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Chapter

Cholesterol Recognition Motifs 
(CRAC) in the S Protein of 
Coronavirus: A Possible Target for 
Antiviral Therapy?
Antonina Dunina-Barkovskaya

Abstract

Some interactions of enveloped viruses with the host cell membrane have a 
cholesterol-dependent component, which may account for clinical manifestations of 
the infectious disease and can be used for the development of antiviral drugs. These 
cholesterol-dependent interactions can be mediated by cholesterol-recognition 
amino-acid consensus (CRAC) motifs present in viral proteins. The S protein of 
the SARS-CoV and SARS-CoV2 coronaviruses contains CRAC motifs that can be 
involved in the process of virus entry into the cell. Besides, during viral envelope for-
mation, CRAC motifs can be responsible for binding of cell membrane cholesterol, 
leading to depletion of cell membrane cholesterol and subsequent malfunctioning 
of cellular cholesterol-dependent proteins, destabilization and permeabilization of 
cell membranes and, ultimately, to the death of infected cells. Understanding the 
mechanisms of cholesterol-dependent virus–cell interactions and the role of CRAC-
containing viral proteins in the pathogenesis of the disease can serve as the basis for 
the development of new drugs that prevent both coronavirus entry into the cell and 
the damage of the infected cell during the viral morphogenesis. The target for such 
drugs can be the S-protein/cholesterol interface. CRAC-containing peptides derived 
from viral proteins may be among these agents. These peptides can also be used as 
experimental tools to study cholesterol-dependent virus–cell interactions.

Keywords: peptides, cholesterol-recognition motif (CRAC), CRAC-containing 
peptides, coronavirus, S-protein, SARS-CoV2, COVID-19

1. Introduction

The COVID-19 pandemic caused by the SARS-CoV2 coronavirus has resulted in 
almost hundred of millions of infections and about two millions of deaths in 2020 
[1, 2]. According to the WHO data as of January 4, 2021, there have been 85 929 428 
confirmed cases of COVID-19 reported to WHO, including 1 876 100 deaths [2]. 
It has been shown that in patients with laboratory-confirmed COVID-19, clinical 
results correlate with the presence of concomitant diseases, among which hyperten-
sion and diabetes mellitus, as well as old age, atherosclerosis, cardiovascular and 
cerebrovascular diseases worsening prognosis [3–9]. Notably, these factors are 
commonly associated with the impairments in the lipid/cholesterol metabolism and 
transport or are their direct consequence [3–5].
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At present, a lot is known about the coronavirus SARS-CoV2. It is an envel-
oped single-stranded RNA virus belonging to the Betacoronavirus genus of the 
Coronaviridae family. The virus contains a 30 kb genome encoding four major viral 
structural proteins: spike (S), membrane (M), envelope (E), and nucleocapsid 
(N) proteins [9, 10]. According to modern concepts, the cellular receptor for S 
protein is angiotensin converting enzyme 2 (ACE2); binding of the S protein to this 
receptor allows the internalization of the virus and triggers the disease. Significant 
progress has been made in the development of vaccines against SARS-CoV2 and 
mass vaccination of people in different countries begins [11, 12]; this gives hope 
that the pandemic will stop. However, the issues of treating patients with various 
forms of COVID-19 and the development of drugs based on knowledge of the 
mechanisms underlying this pathology still need to be addressed. This chapter is 
mainly focused on the lipid aspects of the interactions of coronaviruses with host 
cells and, in particular, draws attention to the fact that interactions with host cells 
of many enveloped viruses, including coronaviruses SARS-CoV and SARS-CoV2, 
are cholesterol dependent. Moreover, these interactions lead to significant and 
potentially deleterious alterations in the cholesterol status of the infected cells. 
These cholesterol-dependent processes play a significant role both at the stage of 
the virus entry and during the development of severe respiratory syndrome (SARS) 
and other health problems caused by coronaviruses SARS-CoV and SARS-CoV2. 
Therefore, understanding this component is necessary for the development of 
additional approaches both to prevention and treatment of these diseases, and the 
attempts in this direction are being made (e.g., [13–15]). This review focuses on 
the fact that the coronavirus S protein, which is involved in cholesterol-dependent 
virus–cell interactions during entry and replication stages, contains the so-called 
cholesterol recognition amino-acid consensus (CRAC) motifs [16, 17] that can 
actually mediate these interactions. A hypothesis is put forward suggesting that 
binding of cell membrane cholesterol by CRAC-containing S protein (and possibly 
by other viral proteins) and subsequent removal of cholesterol from intracellular 
membranes by newly formed viral particles can affect normal functioning of 
cellular cholesterol-dependent proteins (receptors, ion channels, enzymes, etc.) 
and can eventually cause cell death due to destabilization and permeabilization of 
cell membranes. This deteriorating effect of CRAC-containing viral proteins can 
be counteracted by agents that prevent binding of membrane cholesterol to viral 
proteins and/or compensate for the membrane cholesterol depletion produced by 
the forming viral particles. It is possible that specially designed CRAC-containing 
peptides that specifically block interactions of S protein with cholesterol can 
expand the range of antiviral agents.

