values in
0, 1½ �, with, e.g., the minimum or product t-norm. However, fuzzy logic can be
given a generalized t-norm semantics based on residuated lattices, i.e., other lattice
structures L, ⪯ð Þ instead of 0, 1½ �, ≤ð Þ. A particularly interesting residuated lattice

for the purposes of comparison with context logic is L ¼ 2B, ⊆
� �

, where B is a given
base set and U ¼ B. Given this structure, we can define interpretation functions
iV : V F ! B for variable symbols as before. But we can now interpret predicates not

with classical 0, 1½ �-fuzzy sets but with generalized L-fuzzy sets μP : B! 2B, so that

I : LF ! 2B for formulae:

I P xð Þð Þ ¼ μP iV xð Þð Þ, with μP : U ! 2B (15)

I ¬ϕð Þ ¼ 2B � I ϕð Þ (16)

I ϕ∧ψð Þ ¼ I ϕð Þ∩I ψð Þ (17)

I ϕ∨ψð Þ ¼ I ϕð Þ∪I ψð Þ (18)

I ϕ! ψð Þ ¼ I ψð Þ∪ 2B � I ϕð Þ
� �

(19)

The intuition behind this is to map elements x∈U to, e.g., sets of points, i.e.,
spatial regions or temporal or sensory values intervals. Instead of saying x is P to a
degree of 0.5, for instance, we could thus distinguish x as in a specific area of space,
time, or sensor value space. E.g., we can assign a function μYellow to map measured
RGB colors x to sets that form a filter around the color #FFFF00. Measuring an
orange x and a lime y we could determine they are yellow to the same degree as
μYellow xð Þ and μYellow yð Þ yielding the same large region around the core value
#FFFF00. We could say x is as yellow as y is yellow, since with I Yellow xð Þð Þ ¼

I Yellow yð Þð Þ holds I Yellow xð Þ $ Yellow yð Þð Þ ¼ 2B. This would be the same result as
with classical fuzzy sets, but we would be able to additionally avoid comparing
incompatible contexts, e.g.: while a red apple z may be as aubergine as an orange is
yellow with classical fuzzy sets, the set theoretic interpretation yields
I Yellow xð Þ $ Aubergine zð Þð Þ⊆ I Yellow xð Þ $ Yellow yð Þð Þ, as the regions for
I Yellow xð Þð Þ and I Aubergine zð Þð Þ overlap but are distinct. In contrast to the strictly

ordered 0, 1½ �, the partially ordered 2B thus allows higher expressiveness.
Partial orders and corresponding lattice structures are at the heart of the seman-

tics for context logic, and the two languages can on this basis be combined in a
natural manner.
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4. An overview of context logic

We now specify the context logic language and describe a semantics similarly in
terms of a predicate logical language, which in turn can be related to lattice struc-
tures and thus fuzzy logical semantics.

4.1 Contextualization in context logic

Context logic has only one type of basic entity, context variables, and a single
partial order relation ⊑ (part of or sub-context): the city of London, for instance, is a
sub-context of England, and March 2017 is a sub-context of the year 2017:

London⊑England

March2017⊑Year2017

The language provides three term operators ⊓ (intersection), ⊔ (sum), and �
(complement).

Since any pre-order can be expressed as a sub-relation of a partial order relation,
and be extended to a partial order relation over its equivalence classes, the single
sub-context relation together with the ⊓ operators allows the specification of
arbitrarily many different partial order relations [24]. More accurately we may, for
instance, want to say that the city of London is a spatial sub-context or a sub-region
of England, and that March 2017 is a temporal sub-context or a sub-interval of the
year 2017.

London⊓ Space⊑England

March2017 ⊓Time⊑Year2017

This and the following examples feature one simple spatial sub-context and one
temporal sub-context relation. We can in the same manner however express, for
instance, directional relations [25], temporal ordering relations (bi-directionally
branching), and class hierarchies [9]. Ordering relations between thematic values,
such as expressed by the comparative use of adjectives (Section 2) can also be added
in the same way. The main purpose of the language is to facilitate expressing the
common partial order core of all these theories, including the tractable fragments of
these theories in a unified syntax.

A syntactic shorthand reflects – linguistically speaking – a topicalized adverbial
position:

c : a⊑ b½ � ⇔
def

c⊓ a⊑ b

Space : London⊑England½ �

Time : March2017⊑Year2017½ �

Spatially, London is a sub-context of England. Temporally, March 2017 is a sub-
context of the year 2017. For entities such as cities or months, this may seem
redundant. But contexts, such as a birthday party, which have both temporal and
spatial extent can thus be located temporally within one context and spatially within
another:

Space : John0sBirthday⊑London
� �
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Time : John0sBirthday⊑March2017
� �

We can also reflect that speakers may choose to topicalize the other way around
[26], as the last two sentences are logically equivalent to the following:

John0sBirthday : Space⊑London½ �

John0sBirthday : Time⊑March2017½ �

or, leveraging the propositional second layer,

John0sBirthday : Space⊑London½ �∧ Time⊑March2017½ �ð Þ

where, for any propositional junctor ∘ ∈ ∧ ,∨, !f g:

c : ϕ1 ∘ϕ2ð Þ ⇔
def

c : ϕ1 ∘ c : ϕ2 and c : ¬ϕ ⇔

def
¬c : ϕ

Regarding John’s birthday party: the location is in London, the time is in March
2017. Moreover, we can allow contexts to be stacked or combined, in order to
express more complex contextualization:

MarySays : John0sBirthday : Time⊑March2017½ �

TomSays : John0sBirthday : Time⊑August2017½ �

Similarly to how we would express conflicting opinions in natural language, we
can equivalently state:

John0sBirthday⊓Time : MarySays⊑March2017
� �

∧ TomSays⊑August2017
� �� �

d : c : a⊑ b½ � � d : c⊓ a⊑ b½ � � d⊓ c⊓ a⊑ b

Regarding John’s birthday party and the time, Mary says in March 2017 and Tom
says in August 2017. Context logic thus allows to reflect colloquial contextua-
lizations well, but also to represent conflicting information.

