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Chapter

Ovarian Cancer: Molecular 
Classification and Targeted 
Therapy
Febina Ravindran and Bibha Choudhary

Abstract

Ovarian cancer is the deadliest gynecological cancer among women with an 
overall 5-year survival rate below 50% due to its asymptomatic nature, diagnosis at 
advanced stages, and a high recurrence rate after standard therapy in 70% of cases. 
Ovarian cancers are heterogenous cancers where each subtype possesses a varied mor-
phology and biologic behavior. Accumulating evidence has identified each of these 
subtypes characterized with specific pathways activated in each along with specific 
gene alterations. For example, high-grade serous ovarian cancer is characterized by 
universal TP53 mutation, mucinous ovarian cancer with KRAS mutation and clear 
cell or endometrioid ovarian cancers with ARID1A mutations. With the current focus 
of molecular-targeted therapies for cancer, such druggable markers serve as excellent 
targets for precision therapy and combination therapy. This chapter, provides an 
overview of the critical molecular pathways activated in the ovarian cancer subtypes 
with its druggable targets studied in ovarian cancer. We also highlight the implications 
of miRNAs in chemoresistance and sensitivity in the regulation of ovarian cancer.

Keywords: ovarian cancer subtypes, targeted therapy, miRNAs in ovarian cancers

1. Introduction

Ovaries are the prime female reproductive organ that produces the oocyte or 
the egg cell for fertilization. It is also an endocrine gland that produces the female 
sex hormones estrogen and progesterone responsible for ovulation and pregnancy 
maintenance. Some of the diseases that affect the ovaries are ovarian cysts, primary 
ovarian insufficiency, ovarian torsion and more recently ovarian cancer (OC). OC 
was first detected in the 1950s and is now one of the deadliest gynecological cancers 
among women [1, 2]. According to the latest Global Cancer Observatory: CANCER 
TODAY (GLOBOCAN 2018), the incidence and mortality rates of OC vary glob-
ally and ranks at the 8th and 7th position respectively [3]. The highest mortality 
rates are reported in Oceania and Europe and the lowest are from Latin America, 
the Caribbean and Asia [3]. OCs are also prevalent in countries with a high human 
development index (HDI) but with lower mortality rates due to increased diagnos-
tic and therapeutic support [4].

Most OCs manifest post menopause and the increased incidence is reported 
in women older than 65 years [5]. Considering the ethnicity, non-Hispanic white 
women are reported to have the highest incidence and mortality rates [6]. OCs are 
heterogeneous cancer, hence the risk factors for each histological subtype vary. In 
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general, some of the major risk factors for OC include Hereditary Breast and Ovarian 
Cancer (HBOC) syndrome [7], Lynch syndrome [8], menopausal hormonal therapy 
[9, 10], endometriosis [11], IVF treatment [12], use of fertility drugs [13], late meno-
pause [14] and null parity [15]. Interestingly, high parity [16], hysterectomy [17] 
and usage of hormonal contraceptive pills for prolonged periods [18] are reported to 
have a protective effect since these conditions confer in the suppression of ovulatory 
cycles [19]. The sterilization treatment, tubal ligation is also reported to reduce the 
risk of OCs [17, 20]. Recently reported other emerging risk factors for OCs are the use 
of talc powders [21], asbestos exposure [22] and pelvic inflammatory disease [23].

OCs are difficult to detect;therefore almost 60% of OC cases are diagnosed at 
advanced stages [24]. It is often called the “whispering cancer” or “silent cancer” 
due to its asymptomatic nature and late presentation [25, 26]. Late-stage OC 
symptoms are very nonspecific and diffuse but may include abdominal bloating 
or swelling, pelvic pain, increased urinary urgency, weight loss, or fatigue [27, 28]. 
Although a biopsy is the only reliable diagnosis for OC, screening for serum can-
cer antigen 125 (CA-125) levels combined with ultrasound imaging are used for 
women with increased risk [29]. The emerging technique of liquid biopsy is being 
explored for identifying serum biomarkers for early detection of OCs. It holds 
great promise being non-invasive and is utilized to diagnose, prognose and predict 
surgical outcomes. One such serum biomarker identified is the Human Epididymis 
Protein 4 (HE4) which is reported to have high specificity for OCs [30, 31]. 2011 
FDA approved, ROMA index (risk of ovarian malignancy algorithm) deduced from 
HE4, CA-125 and the menopausal status is used for diagnosis and prognosis of 
OCs with a specificity of 90% [32–34]. Another recent 2016 FDA approved serum-
based screening test, Overa also uses HE4 levels along with other serum proteins is 
reported to show a sensitivity of 94% along with pathological diagnosis [35]. The 
mutational status of multiple cancer-causing genes are also being developed as 
screening tests for various cancers like PapSEEK and CancerSEEK and are reported 
to detect OC with a specificity of 63% and 98%, respectively [36, 37].