2.  Some interactions of enveloped viruses with host cells are 
cholesterol-dependent

The viral life cycle includes four steps: entry, replication, assembly, and egress 
[18–21] (Figure 1). At the entry step, an enveloped virus binds to a target receptor, 
the viral envelope fuses with the host cell membrane, and the viral nucleic acids are 
released into the cytoplasm. At the replication step, the nucleic acid is replicated 
in cytoplasmic replication organelles and viral proteins are synthesized. At the 
assembly step, viral proteins and nucleic acids are packed into a viral particle and 
the viral envelope is formed. At the egress step, mature viral particles leave the cell 
through the cellular membrane [18–21].

Some interactions of enveloped viruses with the cell in the course of penetra-
tion and during assembly, budding, and exit of the virus from the cell are known to 
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depend on the presence of cholesterol and lipid rafts in the membranes of the host 
cells [21–26]. This has been shown for immunodeficiency viruses (HIV) [27–31], 
influenza [32–37], herpes [38], Newcastle disease virus [39], and rotavirus [40], as 
well as hepatitis C virus (HCV) [41–43] and some other viruses of the Flaviviridae 
family (Yellow fever virus, Zika virus, Dengue virus, West Nile virus [44, 45]). For 
example, the vital need of cholesterol for replication of hepatitis C virus (HCV) 
was shown by different methods in [41, 43]. Lipid withdrawal from the medium 
considerably suppressed the virus replication, which was restored to normal levels 
upon addition of exogenous LDL. Moreover, virus replication was suppressed 
by knockdown or pharmacological inhibition of Niemann–Pick type C1 protein 
(NPC1) – cell protein mediating the endosomal cholesterol transport [41, 43].

The cholesterol dependence of virus–cell interactions has also been dem-
onstrated for various coronaviruses [14, 15, 46–52], including SARS-CoV and 
SARS-CoV2 [50–52]. Li et al. 2007 [50] reported that the production of SARS-CoV 
particles released from the infected Vero E6 is notably suppressed following cho-
lesterol depletion by cell pretreatment with methyl-β-cyclodextrin (mβCD), and 
the addition of cholesterol to the culture medium reversed this effect. Later, Glende 
et al. 2008 [51] showed that the removal of cholesterol from cell membranes using 
mβCD reduces the efficiency of infection of cells not only with the SARS-CoV but 
also with a non-replicating pseudotype of vesicular stomatitis virus containing the 
surface glycoprotein S of the SARS-CoV virus (VSV-ΔG-S), which confirms the key 

Figure 1. 
Life cycle of an enveloped virus as exemplified by coronavirus (based on [18–21]). To enter a cell, virus binds 
via S protein to the receptors on the host cell and the viral envelope fuses with plasma membrane or membrane 
of endolysosome (EL) and releases the genomic nucleic acid into the cell cytoplasm. Viral membrane is shaded. 
Note that viral envelope remains in cell plasma membrane both after direct fusion and after endosomal 
membrane recycling (MR). At the replication stage, replication–transcription complex is formed and viral 
proteins and copies of RNA are produced. At the assembly stage, viral particles are formed from nucleocapsid 
(genomic RNA and N protein) and intracellular cell membranes (endopasmic reticulum (ER) and/or ER-to-
Golgi intermediate compartment (ERGIC)), containing viral membrane-associated proteins (S, M, and E). 
During the assembly process, double-membrane vesicles (DMV) are formed. At the exit stage, viral particles are 
released by secretory pathway.
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role of the S protein in the virus entry. The authors also reported that the cellular 
receptor of the SARS-CoV virus, angiotensin-converting enzyme (ACE2), is co-
localized with Flotilin2 and LAMP2, the protein markers of the detergent-resistant 
membrane domains (rafts) [51].