4.2 Context logic as a logical language

Context logic thus employs two syntactic layers: the term layer with the term
operators ⊓ , ⊔ , � and the propositional layer with the logic connectives (∧ ,∨, ¬, !).
Context terms T C are defined over a set of variables V C:

1

Any context variable v∈V C and the special symbols ⊤ and ⊥

are atomic context terms:

If  c is a context term, then � c is a context term:

If  c and d are context terms then c⊓ d and c⊔ d are context terms:

Context formulae LC are defined as follows:

If  c and d are context terms then c⊑ d is an atomic context formula:

1 We leave out brackets as possible applying the following precedence: � , ⊓ , ⊔ , ⊑ , : , ¬, ∧ ,∨, ! , $.

The scope of quantifiers is to be read as maximal.
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If  ϕ is a context formula, then¬ϕ is a context formula:

If  ϕ and ψ  are context formulae then ϕ∧ψ ,ϕ∨ψ  and ϕ! ψ  are

context formulae:

We further define:

c ¼ d ⇔

def
c⊑ d½ �∧ d⊑ c½ � (20)

c⊏ d ⇔

def
c⊑ d½ �∧ ¬ d⊑ c½ � (21)

Different variant semantics have been proposed [10, 11, 26]. The different
approaches slightly differ in the resulting semantics, but all three employ a lattice
structure for specifying the meanings of context terms, assigning a partial order to
give a semantics to ⊑ . Here, we give a semantics by mapping the language to a
predicate logic with a single binary predicate P, describing a pre-order relation, to
give the fundamental ⊑ its semantics. We use a function τPLCL : LC � V P ! LP,
where LC is the set of context logic formulae, V P is a vocabulary of predicate logic
variables, and LP is the set of predicate logic formulae. We also employ V C, the set
of variables, as the set of constants for LP, and require V P∩V C ¼ ∅:

τPLCL ⊤⊑⊤,mð Þ ¼ ⊤ (22)

τPLCL ⊤⊑⊥,mð Þ ¼ ⊥ (23)

τPLCL ⊤⊑ v,mð Þ ¼ P m, vð Þ, for v∈V C (24)

τPLCL ⊤⊑ � c,mð Þ ¼ τPLCL c⊑⊥,mð Þ for c∈ T C (25)

τPLCL ⊤⊑ c⊓ d,mð Þ ¼ τPLCL ⊤⊑ c,mð Þ∧ τPLCL ⊤⊑ d,mð Þ (26)

τPLCL ⊤⊑ c⊔ d,mð Þ ¼

∀m0,P m0,mð Þ : ∃m″,P m0,mð Þ : τPLCL ⊤⊑ c,m″ð Þ∨τPLCL ⊤⊑ d,m″ð Þ

where m0 and m″ are new variables:

(27)

τPLCL c⊑ d,mð Þ ¼ ∀m0,P m0,mð Þ : τPLCL ⊤⊑ c,m0ð Þ ! τPLCL ⊤⊑ d,m0ð Þ

where m0 is a new variable:
(28)

τPLCL ¬ϕ,mð Þ ¼ ¬τPLCL ϕ,mð Þ (29)

τPLCL ϕ∧ψ ,mð Þ ¼ τPLCL ϕ,mð Þ∧ τPLCL ψ ,mð Þ (30)

τPLCL ϕ∨ψ ,mð Þ ¼ τPLCL ϕ,mð Þ∨τPLCL ψ ,mð Þ (31)

τPLCL ϕ! ψ ,mð Þ ¼ τPLCL ϕ,mð Þ ! τPLCL ψ ,mð Þ (32)

We note that although we introduce new variables m0,m″ in (27) and (28), each
new variable is only used together with the variable last introduced – m0 with m, m″

with m0 but not with m –, not with any other variables introduced before. This
means, we can alternate between two variables and reuse m after m0, i.e., that
V P ¼ m,m0f g. We also note, that the context variables v∈V C are constants with
respect to the predicate logic and that they only appear in the second position of P in
(24). This property allows us to reformulate any binary expression P m, vð Þ for
v∈V C using a different monadic predicate Pv for each v∈V C, and write Pv mð Þ
instead of P m, vð Þ.

8
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Consequently, the fragment of predicate logic required in application of τPLCL
alone is in the two-variable fragment known to be decidable. Moreover, the
variables, such as m and m0, only occur together in the atomic guard, as P m0,mð Þ,
suggesting that the language as defined so far is in the so-called guarded fragment GF
[27] defined as [cited after 28, p.1664f]:

Every atomic formula belongs to GF:

GF is closed under¬, ∧ ,∨, ! , $ :

If x, y are tuples of variables, α(x, y) is an atomic formula, ψ(x,y) is in GF, and
free (ψ ⊆ free (α) = {x,y}, where free (ϕ) is the set of the free variables of ϕ, then
the formulae

∃y : α x, yð Þ∧ψ x, yð Þ

∀y : α x, yð Þ ! ψ x, yð Þ

belong to GF:

In order to obtain the reasoning capabilities, however, we would need to add
pre-order axioms for P, so as to be able to specify ⊑ as a partial order relation:

∀x, y, z : P x, yð Þ∧P y, zð Þ ! P x, zð Þ (33)

∀x : P x, xð Þ (34)

and we see that transitivity (13) cannot be axiomatized in the two-variable
fragment, as it requires three variables. Fortunately, [28, 29] have shown that for
GF2 + PG – the guarded fragment limited to two variables and a single binary pre-
order that can only appear in the guard – is in 2-EXPTIME. Moreover, this result is a
loose upper bound, since the language under inspection here can be expressed using
the transitive binary relation P in only one direction – namely from wholes to parts
–, using otherwise only the monadic predicates Pv, v∈V C, placing the translation of

context logic with the axioms for ⊑ into the class MGF2 þ TG
 �

, the two-variable
monadic guarded fragment with one-way transitive guards, which is decidable and
whose satisfiability problem is in EXPSPACE [28].

