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Chapter

Case Study: Coefficient Training in
Paley-Wiener Space, FFT, and
Wavelet Theory
Kayupe Kikodio Patrick

Abstract

Bessel functions form an important class of special functions and are applied
almost everywhere in mathematical physics. They are also called cylindrical func-
tions, or cylindrical harmonics. This chapter is devoted to the construction of the
generalized coherent state (GCS) and the theory of Bessel wavelets. The GCS is
built by replacing the coefficient zn=n!, z∈ of the canonical CS by the cylindrical
Bessel functions. Then, the Paley-Wiener space PW1 is discussed in the framework
of a set of GCS related to the cylindrical Bessel functions and to the Legendre
oscillator. We prove that the kernel of the finite Fourier transform (FFT) of L2-
functions supported on �1, 1½ � form a set of GCS. Otherwise, the wavelet transform
is the special case of CS associated respectively with the Weyl-Heisenberg group
(which gives the canonical CS) and with the affine group on the line. We recall the
wavelet theory on R. As an application, we discuss the continuous Bessel wavelet.
Thus, coherent state transformation (CST) and continuous Bessel wavelet transfor-
mation (CBWT) are defined. This chapter is mainly devoted to the application of
the Bessel function.

Keywords: coherent state, Hankel transformation, Bessel wavelet transformation

1. Introduction

Coherent state (CS) was originally introduced by Schrödinger in 1926 as a
Gaussian wavepacket to describe the evolution of a harmonic oscillator [1].

The notion of coherence associated with these states of physics was first noticed
by Glauber [2, 3] and then introduced by Klauder [4, 5]. Because of their important
properties these states were then generalized to other systems either from a physical
or mathematical point of view. As the electromagnetic field in free space can be
regarded as a superposition of many classical modes, each one governed by the
equation of simple harmonic oscillator, the CS became significant as the tool for
connecting quantum and classical optics. For a review of all of these generalizations
see [6–9].

Four main methods are well used in the literature to build CS, the so-called
Schrödinger, Klauder-Perelomov, Barut-Girardello and Gazeau-Klauder
approaches. The second and third approaches are based directly on the Lie algebra
symmetries with their corresponding generators, the first is only established by
means of an appropriate infinite superposition of wave functions associated with
the harmonic oscillator whatever the Lie algebra symmetries. In [10–12] the authors
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introduced a new family of CS as a suitable superposition of the associated Bessel
functions and in [13–15] the authors also use the generating function approach to
construct a new type CS associated with Hermite polynomials and the associated
Legendre functions, respectively. The important fact is that we do not use algebraic
and group approaches (Barut-Girardello and Klauder-Perelomov) to construct gen-
eralized coherent states (GCS).

We first discuss GCS associated with a one-dimensional Schrödinger operator
[16, 17] by following the work in [18, 19]. We build a family of GCS through
superpositions of the corresponding eigenstates, say ψn, n∈, which are expressed
in terms of the Legendre polynomial Pn xð Þ [16]. The role of coefficients zn=

ffiffiffiffi
n!

p
of

the canonical CS is played by

On ξð Þ≔ in
π 2nþ 1ð Þ

2ξ

� �1
2

Jnþ1
2
ξð Þ, n ¼ 0, 1, 2, … , (1)

where ξ∈ and Jnþ1
2
:ð Þ denotes the cylindrical Bessel function [20]. When n ¼ 0,

Eq. (1) becomes

O0 ¼ J0 ξð Þ ¼ sin ξð Þ
ξ

(2)

where J0 :ð Þ denotes the spherical Bessel function of order 0. The choosen
coefficients (1) and eigenfunctions (27) (see below) have been used in ([21],
p. 1625). We proceed by determining the wavefunctions of these GCS in a closed
form. The latter gives the kernel of the associated CS transform which makes
correspondence between the quantum states Hilbert space L2 �1, 1½ �, 2�1dx

� �
of the

Legendre oscillator and a subspace of a Hilbert space of square integrable functions
with respect to a suitable measure on the real line. We show that the kernel
eixξ, ξ∈, of the L2-functions that are supported in �1, 1½ � form a set of GCS.

There are in literature several approach to introducce Bessel Wavelets. We
refer for instence to [22, 23]. Note that, for �1, 1½ � ∍ x↦ cos y=nð Þ, n∈, the
Legendre polynomial Pn xð Þ and the Bessel function of order 0 are related by the
Hansen’s limit

lim
n!∞Pn cos

y

n

� �
¼
ðπ

0
eiy cosϕdϕ ¼ J0 yð Þ,

and the integral

ð
∞

0
J0 yð ÞJ0 yð Þdy ¼ π

2
: (3)

Note that in [22, 23] the authors have introduced the Bessel wavelet based on the
Hankel transform. The notion of wavelets was first introduced by J. Morlet a
French petroleum engineer at ELF-Aquitaine, in connection with his study of
seismic traces. The mathematical foundations were given by A. Grossmann and
J. Morlet [24]. Harmonic analyst Y. Meyer and other mathematicians
understood the importance of this theory and they recognized many classical results
within (see [25–27]). Classical wavelets have several applications ranging from
geophysical and acoustic signal analysis to quantum theory and pure mathematics.
A wavelet base is a family of functions obtained from a function known as mother
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wavelet, by translation and dilation. This tool permits the representation of L2-
functions in a basis well localized in time and in freqency. Wavelets are special
functions with special properties which may not be satisfied by other functions. In
the current context, our objective is to make a link between the construction of
GCS and the theory of wavelets. Therefore, we will talk about coherent state
transformation (CST) and the continuous Bessel wavelet transformation (CBWT).

The rest of this chapter is organized as follows: Section 2 is devoted to the
generalized CS formalism that we are going to use. In Section 3, we briefly intro-
duce the Paley-Wiener space PWΩ and some notions on Legendre’s Hamiltonian.
We give in Section 4 a summary concept on the continuous wavelet transform on .
In Section 5, we have constructed a class of GCS related to the Bessel cylindrical
function for the legendre Hamiltonian. In Section 6, we discuss the theory of CBWT
where we show as an example that the function f ∈L2

σ þð Þ

f tð Þ:¼ 2w0 � t2

2 w2
0 þ t2

� �5=2 , w0 >0, (4)

such that
Ð
þ
f tð Þdσ tð Þ ¼ 0 is the mother wavelet where dσ tð Þ is an appropriate

Legesgue’s measure on . Finally in Section 7. we gives some concluding remarks on
the chapter.