The issues concerning the importance of the host cell membrane lipids, rafts, and 
cholesterol at different stages of the virus life cycle have been addressed in numerous 
comprehensive reviews, and the dependence of the viral life cycle on cellular choles-
terol, as well as the impact produced by viruses on cellular lipids and cholesterol in 
particular is regarded as a basis for antiviral therapy [15, 30, 31, 45, 53]. For example, 
cholesterol-lowering treatments are considered as a possible prophylactic or pre-
ventive measures [45, 54]. However, alterations in the cell lipid status produced by 
viruses that have entered a cell impose more complex requirements on potential 
medicines.

3.  Virus-induced modulations of the lipid composition of cell 
membranes. Formation of viral envelope can result in a hazardous 
decrease in the cholesterol content in cell membranes

Viruses not only depend on cholesterol but also significantly modulate the lipid 
composition of cell membranes [53, 55–63]. This occurs both at the stage of virus 
internalization and during the synthesis of viral proteins and intracellular assembly 
of new viral particles. The consequences of these changes can determine the clinical 
course and severity of the disease. The release of the gene material of many envel-
oped viruses into the cytoplasm of the cell occurs by fusion of the viral envelope 
with plasma membrane or with membranes of late endosomes (endolysosomes) 
formed during receptor-mediated endocytosis [18–21, 64–70]. The inclusion of 
viral envelopes into the host cell membrane (either after direct fusion of after endo-
somal membrane recycling) should change both the lipid and protein composition 
of the cell membrane and cause rearrangements in the lipidic milieu and antigenic 
profile of the host cell membrane (Figure 1). Further, at the stage of the assembly 
of new viral particles, their envelopes are formed from cellular membranes  
[14, 15, 45, 55, 57–65, 67, 68]. Some viruses bud from the plasma membrane (e.g., 
togaviruses, rhabdoviruses, paramyxoviruses, orthmyxoviruses, and retroviruses, 
including HIV), others use the endoplasmic reticulum (ER) (coronaviruses and 
flaviviruses) or/and a Golgi complex (bunyaviruses), some (e.g., herpes virus) have 
more complicated budding scenario [59–62]. The formation of the viral envelopes 
can involve lipid sorting and, in particular, accumulation in the viral envelope 
of cholesterol and sphingolipids that are acquired from the host cell membranes 
[33, 61–65, 69, 70]. For example, HIV-1 selectively buds from membrane domains 
enriched in cholesterol and sphingolipids (rafts); as a result, host cell rafts become 
a viral coat and the level of cholesterol and sphingolipids and the cholesterol/phos-
pholipids ratio in the viral envelope is higher than in the plasma membrane where 
they originate, and also notably higher than in the intracellular membranes [53, 61, 
62, 65]. Another example – bovine viral diarrhea virus (BVDV) of the Flaviviridae 
family budding from the endoplasmic reticulum (ER): the content of cholesterol, 
sphingomyelin, and hexosyl-ceramide in the BVDV particles was shown to be more 
than twofold higher than in the infected cells [69]. As the cholesterol concentra-
tion in the ER is significantly (several times) lower than in the plasma membrane 
[71–74], the loss of cholesterol due to the formation of viral envelopes can be 
destructive for the ER membranes.

For lipid sorting necessary for the virus envelope formation, various mecha-
nisms are used to manipulate synthesis, metabolism, and transport of host lipids, 
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cholesterol in particular, and lead to significant changes in the lipid status of the 
host cell. HIV-1 infection is known to induce various alteration of cellular lipids, 
including increased cholesterol synthesis and uptake [75], suppressed cholesterol 
efflux [76], as well as a shift in phospholipid synthesis to neutral lipids and peroxi-
dation of polyunsaturated fatty acid [53, 65, 75, 76]. Hepatitis C virus (HCV) also 
causes massive rearrangements of intracellular membranes leading to the formation 
of double-membrane vesicles (DMVs) enriched with cholesterol. As was shown 
in [41], HCV ‘usurps’ cholesterol transporter proteins, such as NPC1, in order to 
deliver cholesterol to the viral replication organelle where cholesterol is needed, and 
blockage of this transporter suppresses the virus replication. Coronaviruses, like 
Flaviviruses, are assembled and bud from the membranes of Golgi complex and 
ER [41, 60] and also form double-membrane vesicles [77]. At the same number of 
newly formed viral particles, the consequences of removing cholesterol from ER 
membranes by double-membrane vesicles can be more severe than in the case of 
single membrane vesicles; a quantitative assessment of this process is necessary.