In addition to the pre-order axioms, we can also add a localized guarded variant
of the so-called weak supplementation principle [30, Ch. 3] for ⊑ ensuring a minimal
homogeneity constraint over v1, v2 ∈V C:

2

∀x : ∀x0,P x0, xð Þ : P x0, v1ð Þ ! P x0, v2ð Þð Þ

∧ ∃x0,P x0, xð Þ : P x0, v2ð Þ∧ ¬P x0, v1ð Þð Þ

! ∃x0,P x0, xð Þ : P x0, v2ð Þ∧ ¬∃x0
0
,P x0

0
, x0

� �

: P x0
0
, v1

� �� �

:

(35)

The principle says that, if for any x all its parts x0 that are in v1 are also in v2, but
there is a part x0 that is in v2 but not in v1 (paraphrasing: v1 is a proper part of v2),
then there is a part x0 of v2 that has no parts in v1 (i.e.: x0 does not overlap v1), i.e., is
completely outside of v1. Axiom 35 ensures that the entities described by v1, v2 ∈V C

do not have, e.g., singular points that are not entities themselves in the domain
under inspection. This axiom is required for proving several of the lattice laws.
Note that we thus characterize a weak supplementation principle only for ⊑ , that

2 The interested reader may find a brief discussion on mereological and ontological properties in

Section 4.5.
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we, however, cannot formulate a weak supplementation principle for P without
leaving the guarded fragment.

In order to do this, however, we have to employ v1, v2 ∈V C as schema variables,

i.e., we have to formally see this actually not as one axiom but ∣V 2
C∣ axioms. This

means that for infinite V C, the axiomatization becomes infinite. For practical, finite
knowledge bases, V C will be finite. If an infinite vocabulary V C is employed, a
practical realization would be to use a unification mechanism suitable for the par-
ticular language V C employed.

Intuitively, the meaning of a⊑ b is that all parts of a are part of b. The reading
thus corresponds to a universal quantification, and the properties expressed by
contexts in this statement describe homogenous properties inherited from wholes to
their parts. Correspondingly, ¬ a⊑ b½ � expresses an existential quantification, stating
that not all parts of a are parts of b, which means that there is a part of a that is not
part of b, or that does not have property b. We can thus express heterogeneity.

The complement � c, is interpreted with respect to the pseudo-0-element ⊥: the
atomic formula ⊤⊑ � a is interpreted as equivalent to a⊑⊥, meaning that no part
is in a, implying universal quantification. There are thus two types of negation ¬ on
the logical level and � on the context level. ⊥ is a pseudo-element, it disappears in
the translation when applying (28). We do not need to assume that an empty
element exists:

τPLCL c⊑⊥;mð Þ � ∀m0,P m0;mð Þ : τPLCL ⊤⊑ c;m0ð Þ ! τPLCL ⊤⊑⊥;m0ð Þ

� ∀m0,P m0;mð Þ : τPLCL ⊤⊑ c;m0ð Þ ! ⊥

� ∀m0,P m0;mð Þ : ¬τPLCL ⊤⊑ c;m0ð Þ

� ¬∃m0,P m0;mð Þ : τPLCL ⊤⊑ c;m0ð Þ

(36)

A crucial consequence of adopting weak supplementation (35) is (2). It says that
if all parts m″ of a part m0 have a part m‴ that is part of a, this is equivalent to m0

being part of a:

∀m″,P m″;m0ð Þ : ∃m‴,P m‴;m″ð Þ : P m‴; að Þ � P m0; að Þ (37)

Proof (⫤): this holds immediately with the reflexivity (34) and transitivity (33)
of P: if P m0, að Þ then all parts m″ of m0 fulfill P m″, að Þ by transitivity, and therefore
there is a part m‴ of m″, namely m″ itself, by reflexivity, so that P m‴, að Þ.

Proof (⊨): we prove the reverse direction by contradiction, applying (35).
Assume ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ and not P m0, að Þ, i.e., that there
is an m001 that has m‴,P m‴, að Þ but not P m001 , a

� �

. Then by (35) there has to be a part
m002 of m

0 that does not have a part m‴ where P m‴, að Þ. But this is prevented by the
premise ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ.

It can be shown (Section 4.4) that the definition of τPLCL together with the two
pre-order axioms and the local guarded variant of the weak supplementation
principle is sufficient to characterize context terms as spanning a bounded lattice.
We note that with a different axiomatization other types of lattice structures could
be realized for different application domains.

4.3 A fuzzy logic perspective on context logic

This section shows context logic as specified above is a two-layered language
with a generalized t-norm-based fuzzy logic at the term level and a classical
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0, 1f g-based semantics at the formula level. From there it is a small step to also add
a 0, 1½ �-based multivalued semantics to the formula level, so as to obtain a full two-
layered fuzzy logic in Section 5.

To see that the context terms T C can be viewed as a generalized t-norm, we set
the intersection ⊓ , the meet operation of the lattice, as the monoid operation and
the term ⊤ as the identity element of the monoid. The monoid properties associa-
tivity and identity element are fulfilled by any lattice (see Section 4.4, (44) and
(46)). For the generalized fuzzy logic semantics, the lattice meet-operation ⊓ will
be shown to fulfill the properties of a t-norm, the join-operation ⊔ , those of the
corresponding s-norm. Both are required to be commutative (1), associative (2),
and support an identity element (4) and monotonicity (3) (for the full proofs see
Section 4.4). We prove monotonicity for ⊓ (38) and ⊔ (39):

τPLCL a⊑ c½ �∧ b⊑ d½ � ! a⊓ b⊑ c⊓ d½ �,mð Þ �

∀m0,P m0,mð Þ : P m0, að Þ ! P m0, cð Þð Þ

∧ ∀m0,P m0,mð Þ : P m0, bð Þ ! P m0, dð Þð Þ

! ∀m0,P m0,mð Þ : P m0, að Þ∧P m0, bð Þ ! P m0, cð Þ∧P m0, dð Þð Þ

(38)

τPLCL a⊑ c½ �∧ b⊑ d½ � ! a⊔ b⊑ c⊔ d½ �,mð Þ �

∀m0,P m0,mð Þ : P m0, að Þ ! P m0, cð Þð Þ

∧ ∀m0,P m0,mð Þ : P m0, bð Þ ! P m0, dð Þð Þ

! ∀m0,P m0,mð Þ :

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨P m‴, bð Þð Þ

! ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, cð Þ∨P m‴, dð Þð Þ

(39)

Proof (3): if every m0 that is part of a is in c and every m0 that is part of b is in d,
then every m0 that is part of a and b is also in both c and d. Proof (4): we see that it
follows from this condition also that any m‴ that exists as part of any m″ in a or b
must also be part of c or d in m″.

The generalized De Morgan law connects t-norms with s-norms (7). It follows
for the translations of ⊓ and ⊔ directly from the De Morgan laws in predicate logic.