According to the World cancer report 2020, OC five-year survival rate is below 
30% [38]. This is mainly because this cancer gets diagnosed at stage III or IV with 
metastasis and the recurrence rate high despite standard therapy. Cytoreductive 
surgery followed by chemotherapy based on cancer’s surgical stage remains the 
gold standard treatment for OCs. The most commonly administered chemotherapy 
drugs are platinum derivatives e.g. cisplatin and carboplatin and are often combined 
with taxane-based drugs like paclitaxel or docetaxel. These drugs induce apoptosis 
in the tumor cells by creating double-stranded breaks in the DNA [39]. Despite che-
motherapy being effective for advanced cancers in the initial phases, cancer relapses 
in 70% of cases due to drug resistance [40]. In the case of recurrent OCs, the second 
line of the chemotherapy treatment regimen is based on the platinum-free interval 
and the tumor’s molecular profile [41]. Furthermore, the treatment options include 
combinations of carboplatin with gemcitabine, topotecan, vinorelbine, trabectedin, 
belotecan or pegylated liposomal doxorubicin [42].

Despite intensive combination chemotherapy, the survival rate decreases with 
chemoresistance and subsequent OC metastasis. The lack of anatomical barrier 
around the ovaries facilitates the dissemination of OC cells into the peritoneal 
cavity, metastasizing onto abdominal organs resulting in bowel obstruction, which 
is the major cause of OC morbidity and mortality [43, 44]. Currently, there are no 
preventive measures for OCs, and options for the high-risk category are prophy-
lactic surgeries like hysterectomy (removal of the uterus) combined with bilateral 
salpingo-oophorectomy (removal of both ovaries and fallopian tube) or bilateral 
salpingectomy (removal of both fallopian tubes) [45]. Women with average risk can 
opt for oral contraceptive treatment [46].
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Presently, there is no effective cure for advanced OC. Though these cancers 
vary histologically, clinical treatment therapies neglect these differences and are 
treated as a single disease. Each OC subtype is characterized by specific genetic 
mutations that deregulate specific signaling pathways that should be utilized for 
personalized or tailored therapeutics. Precision therapy is the need of the hour for 
OC treatment in improving the current survival rate. In the following sections of 
the chapter, we describe the various OC subtypes, their histological classification 
and the key molecular pathways activated in each subtype along with its druggable 
targets.

2. Ovarian cancer subtypes

OC neoplasms arise from distinct regions of the ovary. They are termed  
heterogeneous as each OC subtype is unique with varied morphology, biologic 
behavior and even prognosis. High throughput sequencing technologies have identi-
fied each OC subtype as distinct even on a molecular level with unique genomic 
characteristics. OCs are broadly classified into epithelial and non-epithelial cancers.  
Non-epithelial cancer comprises germ cell cancer, stromal cell cancer, and the  
rare small cell carcinoma. The origin of the various subtypes of OCs and the  
sub-classifications are depicted in Figure 1.

2.1 Epithelial ovarian cancer (EOC)

Epithelial ovarian cancers (EOCs) comprise 90% of all OCs and are among the 
most well-characterized forms of OC. EOCs are thought to arise from the epithe-
lium, the outer lining of the ovary. EOC is an age-related disease and is considered 
mainly a postmenopausal disease. Based on tumor cell morphology, they are 
further subdivided into high grade serous ovarian carcinoma (HGSOC), low grade 
serous ovarian carcinoma (LGSOC), mucinous ovarian carcinoma (MOC), endo-
metrioid carcinoma (EC), and clear-cell carcinoma (CCC). The histological image, 
epidemiology, molecular alterations and pathways affecting each EOC variant are 
outlined in Figure 2.