A possible mechanism stimulating the delivery of cholesterol to ER from plasma 
membrane during coronavirus replication was demonstrated by Wang et al. 2020 
[78]. The authors reported that SARS-CoV2 activates the host cell gene encoding 
cholesterol 25-hydroxylase and induces the formation of 25-hydroxycholesterol, 
which increases cholesterol availability [79] and triggers its delivery from the 
plasma membrane to the endoplasmic reticulum, where cholesterol is required for 
the viral envelope formation. Although, as is known [14, 23–29, 32–41, 46–55], the 
depletion of cholesterol in the plasma membrane suppresses the virus entry into the 
cell, the observed trafficking of cholesterol into the ER (normally the flow goes in 
the opposite direction [71, 72]) can reflect an increased uptake of cholesterol for the 
formation of envelopes of new viruses. After the release of newly formed viruses, 
this depleted cell will not be susceptible to new infection.

Thus, the formation and release of viral particles from the cell cannot but affect 
the composition of the host cell membranes. It can be expected that after a full 
replication cycle of viruses with high envelope cholesterol, the level of cholesterol 
in the membranes of the host cell will be reduced, and this depletion of cholesterol 
can lead to a significant deregulation of cholesterol-dependent processes, includ-
ing intracellular signaling and metabolic pathways. At a high rate of assembly of a 
large number of viruses, infected cells may not be able to compensate for the loss of 
cholesterol in their membranes, and this can lead to cell death due to destabilization 
and permeabilization of cell membranes. Indeed, ample evidence indicates that 
lowered membrane cholesterol is associated with altered mechanical properties and 
increased permeability of the membrane [80–83]. Some viral and bacterial proteins 
trigger apoptosis through lysosomal membrane permeabilization leading to release 
of cathepsins [81]. The human immunodeficiency virus type 1 (HIV-1) protein Nef 
is one of such proteins: when entering mammalian cells, it causes permeabiliza-
tion of the lysosomal membrane [81]. It seems appropriate at this point to recall 
that permeabilization of intracellular membranes due to cholesterol depletion 
underlies the cytotoxic effect of some anticancer drugs [81, 84–87]. As was shown 
by Appelqvist et al. 2011 [84], the mechanism of action of cisplatin and some 
other lysosomotropic drugs at least partially is based on the permeabilization of 
lysosomal membranes leading to cell death; cholesterol accumulation in lysosomal 
membranes caused by inhibition of cholesterol transporting protein NPC1 pre-
vented the lysosome-dependent cell death [84]. Note that in the case of virus infec-
tion, inhibition of the NPC1-dependent cholesterol transport suppressed the virus 
replication [41] and rescued the infected cells. When NPC1 functions normally and 
cholesterol is delivered from lysosomal compartment to ER for the formation of 
viral envelopes, lysosomal membranes lose cholesterol and become leaky; in a way, 
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virus acts like a lysosomotropic drug. Cholesterol supplementation was also shown 
to reverse a strong cytotoxic effect on colon cancer cells caused by a low molecular 
weight compound TASIN-1 producing cholesterol-dependent ER stress triggering 
oxidative stress and JNK-dependent apoptosis [85].