τPLCL a⊔ b ¼� � a⊓ � bð Þ;mð Þ �

∀m0,P m0;mð Þ : ð∀m″,P m″;m0ð Þ : ∃m‴,P m‴;m″ð Þ :

P m‴; að Þ∨P m‴; bð ÞÞ

$ ¬∃m″,P m″;m0ð Þ : ¬∃m‴;P m‴;m″ð Þ : P m‴; að Þð Þ

∧ ¬∃m‴;P m‴;m″ð Þ : P m‴; bð Þð Þ

(40)

The residual can then be derived from its characterization:

r a, bð Þ ¼ sup zjt a, zð Þ≼ bf g:

The operation) with the definition

a) b ⇔

def
� a⊔ b (41)
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has the required property t a, zð Þ≼ b (with ⊓ the t-norm and ⊑ , the lattice
partial order ≼ ).3

τPLCL a⊓ � a⊔ bð Þ⊑ b;mð Þ �

∀m0,P m0;mð Þ : ð∀m″,P m″;m0ð Þ : ∃m‴,P m‴;m″ð Þ :

¬∃miv;P miv;m‴
� �

: P miv; a
� �� �

∨P m‴; bð ÞÞ∧P m0; að Þ ! P m0; bð Þ

(42)

We prove that for any m0,P m0,mð Þ :

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

¬∃miv,P miv,m‴
� �

: P miv, a
� �

∨P m‴, bð Þ
� �

∧P m0, að Þ

⊨P m0, bð Þ

and the term � a⊔ b expresses the maximal element local to m with this
property.

Proof: assume the antecedent is true, then because of transitivity of P (33) and
the conjunct P m0, að Þ, there can be no m‴ part of m0 for which all parts miv,
includingm‴ itself fulfill ¬P miv, a

� �

. Therefore the second disjunct P m‴, bð Þmust be
true. But if we know that for all m″ with P m″,m0ð Þ exists m‴, so that P m‴, bð Þ, we
know by (2), a consequence of the localized guarded variant of the weak supple-
mentation principle (35), that P m0, bð Þ. To see that it is maximal, assume there is m01
outside of � a⊔ b and P m01, a

� �

and P m01, b
� �

. To be outside of � a⊔ b, there would

have to be an m″,P m″,m01
� �

so that for all m‴,P m‴,m″ð Þ there is miv, so that

P miv,m‴
� �

and P miv, a
� �

and ¬P m‴, bð Þ, but this cannot be, because P m‴,m01
� �

and

by the assumption P m01, b
� �

, thus by transitivity (33) P m‴, bð Þ.
This result indicates that, at least with respect to the supplementation property

expressed through (35), � a⊔ b fulfills the characterization of a residual. We can
also show continuity (54) and pre-linearity (55) (Section 4.4).

We are thus justified to say that context logic terms have a generalized t-norm
semantics and we can give a t-norm-based semantics to context logic.

We obtain: a t-norm-based classical semantics for context logic is a structure
I, i, a,LT, ≼ , 1T, t, sð Þ, where the terms are interpreted by i : T C ! LT together with
the function a : V C ! LT assigning context terms and variables, respectively, to
elements of a lattice LT, and the formulae, by the classical interpretation function
I : LC ! 0, 1f g:

3 To understand the meaning of a) b, we can translate

τPLCL Τ ⊑ � a⊔ b, xð Þ

� ∀m0,P m0,mð Þ : ∃m″,P m″,m0ð Þ : ¬∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ∨P m″, bð Þ

� ∀m0,P m0,mð Þ : ¬∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ

∨∃m″,P m″,m0ð Þ : P m″, bð Þ

� ∀m0,P m0,mð Þ : ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ

! ∃m″,P m″,m0ð Þ : P m″, bð Þ

� ∀m0,P m0,mð Þ : P m0, að Þ ! ∃m″,P m″,m0ð Þ : P m″, bð Þ

� ∀m0,P m0,mð Þ : P m0, að Þ ! P m0, bð Þ,

that is, for every partm0 ofm holds that: ifm0 is inside a it is inside b. Here the last two steps follow by (2)

a consequence of (A9) .
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i vð Þ ¼ a vð Þ, for v∈VC

i � cð Þ ¼ 1T � i cð Þ,

With 1T � i cð Þthe pseudo-complement of the lattice

i c⊓ dð Þ ¼ t i cð Þ, i dð Þð Þ

i c⊔ dð Þ ¼ s i cð Þ, i dð Þð Þ

I c⊑ dð Þ ¼ 1 iff  i cð Þ≼ i dð Þ

I ¬ϕð Þ ¼ 1� I ϕð Þ

I ϕ∧ψð Þ ¼ min I ϕð Þ, I ψð Þð Þ

I ϕ∨ψð Þ ¼ max I ϕð Þ, I ψð Þð Þ

It only remains to show that the context term operators indeed support the
lattice requirements.

4.4 Proof: context logic with local, guarded weak supplementation
characterizes a bounded lattice

For the purpose of completeness, the proofs are listed here in detail. However,
the results are part of basic, fundamental lattice theory and no novelty is claimed.

We prove that ⊓ and ⊔ fulfill the laws for a bounded lattice. We start by
showing that ⊓ fulfills the laws of a semilattice: ⊓ is idempotent (7), associative
(8), commutative (9), and has ⊤ as its neutral element (46).

a⊓ a ¼ a (43)

a⊓ b⊓ cð Þ ¼ a⊓ bð Þ⊓ c (44)

a⊓ b ¼ b⊓ a (45)

a⊓⊤ ¼ a (46)

These properties hold, since ⊓ directly translates into ∧ :

τPLCL ⊤⊑ c⊓ d,mð Þ ¼ τPLCL ⊤⊑ c,mð Þ∧ τPLCL ⊤⊑ d,mð Þ

We show the translations:

τPLCL a⊓ a ¼ a,mð Þ � ∀P m0,mð Þ : P m0, að Þ∧P m0, að Þ $ P m0, að Þ

τPLCL a⊓ b⊓ cð Þ ¼ a⊓ bð Þ⊓ c,mð Þ � ∀P m0,mð Þ : P m0, að Þ∧ P m0, bð Þ∧P m0, cð Þð Þ

$ P m0, að Þ∧P m0, bð Þð Þ∧P m0, cð Þ

τPLCL a⊓ b ¼ b⊓ a,mð Þ � ∀P m0,mð Þ : P m0, að Þ∧P m0, bð Þ

$ P m0, bð Þ∧P m0, að Þ

τPLCL a⊓⊤ ¼ a,mð Þ � ∀P m0,mð Þ : P m0, að Þ∧⊤$ P m0, að Þ

We can see that all translations of properties are tautologies and follow directly
from the properties of ∧ . The semantics of ⊔ requires a closer look. We first note
that a basic requirement of extensionality holds:

τPLCL ⊤⊑ a,mð Þ� P m, að Þ � ∀m0,P m0,mð Þ : P m0, að Þ

� ∀P m0,mð Þ : τPLCL ⊤⊑ a,m0ð Þ
(47)
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The property (47) holds because P m, að Þ entails P m0, að Þ for all P m0,mð Þ because
of transitivity of P. Also, for all m0,P m0,mð Þ: P m0, að Þ entails P m, að Þ, since P is
reflexive.