Figure 1. 
Origin of the various ovarian cancer subtypes and their sub-classifications.
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2.1.1 High grade serous ovarian carcinoma (HGSOC)

High grade serous ovarian carcinomas (HGSOCs) are the most lethal forms of 
OCs and account 75% of all EOCs [48]. They are the most aggressive and chemo-
resistant forms of EOCs responsible for 70–80% of OC related deaths. HGSOCs 
are thought to be derived from the fallopian tube [49]. These cancers are mainly 
diagnosed in postmenopausal women and due to its asymptomatic character 
presents themselves in advanced stages. Familial HBOC syndrome, and menopausal 
hormonal therapy predispose women towards this cancer [25, 50].

HGSOCs are characterized by a high frequency (90%) of somatic TP53  
mutations. These mutations are present in the DNA binding domain of TP53 which 

Figure 2. 
EOC subtypes: histology, epidemiology, and molecular alterations. Histology images courtesy [47].
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render its tumor-suppressive function inactive, leading to enhanced cell prolifera-
tion and metastasis. The drug APR-246 targeting TP53 resulting in its wild type 
stabilization is under clinical trial and has shown favorable results [51]. Another 
drug, nutlin-3a targeting MDM2, a negative regulator of TP53, has also entered 
clinical trials with positive outcomes [52]. Moreover, combination therapy using 
nutlin-3 and RG7388 (another MDM2-TP53 antagonist) have reported cytotoxic 
effects in various OC cell lines [53].

15–20% of HGSOC patients harbor germline mutations in BRCA1 or BRCA2 
[48]. The BRCA genes are involved in the repair of double-strand DNA breaks 
through homologous recombination (HR). Besides, most HGSOCs with the 
germline BRCA mutation are also reported to harbor somatic mutations in other 
HR-related genes conferring an HR deficient (HRD) phenotype [54]. The Cancer 
Genome Atlas Research Network (TCGA) has reported almost 50% HGSOCs cases 
as HR deficient [55]. HRD conferring genes besides BRCA1/2 include Fanconi 
anemia genes (PALB2, FANCA, FANCI, FANCL, FANCC), RAD family genes 
(RAD50, RAD51, RAD51C, RAD54L), MRN complex genes (Mre11-Rad50-Nbs1), 
and also DNA damage response genes (ATM, ATR, CHEK1, CHEK2) [54, 56]. This 
manifestation of inactivating BRCA gene mutations and other HRD genes confer a 
DNA repair-deficient phenotype leading to genomic instability [57].

One of the most remarkable developments for OC therapy has been the PARP 
(poly (ADP-ribose) polymerase) inhibitors. PARP is an excision repair enzyme 
involved in the repair of single DNA strand breaks. PARP inhibitor treatment in 
BRCA-deficient cancer induces synthetic lethality and cell death [58]. The PARP 
inhibitor olaparib has been reported to show increased progression-free survival 
(PFS) and is currently approved as first-line maintenance therapy for BRCA-mutant 
individuals [59, 60]. Another PARP inhibitor, niraparib, improved PFS regardless 
of BRCA or HRD status is also approved for first-line maintenance of advanced OCs 
[61]. CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) are also under 
clinical trials as maintenance and combination therapy for HGSOCs [62]. Cyclin-
dependent kinase 4 and 6 (CDK4/6) are key kinases that regulate the cell cycle. 
CDK4/6 inhibitors hinder G1-S transition inducing cell cycle arrest at the G1 phase. 
PI3K/AKT and NOTCH pathways are reported to be deregulated in HGSOCs which 
could also be targeted via combination therapies using PI3K inhibitors or the AKT 
inhibitor, afuresertib [63].

One of the first targeted therapy used to treat advanced OCs is Bevacizumab, 
an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF) 
[64]. Angiogenesis plays a pivotal role in tumor progression and metastasis in many 
malignant cancers. This drug acts by neutralizing VEGF-A, thereby inhibiting 
tumor growth and invasion. Bevacizumab is currently approved as a combination 
therapy along with platinum/taxane drugs for advanced HGSOCs and has been 
reported to show a significant improvement in progression-free survival [57].