Thus, virus–cell interactions lead to significant modulations in the lipid compo-
sition of cell membranes. A decrease in cholesterol in cell membranes owing to the 
formation of viral envelopes can be one of the most dangerous consequences of the 
virus particle assembly, as the amount of cholesterol removed from the cell mem-
branes by newly formed viruses can exceed the compensatory resources of the cell. 
If the delivery of cholesterol to the cells is insufficient, deregulation of cholesterol-
dependent processes can lead to massive cell death, which manifests itself in the 
clinical course of the disease and a poor prognosis. In this connection, it should 
be noted that in patients infected with COVID-19, a significant decrease (several 
fold) in total cholesterol and low-density lipoprotein (LDL) cholesterol levels was 
recorded [13, 88], and cholesterol-lowering treatments (such as statins) may not 
be advisable for patients with life-threatening COVID-19 infection, at least until 
they recover from the infection [88]. Such a drop of the LDL cholesterol level in 
COVID-19 patients may reflect an enhanced recruitment of circulating cholesterol 
by the cells to compensate for its loss associated with virus reproduction. Perhaps 
the clinical prognosis depends on the timely and successful delivery of cholesterol 
required for cell membrane repair. Another direction in the development of drugs 
for the treatment of the disease is the search for agents that interfere with the 
interactions of viral proteins with cholesterol, and this search should be based on an 
understanding of the mechanisms of these interactions. So far, the only drugs for 
which clinically significant results have been demonstrated against COVID-19, are 
dexamethasone and some other corticosteroids [89–91]; secosteroids (vitamin D) 
are shown to help, too [92]. The use of dexamethasone led to a reduction in mortal-
ity to one third of hospitalized patients with severe respiratory complications from 
COVID-19. It seems possible that the action of steroids may be associated with the 
repair of a cell membrane damaged by virus-induced depletion of cholesterol.

How does the virus manage to bind and remove cholesterol from cell 
membranes?

4.  Cholesterol recognition/interaction amino acid consensus (CRAC) 
motifs in viral proteins. Possible uses of CRAC-containing peptides

As was shown earlier [16, 17, 93], some proteins involved in cholesterol-depen-
dent cell functions possess the so-called cholesterol recognition/interaction amino 
acid consensus (CRAC) motifs – small regions with a specific set of amino acid res-
idues involving a branched apolar aminoacid residue (Val (V), Leu (L), or Ile (I)), 
aromatic residue (Tyr (Y)), and cationic aminoacid residue (Arg (R) or Lys (K)); 
these motif-forming amino acids are separated by short segments of any 1–5 amino 
acid residues. In subsequent discussions, more candidates of aromatic amino acid 
residues were proposed, and the general formula for the CRAC motifs presumably 
involved in the interaction of protein with cholesterol presently appears as follows: 
V/L/I–X(1–5)–W/Y/F–(X)(1–5)–R/K, where X stands for any amino acid residue 
[94–100]. Although the predictive value of this formula has been questioned 
[95–97], the presence of this motif in many proteins and its participation in the 
protein–cholesterol interactions has been confirmed by different methods [16, 17, 
93–95]. The formula of the CRAC motif can be further developed [94]; important 
is the very concept of a motif  mediating the interactions of cholesterol-dependent 
proteins with cholesterol.
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CRAC motifs are found in many viral proteins, and their role in cholesterol-
dependent virus–cell interactions have been demonstrated. For example, CRAC 
motifs are present in the HIV matrix protein р17, which was shown to participate in 
virus entry through the raft domains of the cell membranes [27, 101]. The α-helical 
domain of the hepatitis C virus nonstructural protein NS5A, which is anchored at 
the cytoplasmic leaflet of the endoplasmic reticulum and is involved in replication 
hepatitis C virus, also contains CRAC motif [102]. Importantly, peptides derived 
from this domain were shown to exhibit a broad-spectrum anti-viral activity. 
Cheng et al. 2008 [103] reported that peptide C5A containing amino acid residues 
3–20 of the amphipathic α-helical N-terminal domain of hepatitis A virus protein 
NS5A suppressed the virus replication by more than 5 orders of magnitude. The 
authors did not mention the CRAC concept; however, the active peptide C5A 
(SWLRDIWDWICEVLSDFK) clearly contains the CRAC motif: RDIWDWICEV. 
Later, the antiviral activity of this peptide C5A against HIV was also demonstrated 
[104]. It is possible that peptide C5A, owing to the presence of the CRAC motif, 
binds cholesterol and competes for cholesterol binding with viral protein and thus 
inhibits the formation of the viral particle.