We can now prove the semilattice laws for ⊔ .

a⊔ a ¼ a (48)

a⊔ b⊔ cð Þ ¼ a⊔ bð Þ⊔ c (49)

a⊔ b ¼ b⊔ a (50)

a⊔⊥ ¼ a (51)

When we translate idempotency (48):

τPLCL a⊔ a ¼ a,mð Þ

� ∀m0,P m0,mð Þ : ð∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

P m‴, að Þ∨P m‴, að ÞÞ $ P m0, að Þ

� ∀m0,P m0,mð Þ : ð∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

P m‴, að ÞÞ $ P m0, að Þ

we see that the translation of ⊔ provides one direction of the proof. With (2), a
consequence of weak supplementation, we obtain the other direction.

The other laws follow in a similar manner. We show associativity (49):

τPLCL a⊔ b⊔ cð Þ ¼ a⊔ bð Þ⊔ c,mð Þ � ∀m0,P m0,mð Þ :

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨∀miv,P miv,m‴
� �

:

∃mv,P mv,miv
� �

: P mv, bð Þ∨P mv, cð Þ

$ ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : ð∀miv,P miv,m‴
� �

∃mv,P mv,miv
� �

: P mv, að Þ∨P mv, bð Þ∨P m‴, cð Þ

By proving the following for any m0 from which the above then follows directly
via the associativity and commutativity of ∨:

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨∀miv,P miv,m‴
� �

:

∃mv,P mv,miv
� �

: P mv, bð Þ∨P mv, cð Þ

� ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨P m‴, bð Þ∨P m‴, cð Þ

We prove in two steps.
Proof (⊨): assume we choose an arbitrary m″,P m″,m0ð Þ. The antecedent says

that if there is an m‴,P m‴,m″ð Þ so that P m‴, að Þ or there is P m‴,m″ð Þ so that for all
its parts miv, we can find mv, so that P mv, bð Þ or P mv, cð Þ. If there is an m‴,P m‴, að Þ,
the consequent holds. If there is no such m‴,P m‴, að Þ, there must be an m‴, so that
all its parts miv have a part mv in b or c. Since each such mv is also a part of m″, we
can conclude that for all m″,P m″,m0ð Þ there is anm‴ – namely, the mv we identified
–, so that P m‴, bð Þ∨P m‴, cð Þ.

Proof (⫤): assume we have for each m″,P m″,m0ð Þ: ∃m‴,P m‴,m″ð Þ :

P m‴, að Þ∨P m‴, bð Þ∨P m‴, cð Þ and the consequent is false. In this case, there must be
anm001, so that P m‴, að Þmust be false for allm‴,P m‴,m001

� �

and that there is a part of
any such m‴ so that all its subparts are neither in b nor in c. By the premise
however, we know that m001 must have a part m″

0
1 so that P m″

0
1, b

� �

∨P m″
0
1, c

� �

. But

since P is transitive we know that for all parts miv
1 of m″

0
1 holds either P miv

1 , b
� �

or
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P miv
1 , c

� �

. By reflexivity we moreover know that each miv
1 has a part, namely itself,

for which P miv
1 , b

� �

or P miv
1 , c

� �

hold.
Applying this result twice via the associativity and commutativity of ∨, we can

conclude (49) must hold:

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨∀miv,P miv,m‴
� �

:

∃mv,P mv,miv
� �

: P mv, bð Þ∨P mv, cð Þ

� ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨P m‴, bð Þ∨P m‴, cð Þ

� ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : ð∀miv,P miv,m‴
� �

∃mv,P mv,miv
� �

: Pðmva∨P mvbð Þ∨P m‴, cð Þ

Theorem 14 holds immediately given the definition of the translation for ⊔ and
the commutativity of ∨:

τPLCL a⊔ b ¼ b⊔ að Þ �

ð∀m0,P m0,mð Þ : ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

P m‴, að Þ∨P m‴, bð ÞÞ

$ ð∀m0,P m0,mð Þ : ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

P m‴, bð Þ∨P m‴, að ÞÞ

Proving the neutral element property (51) requires (35).

τPLCL a⊔⊥ ¼ a,mð Þ

� ∀m0,P m0,mð Þ : ð∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

τPLCL ⊤⊑ a,m‴ð Þ∨τPLCL ⊤⊑⊥,m‴ð ÞÞ

$ τPLCL ⊤⊑ a,m0ð Þ

� ∀m0,P m0,mð Þ : ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∨⊥ð Þ

$ P m0, að Þ

� ∀m0,P m0,mð Þ : ∀m‴,P m″,mð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ

$ P m0, að Þ

The proof follows immediately by (2).
In summary, we needed (35) for proving idempotency (48) and the neutral

element (51). Associativity (49) and commutativity (50) were proven without
using (35).

We have thus shown that ⊓ and ⊔ each create a semilattice structure over
the x∈V C. When we prove the absorption laws, we see that the absorption law
(52) can be proven without requiring (35), while the proof for the absorption law
(53) uses it:

a⊓ a⊔ bð Þ ¼ a (52)

a⊔ a⊓ bð Þ ¼ a (53)

For (52):

τPLCL a⊓ a⊔ bð Þ ¼ a,mð Þ

� ∀m0,P m0,mð Þ : ðP m0, að Þ∧∀m″,P m″,m0ð Þ :

∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ∨ ∃m‴,P m‴,m″ð Þ : P m‴, bð Þð ÞÞ

$ P m0, að Þ
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we show that for any m0:

P m0, að Þ∧∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ

∨ ∃m‴,P m‴,m″ð Þ : P m‴, bð Þð Þ

� P m0, að Þ

Proof (⫤): this holds because of transitivity (33) and reflexivity (34) of P. If
P m0, að Þ, is true, we know ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ is also true
and thus also the disjunct. Therefore, the whole consequent must be true.