2. Generalized coherent states formalism

We follow the generalization of canonical coherent states (CCS) introduced in
[18, 19]. The definition of CS as a set of vectors associated with a reproducing kernel
is general, it encompasses all the situations encountered in the physical literature.
For applications we will work with normalized vectors. Let X , μð Þ be a measure
space and let N2 ⊂L2 X , μð Þ be a sub-closed space of infinite dimension. Let
C nf g∞n¼0 be a satisfactory orthogonal basis of N2, for arbitrary x∈X

X∞

n¼0

ρ�1
n C n xð Þj j2 < þ∞ (5)

where ρn ≔∥C n∥
2
L2 X ,μð Þ. Define the kernel

K x, yð Þ≔
X∞

n¼0

ρ�1
n C n xð ÞC n yð Þ, x, y∈X : (6)

Then, the expression K x, yð Þ is a reproducing kernel, N2 is the corresponding
kernel Hilbert space and N xð Þ≔K x, xð Þ, x∈X . Define

ϑx ≔ N xð Þð Þ�1=2
X∞

n¼0

ρ�1=2
n C n xð Þφn:

Therefore,

ϑx,ϑxh i ¼ N xð Þ�1
X∞

n¼0

ρ�1
n C n xð ÞC n xð Þ ¼ 1,

3
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and

W : H ! N
2 with W ϕ ¼ N 1=2

ϑx,ϕh i

is an isometry. For ϕ,ψ ∈H , whe have

ϕ,ψh iH ¼ W ϕ,W ψh i
N

2 ¼
ð

X
W ϕ xð ÞW ψ xð Þdμ xð Þ (7)

¼
ð

X
ϕ,ϑxh i ϑx,ψh iN xð Þdμ xð Þ, (8)

and

ð

X
ϑxj i ϑxh jN xð Þdμ xð Þ ¼ IH , (9)

where N xð Þ is a positive weight function.
Definition 1. Let H be a Hilbert space with dimH ¼ ∞ and φnf g∞n¼0 be an

orthonormal basis of H .The generalized coherent state (GCS) labeled by point x∈X
are defined as the ket-vector ϑx ∈H , such that

ϑx ≔ N xð Þð Þ�1=2
X∞

n¼0

ρ�1=2
n C n xð Þφn: (10)

By definition, it is straightforward to show that ϑx, ϑxh iH ¼ 1.
Definition 2. For each function f ∈H , the coherent state transform (CST) associ-

ated to the set ϑxð Þx∈X is the isometric map

W f½ � xð Þ≔ N xð Þð Þ1=2 f jϑxh iH : (11)

Thereby, we have a resolution of the identity of H which can be expressed in Dirac’s
bra-ket notation as

1H ¼
ð

X
TxN xð Þdμ xð Þ (12)

where the rank one operator Tx ≔ ϑxj i ϑxh j : H ! H is define by

f ↦Tx f½ � ¼ ϑxjfh iϑx:

N xð Þ appears as a weight function.
Next, the reproducing kernel has the additional property of being square

integrable, i.e.,

ð

X
K x, zð ÞK z, yð ÞN zð Þdμ zð Þ ¼ K x, yð Þ: (13)

Note that the formula (10) can be considered as generalization of the series
expansion of the CCS [28].

ϑz ¼
ffiffiffi
π

p
e�

zz
2

X∞

k¼0

znffiffiffiffi
n!

p ϕn, z∈ (14)
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with ϕnf g∞n¼0 being an orthonormal basis of eigenstates of the quantum har-
monic oscillator. Then, the space N2 is the Fock space F ð Þ and N zð Þ ¼
π�1ezz, z∈.

3. The Paley-wiener space PWΩ and the Legendre Hamiltonian: a brief
overview

3.1 The Paley-wiener space PWΩ

The Paley-Wiener space is made up of all integer functions of exponential type
whose restrictions on the real line is square integrable. We give in this Section a
general overview on this notion ([29], pp. 45–47).

Definition 3. Consider F as an entire function. Then, F is an entire function of
exponential type if there exists constants A,B>0 such that, for all z∈

∣F zð Þ∣ ≤AeB∣z∣: (15)

Note that, if F satisfy Definition 3, we call Ω the type of F where

Ω ¼ lim
r!þ∞

sup
logM rð Þ

r
(16)

and where M rð Þ ¼ sup∣z∣¼r∣F zð Þ∣. The following conditions on an entire function
F are verified:

1.For all ε>0 there exists Cε such that

∣F zð Þ∣ ≤Cεe
Ωþεð Þ∣z∣;

2.There exists C>0 such that

∣F zð Þ∣ ≤CeΩ∣z∣;

3.as ∣z∣ ! þ∞

∣F zð Þ∣ ¼ o eΩ∣z∣
� �

:

Then cleary, 3ð Þ ) 2ð Þ ) 1ð Þ ) F is of exponential type at most Ω.
Definition 4. Let Ω>0 and 1≤ p≤∞. The Paley-Wiener space PW

p
Ω is defined as

PW
p
Ω ¼ f ∈L2

ð Þ : f xð Þ ¼
ðΩ

�Ω

g yð Þe�ixydy, where g∈Lp �Ω,ΩÞð g
	

(17)

and we set

∥f∥PWp
Ω
¼ 2π∥g∥Lp : (18)

The Paley-Wiener PWp
Ω is the image via the Fourier transform of the Lp-function

that are supported in �Ω,Ω½ �. We will be interested in the case p ¼ 2, in which PWΩ

to denote the Paley-Wiener space PW2
ω. From the Plancherel formula we have
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∥f∥PW2
Ω
¼ ∥ĝ∥PW2

Ω
¼ 2π∥g∥L2 ¼ ∥f̂∥L2 ¼ ∥f∥L2 : (19)

Hence, by polarization, for f ,φ∈PWΩ,

f ,φh iPWΩ
¼ f ,φh iL2 : (20)

Theorem 1.1 Let F be an entire function and Ω>0. Then the following are
equivalent

• F∣ ∈L2
ð Þ and

∣F zð Þ∣ ¼ o eΩ∣z∣
� �

as ∣z∣ ! þ∞, (21)

• there exists f ∈L2
ð Þ with suppf̂ ⊆ �Ω,Ω½ � such that

F zð Þ ¼ 1
2π

ð



f̂ ξð Þeizξdξ: (22)

The function f ∈PWΩ if and only if f ∈L2
ð Þ and f ¼ F∣ (that is, f is the

restriction to the real line of a function F), where F is an entire function of
exponential type such that ∣F zð Þ∣ ¼ o eΩ∣z∣

� �
for ∣z∣ ! þ∞.