CRAC motifs are found in alpha-helices of matrix protein M1 of influenza A 
virus [105–107]. An important role of these CRAC motifs in the organization of the 
raft structure of the virion membrane was substantiated by using the method of 
directed point mutations in the CRAC-containing α-helices in the M1 protein  
[106, 107]. Further studies revealed that M1-derived peptides containing CRAC 
motifs LEVLMEWLKTR, NNMDKAVKLYRKLK, GLKNDLLENLQAYQKR, corre-
sponding to α-helixes 3 (aa 39–49), 6 (aa 91–105) and 13 (aa 228–243), respectively, 
to a different extent modulate cholesterol-dependent interactions of cultured mac-
rophages with 2-μm particles that mimic bacteria (phagocytic index). Of the three 
peptides, NNMDKAVKLYRKLK was most potent and stimulated the cell activity 
by 50–60% at 35 μΜ [108]. Peptide RTKLWEMLVELGNMDKAVKLWRKLKR 
obtained by combining two of these short peptides and containing two CRAC motifs 
produced much stronger and more complex effect: in a narrow range of low concen-
trations (1–5 μM) the peptide exerted a stimulatory effect and at 50 μM the peptide 
was cytotoxic [109]. Reducing the cholesterol content in the cells with methyl-β-
cyclodextrin (mβCD) abolished the stimulatory component and lowered the peptide 
concentration required for the toxic effect. Substitution of the motif-forming 
amino acids abolished these effects [110]. The cytotoxic effect of  the M1-derived 
peptide RTKLWEMLVELGNMDKAVKLWRKLKR can be explained by the binding 
(sequestration) of membrane cholesterol by the peptide; this can imitate removal 
of cholesterol from cell membranes, which occurs during the formation of the viral 
envelope.

S proteins of coronaviruses SARS-CoV and SARS-CoV2 also contain CRAC 
motifs [51, 109, 110]. For example, in the case of the S protein of coronavirus 
SARS-CoV, the CRAC motif YIKWPWYVW is located in the “aromatic” region 
of the transmembrane domain of the S-protein; this highly conserved region of 
the S-protein was shown to be necessary for the infection of cells with  
coronavirus [111, 112].

If the assumption about the essential role of sequestration and removal of 
membrane cholesterol by viral CRAC-containing proteins in the COVID-19 
parthenogenesis is correct, then in order to prevent this destructive action for the 
cell, it is necessary to maintain a safe level of cholesterol in the plasma membrane. 
A significant decrease in total cholesterol and low-density lipoprotein (LDL) 
cholesterol levels in COVID-19 patients [13, 88] may be indicative of the critical 
loss of cholesterol by cells, and an efficient cholesterol delivery to the cholesterol-
depleted cells may be helpful. Cyclodextrins are possible candidates as non-toxic 
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cholesterol transporters [113–116], which can redistribute cholesterol from endog-
enous and/or exogenous sources. The use of cyclodextrins increased the lifespan 
of NPC1−/− experimental mice [117] and improved the condition of patients with 
Nieman–Pick disease [118]. Another alternative is to prevent viral proteins from 
interacting with membrane cholesterol. At least some of the drugs that are cur-
rently tested – for example, polyphenolic substances like quercetin and saponin 
glycyrrhizin [119, 120] – can act at the protein/cholesterol interface and hinder 
cholesterol binding by the CRAC motif of the viral S protein and thus inhibit the 
assembly of new viral particles. Glycyrrhizin, an active component of liquorice 
roots, was shown to inhibit SARS-CV replication in Vero cells and replication 
of SARS-associated coronavirus [121, 122]. However, such agents are not very 
selective and can affect other cholesterol-dependent proteins and therefore cause 
side effects. Perhaps specially designed CRAC-peptides specifically blocking the 
interactions of S-protein with cholesterol will prevent the cellular cholesterol loss 
leading to permeabilization of membranes, oxidative stress, and cell death. The 
ability of CRAC-containing peptides to regulate cholesterol-dependent cell func-
tions has been demonstrated in a number of works [17, 109, 122, 123], and studies 
of the antiviral activity of these peptides may be useful and promising.

5. Conclusions

The SARS-CoV2 pandemic has sparked a brainstorming session over the 
underlying mechanisms of viral diseases. Many assumptions have been made. This 
chapter considers possible consequences of cholesterol depletion in the membranes 
of infected cells due to the formation of cholesterol-rich viral envelopes. At a high 
viral load and high replication rate the reduction in the cholesterol level in the 
cell membranes can lead to their permeabilization and subsequent cell death, and 
this can be one of the factors in pathogenesis of diseases induced by SARS-CoV2. 
Cholesterol-recognition/interaction (CRAC) motifs in viral proteins may represent 
a mechanism for the binding of the viral protein with cholesterol. Substances 
preventing these interactions of viral proteins with cholesterol can suppress the 
formation of the viral envelope and therefore can be studied as possible antiviral 
drugs. Peptides containing CRAC motifs from viral proteins may be among these 
substances.
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