Proof (⊨): here we already know P m0, að Þ in the antecedent, so the consequent
cannot be false.

We prove (53):

τPLCL a⊔ a⊓ bð Þ ¼ a,mð Þ

� ∀m0,P m0,mð Þ : ð∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ

∨ ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∧P m‴, bð Þð ÞÞ

$ P m0, að Þ

by showing for any m0:

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ

∨ ∃m‴,P m‴,m″ð Þ : P m‴, að Þ∧P m‴, bð Þð Þ � P m0, að Þ

Proof (⊨): ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ∨ ∃m‴,P m‴,m″ð Þ :ð
P m‴, að Þ∧P m‴, bð ÞÞ is true iff ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : P m‴, að Þð Þ is true,
and this entails P m0, að Þ by (2). Proof (⫤): this holds by transitivity and reflexivity.

The relation between the residual and the t-norm were covered by two addi-
tional axioms above: continuity (11) and pre-linearity (12):

x⊓ y⊑ z iff  x⊑ y) zð Þ (54)

x) yð Þ⊔ y) xð Þ ¼ ⊤ (55)

We prove continuity (54) by translation using τPLCL.

τPLCL x⊓ y⊑ z,mð Þ � τPLCL x⊑ y) zð Þ,mð Þ translates into :

∀m0,P m0,mð Þ : P m0, xð Þ∧P m0, yð Þ ! P m0, zð Þ

� ∀m0,P m0, xð Þ ! ∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ :

¬∃miv,P miv,m‴
� �

: P miv, y
� �� �

∨P m‴, zð Þ

Proof (⊨): assume the antecedent holds, and P m0, xð Þ for some m0. Then, for
∀m″,P m‴,m″ð Þ : …P m‴, zð Þ to be false, there must be an m001 ,P m001 ,m

0
� �

, so that

∀m‴,P m‴,m001
� �

: ∃miv,P miv,m‴
� �

: P miv, y
� �� �

and ∀m‴,P m‴,m001
� �

: ¬P m‴, zð Þ.

However, if ∀m‴,P m‴,m001
� �

: ∃miv,P miv,m‴
� �

: P miv, y
� �� �

holds then by (2),

P m001 , y
� �

and by transitivity also P m001 , x
� �

and by the assumption thus P m001 , z
� �

,
which cannot hold since all parts m‴ of m001 including by reflexivity m001 itself fulfill
¬P m‴, zð Þ.

Proof (⫤): assume the antecedent ∀m0,P m0, xð Þ : …P m‴, zð Þ holds. For
∀m0,P m0,mð Þ : P m0, xð Þ∧P m0, yð Þ ! P m0, zð Þ to be false, there must bem01,P m01,m

� �

,

so that P m01, x
� �

and P m01, y
� �

must hold, but P m01, z
� �

must be false. But then we also

know that ∃m‴,P m‴,m″ð Þ : ¬∃miv,P miv,m‴
� �

: P miv, y
� �� �

cannot hold for any
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m″,P m″,m01
� �

. Thus, ∃m‴,P m‴,m″ð Þ : P m‴, zð Þ must hold for all m″, and thus by

(2) P m01, z
� �

.
We prove pre-linearity (55):

τPLCL x) yð Þ⊔ y) xð Þ ¼ ⊤,mð Þ �

∀m0,P m0,mð Þ : ½∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ∃miv,P miv,m‴
� �

:

¬∃mv,P mv,miv
� �

: P mv, xð Þ
� �

∨P miv, y
� �

�

∨½∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ∃miv,P miv,m‴
� �

:

¬∃mv,P mv,miv
� �

: P mv, yð Þ
� �

∨P miv, x
� �

�

by showing for anym0,P m0,mð Þ :

¬½∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ∃miv,P miv,m‴
� �

:

¬∃mv,P mv,miv
� �

: P mv, xð Þ
� �

∨P miv, y
� �

�

⊨½∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ∃miv,P miv,m‴
� �

:

¬∃mv,P mv,miv
� �

: P mv, yð Þ
� �

∨P miv, x
� �

�

Proof: we obtain for the antecedent:

∀m″,P m″,m0ð Þ : ∃m‴,P m‴,m″ð Þ : ∀miv,P miv,m‴
� �

: ∃mv,P mv,miv
� �

: P mv, xð Þ
� �

∧

¬P miv, y
� �

Since this holds for all m″,P m″,m0ð Þ it also holds for m0 itself, i.e., it follows that:

∃m‴,P m‴,m0ð Þ : ∀miv,P miv,m‴
� �

: ∃mv,P mv,miv
� �

: P mv, xð Þ
� �

∧ ¬P miv, y
� �

We rename the variables to better show the structure:

∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ¬P m‴, yð Þ∧ ∃miv,P miv,m‴
� �

: P miv, x
� �� �

� ∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ¬P m‴, yð Þð Þ∧

∀m‴,P m‴,m″ð Þ : ∃miv,P miv,m‴
� �

: P miv, x
� �� �� �

and by (2):

� ∃m″,P m″,m0ð Þ : ¬∃m‴,P m‴,m″ð Þ : P m‴, yð Þð Þ∧P m″, xð Þ:

We now know that m0 has a part m″ that is in x and none of its parts is in y. With
P m″, xð Þ, however we also know by transitivity of P that all parts m‴,P m‴,m″ð Þ

fulfill P m‴, xð Þ, and thus by reflexivity of P that there is an miv,P miv,m‴
� �

, namely

miv ¼ m‴, for each m‴, which fulfills P miv, x
� �

. Moreover, since all parts

mv,P mv,miv
� �

are by transitivity also parts of m″, we know that ¬∃mv,P mv,miv
� �

:

P miv, y
� �

and thus:

∃m″,P m″,m0ð Þ : ∀m‴,P m‴,m″ð Þ : ∃miv,P miv,m‴
� �

: ¬∃mv,P mv,miv
� �

: P mv, yð Þ
� �

∧

P miv, x
� �

,

which entails the consequent.
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4.5 A note on mereological and ontological status

The mereologically interested reader may notice that adding even the weakened
variant of the weak supplementation principle is sufficient to collapse context logic
term structures to a single level by (2). The reason for this is that the weak supple-
mentation principle considerably strengthens the expressiveness of negation, which
given the principle always ensures the existence of a fully negative individual. This
is the case, although our system mereologically speaking is an MM system, i.e.,
supports M1-M4 [30] only, with M4 acting as an axiom schema.