Theorem 1.2 The Paley-Wiener space PWΩ is a Hilbert space with reproducing
kernel w.r.t the inner product (20). Its reproducing kernel is the function

K x, yð Þ ¼ Ω

π
sinc Ω x� yð Þð Þ, (23)

where sinct ¼ sint=t. Hence, for every f ∈PWΩ

f xð Þ ¼ Ω

π

ð



f yð Þsinc Ω x� yð Þð Þdy, (24)

where x∈.

3.2 The Legendre Hamiltonian

The Legendre polynomials Pn xð Þ and the Legendre function ψn xð Þ are similar
to the Hermite polynomials and the Hermite function in standard quantum
mechanics. Based on the work of Borzov and Demaskinsky [16, 17] the Legendre
Hamiltonian has the form

H ¼ X2 þ P2 ¼ aþa� þ a�aþ, (25)

where X and P denotes respectively the position and momentum operators, aþ

and a� are the creation and annihilation operators. The eigenvalues of operators H
are equal to

λ0 ¼ 2
3
, λn ¼

n nþ 1ð Þ � 1
2

nþ 3
2

� �
n� 1

2

� � , n ¼ 1, 2, 3, … , (26)

and the corresponding eigenfunctions reads

ψn xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pn xð Þ, n ¼ 0, 1, 2, 3, :: , (27)

6
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in terms of the Legendre polynomial Pn :ð Þ, which form an orthonormal basis
ψn � nj if g∞n¼0 in the Hilbert space H ≔L2 �1, 1½ �, 2�1dx

� �
. These functions satisfy

the recurrence relations

xψn xð Þ ¼ bn�1ψn�1 xð Þ þ bnψnþ1 xð Þ, ψ�1 xð Þ ¼ 0, ψ0 xð Þ ¼ 1, (28)

with coefficients

bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ2

2nþ 1ð Þ 2nþ 3ð Þ

s

, n≥0: (29)

The generalized position operator on the Hilbert space H connected with the
Legendre polynomials Pn xð Þ is an operator of multiplication by argument Xψn ¼
xψn: Taking into account of the relation (28), then

Xψn xð Þ ¼ bnψnþ1 xð Þ þ bn�1ψn�1 xð Þ, (30)

whee bn are coefficients defined by Eq. (29). Because
P
∞

n¼01=bn ¼ þ∞, X is a
self-adjoint operator on the Hilbert space H (see [30–32]). The momentum opera-
tor P by the way described in ([17], p. 126) acts on the basis elements in H , by the
formula Pψn ¼ i bnψnþ1 � bn�1ψn�1

� �
: The usual commutator of operator X and P on

the basis elements reads as

X,P½ �ψn ¼ 2i b2n � b2n�1

� �
ψn ¼

2i
2n� 1ð Þ 2nþ 1ð Þ 2nþ 3ð Þψn: (31)

The creation and annihilation operators (25) are define by relations

aþ ¼ 1ffiffiffi
2

p X � iPð Þ; a� ¼ 1ffiffiffi
2

p X þ iPð Þ, (32)

these operators act as aþψn ¼
ffiffiffi
2

p
bnψnþ1 and a�ψn ¼

ffiffiffi
2

p
bn�1ψn�1. They satisfy

a�, aþ½ � ¼ �i X,P½ �, the commutation relations.

4. Wavelet theory on  and the reproduction of kernels

We briefly describe below some basis definitions and properties of the
one-dimensional wavelet transform on þ, we refer to [22, 23, 33]. In the Hilbert
space N ¼ L2

, dxð Þ, the function ψ satisfying the so-called admissibility condition

C ψ ≔

ð∞

�∞

ψ̂ ξð Þj j2
ξ

dξ<∞, (33)

where ψ̂ being the Hankel transform of ψ . Not every vector in N satisfies the
above condition. A vector ψ satisfying (33) is called a mother wavelet. Combining
dilatation and translation, one gets affine transformation

y ¼ b, að Þx � axþ b, a>0, b∈, x∈þ: (34)
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Thus b, að Þf g≕Gaff ¼ � 0,∞ð Þ, the affine group of the line. Specifically, for
each pair a, bð Þ of the real numbers, with a>0, from translations and dilatations of
the function ψ , we obtain a family of wavelets ψa,b


 �
∈N as

ψa,b xð Þ ¼ 1ffiffiffi
a

p ψ
x� b

a

� �
, ψ1,0 ¼ ψ : (35)

Here a is the parameter of dilation (or scale) and b is the parameter of transla-
tion (or position). It is then easily cheked that

ψa,b xð Þ
�� ��2

N
¼ ψ xð Þk k2

N
, for all a>0 and b∈: (36)

Moreover, in terms of the Dirac’s bracket notation it is an easy to show that the
resolution of the identity

1
C ψ

ð ð

�
∗
þ

ψa,b

 �
ψa,b

�  dbda
a

¼ IN (37)

holds for these vectors (in the weak sense). Here IN is the identity operator on N.
The continuous wavelet transform of an arbitrary vector (signal) f ∈N at the scale a
and the position b is given by

S f a, bð Þ ¼
ð
∞

0
f tð Þψa,b tð Þdt: (38)

The wavelet transform S f a, bð Þ has several properties [34]:

• It is linear in the sense that:

S α f 1þβ f 2
a, bð Þ ¼ αS f 1

a, bð Þ þ βS f 2
a, bð Þ, ∀α, β∈ and f 1, f 2 ∈L2

þð Þ:

• It is translation invariant:

S τb0 f
a, bð Þ ¼ S f a, b� b0

� �

where τb0 refers to the translation of the function f by b0 given

τb0 fð Þ xð Þ ¼ f x� b0
� �

:

• It is dilatation-invariant, in the sense that, if f satisfies the invariance dilatation
property f xð Þ ¼ λf rxð Þ for some λ, r>0 fixed then

S f a, bð Þ ¼ λS f ra, rbð Þ: (39)

As in Fourier or Hilbert analysis, wavelet analysis provides a Plancherel type
relation which permits itself the reconstruction of the analyzed function from its
wavelet transform. More precisely we have

f , gh i ¼ 1
C ψ

ð

a>0

ð

b∈

S f a, bð ÞS g a, bð Þ dadb
a2

, ∀f , g∈L2
ð Þ (40)

which in turns to reconstruct the analyzed function f in the L2- sense from its
wavelet transform as

8
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f xð Þ ¼ 1
C ψ

ð

a>0

ð

b∈

S f a, bð Þψa,b
dadb

a2
, where S f a, bð Þ ¼ ψa,bjf

� �
: (41)

The function S f is the continuous wavelet transform of the signal f . The
parameter 1=a represents the signal frequency of f and b its time. The conservation
of the energy of the signal is due to the resolution of the identity (37), so

C ψ fk k2 ¼
ð ð

�þ

S f b, að Þ
 2 dbda

a2
: (42)

Then, the transform S f is a fonction in the Hilbert space L2
� 

∗
þ ,

dbda
a2

� �
: The

reproducing kernel associated to the signal is

Kψ b, a, b0, a0
� �

¼ 1
C ψ

ψa,bjψa0,b0
� �

: (43)

which satisfies the square integrability condition (13) with respect to the mea-
sure dbda=a2. The corresponding reproducing kernel Hilbert space Nψ , one see that
this is the space of all signal transforms, corresponding to the mother wavelet ψ. If ψ
and ψ 0 are two mother wavelets such that ψ 0jψh i 6¼ 0, then

1
ψ 0jψh i

ð ð

�
∗
þ

ψa,b

 �
ψ 0
a,b

�  dbda
a2

¼ IN, (44)

The formula (41) generalizes to

f ¼ 1
ψ 0jψh i

ð ð

�
∗
þ

S 0
f b, að Þψa,b

dbda

a2
, where S 0

f a, bð Þ ¼ ψ 0
a,bjf

� �
: (45)

The vector ψ 0 is called the analyzing wavelet and ψ the reconstructing wavelet.
The repoducing kernel Hilbert space N⊂L2

� 
∗
þ

� �
, consisting of all signal trans-

forms with respect to the mother wavelet ψ 0. Then, we have

Kψ ,ψ 0 b, a; b0, a0
� �

¼ 1

C ψC ψ 0
� �1

2
ψa,bjψ 0

a0,b0

D E
(46)

is the integral kernel of a unitary map betweenNψ 0 andNψ . The properties of the
wavelet transform can be understood in terms of the unitary irreductible represen-
tation of the one-dilensional affine group.It is important to note that the Wavelets
built on the basis of the group representation theory have all the properties of CS.
There is a wole body of work devoted to the study of CS arising from group
representation theory [7, 33, 35].

5. Application 1: GCS for the Legendre Hamiltonian and CS transform

5.1 GCS for the Legendre Hamiltonian

By replacing the coefficients zn=
ffiffiffiffi
n!

p
of the canonical CS by the functionOn ξð Þ in

(1) as mentioned in the introduction. We construct in this section a class of GCS
indexed by point ξ∈.
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Definition 5. The GCS labeled by points ξ∈ is defined by the following superposition

ϑξ ¼ N ξð Þ�1=2
X∞

n¼0

On ξð Þψn, ξ∈ (47)

here N ξð Þ is a normalization factor, the function On ξð Þ≔Φn ξð Þρ�1=2
n , with

Φn ξð Þ ¼ in
ffiffiffiffiffi
π

2ξ

r
Jnþ1

2
ξð Þ, (48)

where Jnþ1=2 :ð Þ is the cylindrical Bessel function ([20], p. 626):

Jnþ1
2
zð Þ ¼

X∞

s¼0

�1ð Þs
s! sþ nþ 1=2ð Þ!

z

2

� �2sþnþ1
2
, z∈ (49)

and ρn are positive numbers given by

ρn ¼
1

2nþ 1
, n ¼ 0, 1, 2, … , (50)

and ψnf g is an orthonormal basis of the Hilbert space H ¼ L2 �1, 1½ �, 2�1dx
� �

defined in (27).
Proposition 1. The normalization factor defined by the GCS (47) reads as

N ξð Þ ¼ 1, (51)

for every ξ∈.
Proof. From (47) and by using the orthonormality relation of basis elements

ψnf gþ∞n¼0 in (27), then

ϑξjϑξ
� �

¼ π ξN ξð Þð Þ�1
X∞

n¼0

nþ 1
2

� �
Jnþ1

2
ξð ÞJnþ1

2
ξð Þ: (52)

In order to identify the above series, we make appeal to the formula ([36],
p. 591):

X∞

n¼0

nþ 1
2

� �
Jnþ1

2
ξð ÞJnþ1

2
ξð Þ ¼ π�1ξ, (53)

we then obtain the result (51) by using the GCS condition ϑξjϑξ
� �

¼ 1. □

Proposition 2. The GCS defined in (47) satisfy the following resolution of the identity

ð



Tξdμ ξð Þ ¼ 1H , (54)

(in the weak sense) in terms of an acceptable measure

dμ ξð Þ ¼ 1
π
dξ, (55)

where dξ the Lebesgue’s measure on . The rank one operator Tξ ¼ ϑξ
 �

ϑξ
�  : H !

H is define as
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φ↦Tξ φ½ � ¼ ϑξjφ
� �

ϑξ: (56)

Proof. We need to determine the function σ ξð Þ. Let

dμ ξð Þ ¼ σ ξð Þdξ, (57)

where σ ξð Þ is an auxiliary function. Let us writte Tm,n ≔ ψmj i ψnh j, defined as in
(56). According to (56) and by writing

ð



Tξdμ ξð Þ

¼
X∞

n,m¼0

π

2
�1ð Þninþm

ð
∞

�∞

Jmþ1
2
ξð ÞJnþ1

2
ξð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ mð Þρ nð Þ

p σ ξð Þ dξ
ξ

 !