We may note also, that we need not ensure product (M5) or sum (M6) to exists,
nor do we need or posit a universal ⊤ or null object ⊥ to exist. The symbols
⊤,⊥, ⊓ , ⊔ ,� are, so to speak, “syntactic sugar” only. The assumed mereology thus
is slightly weaker than MM and ontologically careful and minimalistic. For a deeper
discussion, cf. [30, 31].

4.6 Example: set-theoretical model

To make the discussion more concrete, we briefly sketch a set-theoretical inter-
pretation. An example of a suitable model is the set-theoretic lattice, assuming the
set of all subsets of a base universe as the universe for the interpretation of the
translation τPLCL ϕ,mð Þ of a context formula ϕ, and mapping t to ∩ (17), s to ∪ (18),
and the residual r according to (19). Note that, within this interpretation, the vari-
ables m,m0, etc., as well as the constants a, b, c, etc. of the translation τPLCL ϕ,mð Þ
range over sets, not elements, of the base universe. With a set-theoretical model

I, i, a,U, ⊆ ,B,∩,∪ð Þ, where U ⊆ 2B for B, the base set, we get:

i vð Þ ¼ a vð Þ for v∈V C

i � cð Þ ¼ 1T � i cð Þ ¼ B� i cð Þ

i c⊓ dð Þ ¼ t i cð Þ, i dð Þð Þ ¼ i cð Þ∩i dð Þ

i c⊔ dð Þ ¼ s i cð Þ, i dð Þð Þ ¼ i cð Þ∪i dð Þ

I c⊑ dð Þ ¼ 1 iff  i cð Þ⊆ i dð Þ

I ¬ϕð Þ ¼ 1� I ϕð Þ

I ϕ∧ψð Þ ¼ min I ϕð Þ, I ψð Þð Þ

I ϕ∨ψð Þ ¼ max I ϕð Þ, I ψð Þð Þ

We can show that, if the canonical interpretation I, i, a,U, ⊆ ,B,∩,∪ð Þ is a model
for formula ϕ, then there is a corresponding predicate logic model for τPLCL ϕ,mð Þ

with interpretations for m,m0 from U ⊆ 2B � ∅f g, interpreting P as ⊆ and individ-

uals v∈VC using an assignment function a : V C ! 2B. While we allow the constants
v∈VC to be empty, the variables used to describe their extension cannot.

The pre-order axioms for P obviously hold for ⊆ . Also, the weak
supplementation principle holds for ⊆ :

∀x : ∀x0 ⊆ x : x0 ⊆ a! x0 ⊆ bð Þ

∧ ∃x0 ⊆ x : x0 ⊆ b∧¬x0 ⊆ að Þ

! ∃x0 ⊆ x : x0 ⊆ b∧ ¬∃x0
0
⊆ x0 : x0

0
⊆ a

� �

:

Proof: assume a set x0 ⊆ x supports that x0 ⊆ a implies x0 ⊆ b, and there is a set
x01 ⊆ x supporting x01 ⊆ b but not x01 ⊆ a. We can then construct x02 ⊆ x as x02 ¼ x01 � a,
which supports that x02 ⊆ b and none of its subsets x002 ⊆ x02 supports x

00
2 ⊆ a.
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We prove that ∩,∪,� over non-empty sets m,m0,m″ fulfill the characteristic
properties for translations for ⊓ , ⊔ , �, respectively:

m⊆ a∩b � m⊆ a∧m⊆ b (56)

m⊆ a∪b � ∀m0 ⊆m : ∃m″⊆m0 : m″⊆ a∨m″⊆ b (57)

m⊆ � a � ∀m0 ⊆m : ¬∃m″⊆m0 : m″⊆ a (58)

The case of (20) is immediately clear. For (21), we look at the definition of ∪ in
terms of elements P∈B, which we call points:

m⊆ a∪b � ∀P∈m : P∈ a∨P∈ b

� ∀m0 ⊆m : ∃P∈m0 : P∈ a∨P∈ b

� ∀m0 ⊆m : ∃m″⊆m0 : m″⊆ a∨m″⊆ b

Proof (⊨): if the points inm are in a or in b in the first step, then, since them0 are
non-empty, it follows that each m0 ⊆m has a point either in a or in b. In the second
step, if there is a point P in each m0, that is in a or in b, then there is a set m″⊆m0,
namely the singleton containing P, for which m″⊆ a or m″⊆ b must hold.

Proof (⫤): assume that for everym0, there is a non-emptym″⊆m0, withm″⊆ a or
m″⊆ b, then, since m″ non-empty, it must have a point P∈ a or P∈ b. Since this
holds for all non-empty sets m0, including all singleton sets, which have only one
element, it must hold for all points P∈m.

For (22), we similarly look at the definition of � in terms of elements of m, i.e.,
points:

m⊆ � a � ∀P∈m : ¬P∈ a

� ∀m0 ⊆m : ¬∃P∈m0 : P∈ a

� ∀m0 ⊆m : ¬∃m″⊆m0 : m0 ⊆ a

Proof (⊨): the property carries over to all parts m0 of m in the second step. The
third step follows, because any set m″⊆m0 must be non-empty, and if it contains a
point, m″⊆ a cannot be true, since no point in m0 is in a and ⊆ is transitive.

Proof (⫤): as in the proof for ⊔ , we can argue over singleton sets. If for all sets
m0, no subsetm″ is subset of a, then this also holds for the singletons, and thus no set
m0 has a point P in a, but this again holds also for singleton sets m0 ⊆m, and thus all
points of m are outside a.

We have thus seen that the set-thoretical standard model is a concrete example
of a structure for interpreting context terms and formulae.

5. A fuzzy context logic

The key to the proposed fuzzy context logic is to additionally provide a fuzzy
interpretation for the atomic formulae, via the symbol ⊑ . To do that, we need a
residual that takes two elements from the context lattice and produces a fuzzy value
in 0, 1½ �. Then we can apply one of the well-known standard fuzzy semantics to the
formula level.