Tm,n (58)

¼
X∞

n,m¼0

π

2
�1ð Þninþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1ð Þ 2nþ 1ð Þ

p ð
∞

�∞
Jmþ1

2
ξð ÞJnþ1

2
ξð Þσ ξð Þ dξ

ξ

� �
Tm,n: (59)

Hence, we need σ ξð Þ such that
ð
∞

�∞
Jnþ1

2
ξð ÞJmþ1

2
ξð Þσ ξð Þ dξ

ξ
¼ 2

π 2nþ 1ð Þ δm,n: (60)

We make appeal to the integral ([36], p. 211):

ð
∞

�∞

1
y
Jmþ1

2
cyð ÞJnþ1

2
cyð Þdy ¼ 2

2nþ 1
δm,n, (61)

with condition c>0. Then, for parameters c ¼ 1, we have
ð
∞

�∞

1
ξ
Jmþ1

2
ξð ÞJnþ1

2
ξð Þdξ ¼ 2

2nþ 1
δm,n: (62)

By comparing (62) with (66) we obtain finally the desired weight function
σ ξð Þ ¼ 1=π: Therefore, the measure (57) has the form (55) [37]. Indeed (59) reduces
further to

P
∞

n¼0Tn,n ¼ 1H , in other words
ð



Tξdμ ξð Þ ¼ 1H : (63)

According to this construction, the state ϑξ form an overcomplete basis in the
Hilbert space H (Figure 1). □

Figure 1.
Plots of the probability distribution P n, ξð Þ versus ξ for various values of n.
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When the GCS (47) describes a quantum system, the probability of finding the
state ψn in some normalized state ϑξ of the state Hilbert spaceH is given by

P n, ξð Þ≔ ψnjϑξ
� � 2: For the GCS (47) the probability distribution function is given by

P n, ξð Þ ¼ π 2nþ 1ð Þ
2 ξj j Jnþ1

2
ξð Þ



2
, ξ∈

∗
þ : (64)

5.2 Coherent state transform

To discuss coherent state transforms (CST), we will start by establishing the
kernel of this transformation by giving the closed form of the GCS (47).

Proposition 3. For all x∈ �1, 1½ �, the wave functions of GCS in (47) can be written as

ϑξ xð Þ ¼ e�ixξ, (65)

for all ξ∈.
Proof. We start by the following expression

ϑξ xð Þ ¼ N ξð Þ�1=2
S x, ξð Þ, (66)

where the series

S x, ξð Þ≔
X∞

n¼0

On ξð Þψn xð Þ, (67)

with the function On ξð Þ ¼ Φn ξð Þρ�1=2
n , mentioned in Definition 5. To do this,

we start by replacing the function Φn ξð Þ and the positive sequences ρn by their
expressions in (48) and (50) thus Eq. (67) reads

S x, ξð Þ ¼
ffiffiffiffiffi
π

2ξ

r X∞

n¼0

�1ð Þnin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Jnþ1

2
ξð Þψn xð Þ: (68)

Making use the explicit expression (27) of the eigenstates ψn xð Þ, then the sum
(68) becomes

S x, ξð Þ ¼
ffiffiffiffiffi
2π
ξ

s
X∞

n¼0

�1ð Þnin nþ 1
2

� �
Jnþ1

2
ξð ÞPn xð Þ: (69)

We now appeal to the Gegenbauer’s expansion of the plane wave in Gegenbauer
polynomials and Bessel functions ([38], p. 116):

eiξx ¼ Γ γð Þ ξ2ð Þ�γ
X∞

n¼0

in nþ γð ÞJnþγ ξð ÞCγ
n xð Þ

Then, for γ ¼ 1=2, y ¼ x and by using the identity Γ 1=2ð Þ ¼ ffiffiffi
π

p
, we arrive at

(65). □

Corollary 1. When the variable ξ≪ 1, the GCS in (47) becomes

ϑξ ≈N ξð Þ�1=2
X∞

n¼0

ffiffiffiffiffi
2π

p
�iξð Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22nþ1 2nþ 1ð Þ
q

Γ nþ 1
2

� �ψn: (70)
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Proof. The result follows immediately by using the formula ([20], p. 647):

J
n
ξð Þ≈ ξn

2nþ 1ð Þ!! , ξ≪ 1 (71)

where

J
n
ξð Þ ¼

ffiffiffiffiffi
π

2ξ

r
Jnþ1

2
ξð Þ, n ¼ 0, 1, 2, … , (72)

is the spherical Bessel function [20]. This ends the proof. □

The careful reader has certainly recognized in (70) the expression of nonlinear
coherent states [38].

Let us note that, in view of the formula ([36], p. 667):

X∞

n¼0

nþ 1
2

� �
Jnþ1

2
ηð ÞJnþ1

2
ξð Þ ¼

ffiffiffiffiffi
ηξ

p

π η� ξð Þ sin η� ξð Þ, (73)

the reproducing kernel arising from GCS (47) can be written as

K η, ξð Þ≔ ϑηjϑξ
� �

(74)

¼ π
X∞

n¼0

nþ 1
2

� �
Jnþ1

2
ηð Þ
ffiffiffi
η

p
Jnþ1

2
ξð Þ
ffiffiffi
ξ

p ¼ sin η� ξð Þ
η� ξ

, (75)

denotes the Dyson’s sine kernel, which is the reproducing kernel of the Paley-

Wiener Hilbert space PW1. Then, the family π nþ 1=2ð Þ=ξ½ �1=2Jnþ1
2
ξð Þ

n o
; n∈0,

forms an orthonormal basis of PW1 [39].
Once we have a closed form of GCS, we can look for the associated CST, this

transform should map the space H ¼ L2 �1, 1½ �, 2�1dx
� �

spanned by eigenstates
ψnf g in (27) onto PW1 ⊂L2

, dμð Þ as.
Proposition 4. For φ∈L2 �1, 1½ �, 2�1dx

� �
, the CST is the unitary map

W L2 �1, 1½ �, 2�1dx
� �

¼ PW1,
�

(76)

defined by means of (65) as

W φ½ � ξð Þ ¼ N ξð Þð Þ1=2 φjξh iH ¼
ð1

�1
e�ixξφ xð Þ dx

2
, (77)

for all ξ∈.
Corollary 2. The following integral

�ið Þnffiffiffi
ξ

p Jnþ1
2
ξð Þ ¼ 1ffiffiffiffiffi

2π
p

ð1

�1
Pn xð Þe�iξxdx, ξ∈: (78)

holds.
Proof. From (75), the image of the basis vector ψnf g under the transform W

should exactly be

W ψn½ � ξð Þ ¼ �ið Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π 2nþ 1ð Þ

2ξ

s

Jnþ1
2
ξð Þ: (79)
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Now, by writing (75) as

W ψn½ � ξð Þ ¼
ð1

�1
e�ixξψn xð Þ dx

2
,

and replacing ψn by their values given in (27), we obtain

W ψn½ � ξð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p

2

ð1

�1
e�ixξPn xð Þdx,

the integral 78ð Þ can be evaluated by the help of the formula ([40], p. 456):

ð1

�1
Pn xð Þeiξxdx ¼ in

ffiffiffiffiffi
2π
ξ

s

Jnþ1
2
ξð Þ, (80)

this ends the proof. □

Note that, in view of ([28], p. 29), by considering hn ξð Þ≔ ρ
�1=2
n Φn ξð Þ and GCS

K ξ, xð Þ≔ xjϑξ
� �

, the basis element ψn ∈L2 �1, 1½ �, 2�1dx
� �

has the integral
representation

ψn xð Þ ¼
ð
∞

�∞
hn ξð ÞK ξ, xð Þdμ ξð Þ (81)

where the function Φn ξð Þ and the positive sequences ρn are given in (48) and
(50) respectively, the measure dμ ξð Þ is given in (55), then the Legendre polynomial
has the following integral representation

Pn xð Þ ¼ �ið Þn
π

ð
∞

�∞
J

n
tð Þeixξdξ, (82)

where the functionJn :ð Þ is given in (72), which is recognized as the Fourier
transform of the spherical Bessel function (72) (see [40], p. 267):

ð
∞

�∞
eixtJn tð Þdt ¼

πinPn xð Þ, �1< x< 1

1
2
π �ið Þn, x ¼ �1,

0, �x> 1

8
>>><

>>>:
(83)

where Pn :ð Þ the Legendre’s polynomial [40].
Remark 1. Also note that:

• The usefulness expansion of GCSwasmade very clear in a paper authored by Ismail and
Zhang, where it was used to solve the eigenvalue problem for the left inverse of the

differential operator, on L2-spaces with ultraspherical weights [41, 42].

• For x, ξ∈, the function φξ xð Þ ¼ eixξ, is known as the Gabor’s coherent states

introduced in signal theory where the property ψξ ¼ T̂ ξð Þψ , with ψ ∈L2
ð Þ, and

T̂ ξð Þ the unitary transformation, is obtained by using the standard representation

of the Heisenberg group in three dimensions, in L2
ð Þ, for more information

(see [43]).
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Exercise 1. Show that the vectors

ϑξ ¼ N ξð Þ�1=2
X∞

n¼0

ffiffiffiffiffi
2π

p
�iξð Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22nþ1 2nþ 1ð Þ
q

Γ nþ 1
2

� �ψn: (84)

forms a set of GCS and gives the associated GCS transform.

6. Application 2: continuous Bessel wavelet transform

The continuous wavelet transform (CWT) is used to decompose a signal into
wavelets. In mathematics, the CWT is a formal tool that provides an overcomplete
representation of a signal by letting the translation and scale parameter of the
wavelets vary continuously. There are several ways to introduce the Bessel wavelet
[22, 23]. For 1≤ p≤∞ and μ>0, denote

Lp
σ þð Þ≔ ψ such as ψk kpp,σ ¼

ð
∞

0
ψ xð Þj jpdσ xð Þ<∞

	 �

and ∥ψ∥
∞,σ ¼ ess0< x<∞ sup∣ψ xð Þ∣<∞ and dσ xð Þ is the measure defined as

dσ xð Þ ¼ x2μ

2μþ
1
2Γ μþ 3

2

� � dx: (85)

Now, let us consider the function

j xð Þ ¼ 2μ�
1
2Γ μþ 1

2

� �
x

1
2�μJμ�1

2
xð Þ, (86)

where Jμ�1
2
xð Þ is the Bessel function of order l≔ μ� 1=2 given by

Jl xð Þ ¼ x

2

� �lX∞

k¼0

�1ð Þk
k!Γ kþ lþ 1ð Þ

x

2

� �2k
: (87)

For μ ¼ 1, the function j xð Þ ¼ O0 xð Þ coincides with equation 2ð Þ discussed in the
introduction. For each function ϕ∈L1,σ 0,∞ð Þ, the Hankel transform of order μ is
defined by

ϕ̂ xð Þ≔
ð
∞

0
j xtð Þϕ tð Þdσ tð Þ, 0≤ x<∞: (88)

We know that from ([44], p. 316) that ϕ̂ xð Þ is bounded and continuous on 0,∞½ Þ
and ∥ϕ̂∥

∞,σ ≤∥ϕ∥1,σ: If ϕ, ϕ̂∈L1,σ 0,∞ð Þ, then by inversion, we have

ϕ xð Þ ¼
ð
∞

0
j xtð Þϕ̂ tð Þdσ tð Þ: (89)

From ([45], p. 127) if ϕ xð Þ and Φ xð Þ are in L1,σ 0,∞ð Þ, then the following
Parseval formula also holds

ð
∞

0
ϕ̂ tð ÞΦ̂ tð Þdσ tð Þ ¼

ð
∞

0
ϕ xð ÞΦ xð Þdσ xð Þ: (90)
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Denoting therefore by

D x, y, zð Þ ¼
ð
∞

0
j xtð Þj ytð Þj ztð Þdσ tð Þ: (91)

For a 1-variable function ψ ∈L2
σ þð Þ, we define the Hankel translation operator

τyψ xð Þ≔ψ x, yð Þ ¼
ð
∞

0
D x, y, zð Þψ zð Þdσ zð Þ, ∀x>0, y<∞: (92)

Trime’che ([46], p. 177) has shown that the integral is convergent for almost all y
and for each fixed x, and

∥ψ x, :ð Þ∥2,σ ≤∥ψ∥2,σ : (93)

The map y↦ τyψ is continuous from 0,∞½ Þ into 0,∞ð Þ. For a 2-variables the
function ψ , we define a dilatation operator

Daψ x, yð Þ ¼ a�2μ�1ψ
x

a
,
y

a

� �
: (94)

From the inversion formula in (89), we have

ð
∞

0
j ztð ÞD x, y, zð Þdσ zð Þ ¼ j xtð Þj ytð Þ, ∀0< x, y<∞, 0≤ t<∞,

for t ¼ 0 and μ� 1=2 ¼ 0, we arrive at

ð
∞

0
D x, y, zð Þdσ zð Þ ¼ 1: (95)

The Bessel Wavelet copy ψa,b are defined from the Bessel wavelet mother
ψ ∈L2

σ þð Þ by

ψa,b xð Þ :¼ Daτbψ xð Þ ¼ Daψ b, xð Þ (96)