The fuzzy semantics is defined by two lattices: a bounded lattice
LT, ≼ T, tT, sT, 1Tð Þ for the term level, and another bounded lattice
LF, ≼ F, sF, tF, rF, 1Fð Þ, where LF ¼ 0, 1½ � for the formula level together with the
interpretation functions a : V C ! LT for context variables, i : T C ! LT for terms,
and I : LC ! LF for formulae. We interpret the terms as before based on LT :

19

Towards a Fuzzy Context Logic
DOI: http://dx.doi.org/10.5772/intechopen.95624



i vð Þ ¼ a vð Þ, for v∈VC

i � cð Þ ¼ 1T � i cð Þ,

with the 1T � i cð Þterm-level pseudo-complement

i c⊓ dð Þ ¼ tT i cð Þ, i dð Þð Þ

i c⊔ dð Þ ¼ sT i cð Þ, i dð Þð Þ:

We will need to characterize a fuzzified variant of ≼ T to obtain atomic formulae
that can have a value outside of {0, 1}:

I c⊑ dð Þ ¼ ≼ TFði cð Þ, i dð Þ:

On this basis, the interpretation of formulae can then follow one of the standard
models of fuzzy logic in LF :

I ¬ϕð Þ ¼ 1F � I ϕð Þ

I ϕ∧ψð Þ ¼ tF I ϕð Þ, I ψð Þð Þ

I ϕ∨ψð Þ ¼ sF I ϕð Þ, I ψð Þð Þ

The key is to provide a function ≼ TF : LT � LT ! LF for connecting the fuzzy
term and formula layers. As usual, we want the relation to be conservative with
respect to the classical partial order relation on the classical cases:

≼ TF x, yð Þ ¼ 1Fiff  x≼ Ty:

≼ TF x, xð Þ ¼ 1Fholds for all x∈LT :

If ≼ TF x, yð Þ ¼ 1F and≼ TF y, xð Þ ¼ 1Ffor x, y∈LT  then x ¼ y:

If ≼ TF x, yð Þ ¼ 1F and ≼ TF y, zð Þ ¼ 1F then also≼ TF x, zð Þ ¼ 1F:

What is a good choice depends on both LT and LF, and given a particular choice,
different functions may support this weak restriction. A candidate for spatial appli-

cations for LT ¼ 2B for a base set B and LF ¼ 0, 1½ � is a fuzzified variant of the
qualitative granular relation systems proposed in [32]. Here, several types of gran-
ular relations between regions are distinguished based on an absolute ranking of
sizes, such as the largest circle a spatial region is contained in, or its diameter, or the
length of an interval. Complementing topological notions, such as part-of or overlap,
granular relations can be defined [32]:

• Two regions are adjacent iff they overlap but only in a part smaller than grain-
size.

• Two regions are spatially indistinguishable iff they differ only in a part smaller
than grain-size.

• Two regions relevantly overlap iff they overlap in a part larger than grain-size
and differ in a part larger than grain-size.

We can generalize this notion using a 0, 1½ � perspective instead of a discrete
partitioning of the space of possible overlap-relations. For the example of a set-
theoretical model, we could proceed, e.g., to find a fuzzification of ⊆ into a
function ⊆ TF mapping to 0, 1½ � by assessing the largest difference between two
arguments x, y in comparison to the diameter of x. The intervals 14, 46ð � and
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14, 46½ Þ, for instance differ only in boundary points. The intervals x ¼ 11, 34ð Þ and
y ¼ 12, 36ð Þ overlap in x∩y ¼ 12, 34ð Þ. With the overlap ∣x∩y∣ ¼ ∣ 12, 34ð Þ∣ ¼ 12 and
∣x∣ ¼ ∣ 11, 34ð Þ∣ ¼ 13, this is an overlap of ∣x∩y∣=∣x∣ ¼ 12=13 ¼ 92%.

Generally, we can employ a granularity function γ : LT ! 
þ to compute a

mapping from entities of LT to 
þ. Based on this, we can use a suitable function r :

LT ! LF to make the transition between the term layer and the formula layer in
such a way that it also connects appropriately to the basic properties of the residual
rF, e.g., by employing rF itself:

≼ TF x, yð Þ ¼ rF γ xð Þ, γ x∩yð Þð Þ:

We obtain a fully specified family of fuzzy context logics. Note that with
rF ¼ rprod, we receive the conditional probability:

rprod γ xð Þ, γ x∩yð Þð Þ ¼
γ x∩yð Þ

γ xð Þ
¼

1 if  x⊆ y

γ x∩yð Þ

γ xð Þ
otherwise

8

<

:

For rF ¼ rmin we obtain:

rmin γ xð Þ, γ x∩yð Þð Þ ¼
1 iff  x⊆ y

γ x∩yð Þ otherwise:

�

Among the potential applications, a two-layered fuzzy logic can help to reason
about fuzzy logic systems. The base logic being decidable for the classical semantics,
we can, at least for the classical case, make absolute guarantees for a given system.
We can prove whether a given fuzzy system, e.g., the output of a machine learning
mechanism, such as an ANFIS, together with a description of possible situations in
the domain and desirable properties yields a tautology, thus proving that the system
has the desirable properties under all possible circumstances. If we are interested in
gaining an understanding of systems that are not tautological in this sense, so as to
obtain, e.g., degrees of possibility of failure under certain circumstances, more
advanced fuzzy proof methods are required.

6. Conclusions

This chapter illustrated that the lwo-layered logic context logic and fuzzy logic
can be combined in a meaningful way. We first mapped both logics to a predicate
logical background language, so as to highllight their commonalities and differences
and to obtain a background compatible with both. In both cases, we discussed a
common set-theoretical model that can be used to interpret the background lan-
guage. We formally proved that the lattice-based generalized t-norms of fuzzy logic
provide a suitable semantics for the term-layer of context logic. To do this, we
expressed context logic in terms of a single pre-order relation that additionally
supports the weak supplementation principle and showed that, with this translation
providing semantics, context logic fulfills the properties of a residuated lattice. We
also derived that the language is decidable in EXPSPACE.

The formula-layer of context logic could then additionally be imbued with a
0, 1½ �-based fuzzification. Proposals for adding either the product t-norm or the
minimum t-norm for the formula layer on top of the lattice-based generalized
t-norm of the context term layer were suggested, and a mechanism for combining
this with granularity to further expand expressiveness was discussed.
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