¼ a�2μ�1
ð
∞

0
D

b

a
,
x

a
; z

� �
ψ zð Þdσ zð Þ, ∀ a>0, b∈, (97)

the integral being convergent by virtue of (92). As in the classical wavelet theory
on , let us define the continuous Bessel Wavelet transform (CBWT) of a function
f ∈L2

σ þð Þ, at the scale a and the position b by

B b, að Þ≔ Bψ f
� �

b, að Þ ¼ f tð Þ,ψb,a tð Þ
� �

(98)

¼
ð
∞

0
f tð Þψa,b tð Þdσ tð Þ (99)

¼ a�2μ�1
ð
∞

0

ð
∞

0
f tð Þψ zð ÞD b

a
,
t

a
, z

� �
dσ zð Þdσ tð Þ: (100)

The continuity of the Bessel wavelet follows from the boundedness property of
the Hankel translation ([46], (104), p. 177). The following result is due to [22]:

Theorem 1.3 Let ψ ∈L2
σ þð Þ and f , g∈L2

σ þð Þ. Then
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ð
∞

0

ð
∞

0
Bψ f
� �

b, að Þ Bψg
� �

b, að Þdσ að Þdσ bð Þ ¼ C ψ f , gh i (101)

whenever

C ψ ¼
ð
∞

0
t�2μ�1 ψ̂ tð Þj j2dσ tð Þ<∞: (102)

For all μ>0.
Proof. For the function f ∈L2

σ þð Þ, let us write the Bessel wavelet by using
Eq. (38) as

Bψ f
� �

b, að Þ ¼
ð
∞

0
f tð Þψa,b tð Þdσ tð Þ (103)

¼ 1
a2μþ1

ð
∞

0

ð
∞

0
f tð Þψ zð ÞD b

a
,
t

a
, z

� �
dσ zð Þdσ tð Þ: (104)

Now observe that

D
b

a
,
t

a
, z

� �
¼
ð
∞

0
j
bu

a

� �
j
tu

a

� �
j zuð Þdσ uð Þ: (105)

Hence whe have that

Bψ f
� �

b, að Þ ¼ 1
a2μþ1

ð


3
þ

f tð Þψ zð Þj bu

a

� �
j
tu

a

� �
j zuð Þdσ uð Þdσ zð Þdσ tð Þ (106)

¼ 1
a2μþ1

ð


2
þ

f̂
u

a

� �
ψ zð Þj bu

a

� �
j zuð Þdσ uð Þdσ zð Þ (107)

¼ 1
a2μþ1

ð

þ

f̂
u

a

� �
ψ̂ uð Þj bu

a

� �
dσ uð Þ (108)

¼
ð

þ

f̂ vð Þψ̂ avð Þj bvð Þdσ vð Þ (109)

¼ f̂ vð Þψ̂ avð Þ
� �

b bð Þ: (110)

In terms of the Parseval formula (90), we obtain

ð

þ

Bψ f
� �

b, að Þ Bψ f
� �

b, að Þdσ bð Þ

¼
ð
∞

0
f̂ vð Þψ̂ avð Þ
� �

b bð Þ ĝ vð Þψ̂ avð Þ
� �

b bð Þdσ uð Þ (111)

¼
ð
∞

0
f̂ uð Þψ̂ auð Þĝ uð Þψ̂ auð Þdσ uð Þ (112)

Now multiplying by a�2μ�1dσ að Þ and integrating, we get

ð

þ

ð

þ

Bψ f
� �

b, að Þ Bψ f
� �

b, að Þa�2μ�1dσ að Þdσ bð Þ (113)
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¼
ð ð

∞

0
f̂ uð Þψ̂ auð Þĝ uð Þψ̂ auð Þ dσ að Þ

a2μþ1 dσ uð Þ (114)

¼
ð



f̂ uð Þĝ uð Þ
ð



ψ̂ auð Þj j2 dσ að Þ
a2μþ1

� �
dσ uð Þ ¼ Cψ

ð



f̂ uð Þĝ uð Þdσ uð Þ (115)

¼ C ψ f , gh i: (116)

The admissible condition (102) requires that ψ̂ 0ð Þ ¼ 0. If ψ̂ is continuous then
from (88) it follows that

ð
∞

0
ψ xð Þdσ xð Þ ¼ 0: (117)

6.1 Example

Let us consider the function

f tð Þ ¼ 2w2
0 � t2

2 w2
0 þ t2

� �5=2 , w0 >0, t∈þ: (118)

In the case μ ¼ 1=2, the measure (85) takes the form

dσ tð Þ ¼ t

2
dt (119)

and the function (86) reduces to

j tð Þ ¼ J0 tð Þ, (120)

where J0 xð Þ the Bessel’s function of the first kind. Also note that

ð
∞

0

2w2
0 � t2

� �2

2 w2
0 þ t2

� �5 dσ tð Þ<∞: (121)

The Bessel wavelet transform of f tð Þ is given by

Bψ

2w2
0 � t2

2 w2
0 þ t2

� �5=2

 !( )

b, að Þ ¼ a�2
ð
∞

0

2w2
0 � t2

2 w2
0 þ t2

� �5=2 ψ
b

a
,
t

a

� �
dσ tð Þ (122)

¼ a�2
ð
∞

0
ψ zð Þ

ð
∞

0

2w2
0 � t2

2 w2
0 þ t2

� �5=2 D
b

a
,
t

a
, z

� �
dσ tð Þ

 !

dσ zð Þ (123)

Using the representation

D
b

a
,
t

a
, z

� �
¼
ð
∞

0
J0

b

a
u

� �
J0

t

a
u

� �
J0 zuð Þdσ uð Þ (124)

then (122) becomes

a�2
ð
∞

0
ψ zð Þ

ð
∞

0
J0

b

a
u

� �
J0 zuð ÞOa,w0 uð Þdσ uð Þ

� �
dσ zð Þ
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Where the integral

Oa,w0 uð Þ ¼
ð
∞

0

2w2
0 � t2

2 w2
0 þ t2

� �5=2 J0
t

a
u

� �
dσ tð Þ: (125)

In terms of the Legendre polynomial P2 tð Þ, the function

2w2
0 � t2

2 w2
0 þ t2

� �5=2 ¼ w2
0 þ t2

� ��3=2
P2 w0 w2

0 þ t2
� ��1=2

h i
: (126)

Then (125) reads

Oa,w0 uð Þ ¼
ð
∞

0
w2

0 þ t2
� ��3=2

P2 w0 w2
0 þ t2

� ��1=2
h i

J0
t

a
u

� �
dσ tð Þ: (127)

The above equation can be evaluated by means of the formula ([47], p. 13):

1
n!
yn�1=2e�py ¼

ð
∞

0
x1=2 p2 þ x2

� ��1
2n�1

2Pn p p2 þ x2
� ��1=2

h i
xyð Þ1=2J0 xyð Þdx: (128)

For parameters n ¼ 2 and p ¼ w0, we find that

Oa,w0 uð Þ ¼ 1
4
u exp �w0

u

a

� �
: (129)

In terms of the above result, the CBWT read as

Bψ

2w2
0 � t2

2 w2
0 þ t2

� �5=2

 !( )

b, að Þ ¼ a�2
ð
∞

0
ψ zð ÞMa,w0 zð Þdσ zð Þ (130)

where

Ma,w0 zð Þ ¼
ð
∞

0
8�1u2e�

w0
a uJ0

b

a
u

� �
J0 zuð Þdu: (131)

To evaluated (131) wemake appeal to the Lipschitz-Hankel integrals ([48], p. 389):

ð
∞

0
e�ptJν qtð ÞJν rtð Þtμ�1dt (132)

¼ qrð Þν
πpμþ2ν

Γ μþ 2νð Þ
2νþ 1

ðπ

2F1

μþ 2ν
2

,
μþ 2νþ 1

2
; νþ 1;� ζ2

p2

� �
sin 2νϕdϕ

with conditions ℜ p� iq� irð Þ>0 and ℜ μþ 2νð Þ>0, while ζ is written in place

of q2 þ r2 � 2qr cosϕð Þ1=2, where 2F1 denotes the hypergeometric function. For
parameters p ¼ w0=a, q ¼ b=a, r ¼ z, μ ¼ 3 and n ¼ 0, we arrive at

Ma,w0 zð Þ ¼ a3

4πw3
0

ðπ

2F1

3
2
, 2; 1;� aw�1

0 ζ
� �2

� �
dϕ (133)

where ζ ¼ a�1bð Þ2 þ z2 � 2a�1bz cosϕ
h i1=2

.
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Next, by using the representation of the hypergeometric 2F1-sum ([49], p. 404,
Eq. 209) (Figure 2):

2F1
3
2
, 2; 1; z

� �
¼ 1

2
2þ zð Þ 1� zð Þ�5=2: (134)

Then (131) takes the form

Ma,w0 zð Þ ¼ a3

8πw3
0

ðπ

0
2� w�1

0 aζ
� �2� �

1þ w�1
0 aζ

� �2� ��5=2
dζ, (135)

This leads to the following CBWT

Bψ

2w2
0 � t2

2 w2
0 þ t2

� �5=2

 !( )

b, að Þ ¼ a

4π

ð
∞

0
ψ zð Þ

ðπ

0

2w2
0 � aζð Þ2

2 w2
0 þ aζð Þ2

� �5=2 dϕdσ zð Þ: (136)

We have given an example of a signal f tð Þ∈L2
σ 0,∞ð Þ such that the CBWT is

written as

Bψ f tð Þð Þ

 �

b, að Þ ¼ a

4π

ðπ

0

ð
∞

0
ψ zð Þf aζð Þdσ zð Þdϕ: (137)

According to Theorem 1.3, let ψ ∈L2
σ þð Þ and f , g∈L2

σ þð Þ, then
ð
∞

0

ð
∞

0
Bψ f
� �

b, að Þ Bψg
� �

b, að Þdσ að Þdσ bð Þ ¼ 1
128w2

0
f , gh i: (138)

Note that, for all w0 >0, the given function

f tð Þ ¼ 2w2
0 � t2

2 w2
0 þ t2

� �5=2 , t∈þ, (139)

Figure 2.
Plots of the mother wavelet f tð Þ defined in 6:34ð Þ versus t, for various values of the parameters w0.
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is the mother wavelet. The Hankel transform of f tð Þ is given by

f̂ yð Þ ¼
ð
∞

0

2w2
0 � t2

2 w2
0 þ t2

� �5=2 J0 xyð Þdσ tð Þ ¼ 1
4
ye�w0y, ∀ 0≤ y<∞: (140)

and satisfy the admissible condition

C f ¼
1
2

ð
∞

0

f̂ ξð Þ



2

ξ
dξ (141)

¼ 1
128w2

0
, w0 >0: (142)

The Hankel transformation f̂ 0ð Þ ¼ 0, so by the help of (140) we obtain

ð
∞

0

t 2w2
0 � t2

� �

w2
0 þ t2

� �5=2 dt ¼ 0: (143)

Exercise 2
For which numbers n∈, the following function

f n tð Þ ¼ w2
0 þ x2

� ��1
2n�1

2Pn w0 w2
0 þ x2

� ��1=2
h i

(144)

Is the mother wavelet where Pn :ð Þ the Legendre’s polynomial.

7. Conclusions

In this chapter we are interested in the construction of the generalized coherent
state (GCS) and the theory of wavelets. As it is well know wavelets constructed on
the basis of group representation theory have the same properties as coherent states.
In other words, the wavelets can actually be thought of as the coherent state
associated with these groups. Coherent state is very important because of three
properties they have: coherence, overcompleteness, intrinsic geometrization. We
have seen that it is possible to construct coherent states without taking into account
the theory of group representation. Throughout this chapter we have used the
Bessel function to construct the coherent state transform and Bessel continuous
wavelets transform. We have prove that the kernel of the finite Fourier transform
(FFT) of L2-functions supported on �1, 1½ � form a set of GCS. We therefore
discussed another way of building a set of coherent states based onWavelet’s theory
makes it easier.

Building coherent states in this chapter is always not easy because it is necessary
to find coefficients which will make it possible to find vectors which will certainly
satisfy certain conditions but the procedure based on Wavelet’s theory makes it
easier.

It should be noted that the theory of classical wavelets finds several applications
ranging from the analysis of geophysical and acoustic signals to quantum theory.
This theory solves difficult problems in mathematics, physics and engineering, with
several modern applications such as data compression, wave propagation, signal
processing, computer graphics, pattern recognition, pattern processing. Wavelet
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analysis is a robust technique used for investigative methods in quantifying the
timing of measurements in Hamiltonian systems.
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