2.1.2 Low grade serous ovarian carcinoma (LGSOC)

As the name suggests, LGSOCs are indolent and less aggressive tumors with 
relatively better prognosis than HGSOC. They are prevalent in younger women 
with a median age of 55 years and constitute less than 5% of all OCs [65]. Though 
LGSOCs are chemoresistant they are treated the same way as HGSOCs with plati-
num/taxane drugs. The increased survival rate in LGSOCs is attributed to its longer 
disease trajectory and complete resection of the tumor post-primary cytoreductive 
surgery [66].

LGSOCs are characterized by activation of the mitogen-activated protein kinase 
(MAPK) pathway in 80% cases. KRAS (54%), BRAF (33%), NRAS (26%), and 
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ERBB2, the upstream regulators of MAPK pathways are reported to be mutated, 
with mutations in BRAF/KRAS considered as good prognostic markers [67]. Due 
to the high prevalence of activated MAPK pathway in LGSOCs, MEK inhibitors 
(Trametinib, Selumetinib, Pimasertib, Binimetinib) are among the druggable 
targets for these cancers and some are under evaluation [65]. Recurrent mutations 
in PIK3CA, FFAR1, USP9X (11%) and EIF1AX (15%) are reported as driver muta-
tions [68]. USP9X and EIF1AX are regulators of the mTOR pathway which are 
downstream effectors of the MAPK pathway. The use of Metformin, an inhibitor of 
the mTOR pathway, along with MEK inhibitor (Trametinib) has been reported to 
show an inhibitory effect in various LGSOCs cell lines [69]. Taken together, MEK 
inhibitors and Metformin are potential candidates for targeted therapies. CDK4/6 
inhibitors, (ribociclib and abemaciclib) are under clinical trials for LGSOCs [65]. 
Endocrine therapy using letrozole, anastrozole or tamoxifen used as maintenance 
therapy has been reported to be beneficial in LGSOCs due to estrogen and proges-
terone receptors expressions [70].

2.1.3 Endometrioid carcinomas

Endometrioid carcinomas (ECs) are the second most common EOCs repre-
senting 10% of all OCs [71]. They are diagnosed in women in the age range of 
40–70 years and are associated with a good prognosis. As its name suggests they are 
associated with endometriosis and are thought to be derived from the endometrium 
[72]. Endometriosis, menopausal hormone therapy, HBOC syndrome, Lynch syn-
drome and late menopause are some of the risk factors associated with ECs [14, 73].

One of the most mutated genes reported in ECs is ARID1A at a frequency of 
30%. ARID1A is a component of the SWI/SNF chromatin remodeling complex. 
Targeting ARID1A with HDAC inhibitors have been reported to be effective in mice 
models harboring ARID1A tumor mutation [74]. CTNNB1, of the β-catenin signal-
ing is also reported to be mutated at a rate of 25–60%. β-catenin signaling is a con-
served pathway involved in development implicated in other epithelial cancers but 
its oncogenic role is less understood [75]. Other less frequent mutations are KRAS/
BRAF (20%), which are regulators of MAPK pathways, PIK3CA (12%), and TP53 
(25%) [76]. PTEN mutations with frequent loss of heterozygosity (45–75%) is also 
reported [52]. PTEN is a tumor-suppressor gene that is a negative regulator of the 
PI3K pathway and is also the most mutated in the related endometrial cancers [77]. 
The multiple mutational spectra of ECs warrants the investigation of combination 
therapy using MEK inhibitors (trametinib, MEK162), TP53 activators (APR-246), 
and PI3K inhibitors (idelalisib, voxtalisib). Only 14% of EC cases are reported to be 
BRCA mutation carriers [78], and HBOC syndrome being one of the risk factors for 
ECs, PARP inhibitors are a viable option for targeted therapies.

2.1.4 Mucinous ovarian carcinomas

Mucinous carcinomas (MOCs) are a rare subset of EOCs accounting for 2–3% of 
all OCs. They are histologically characterized by high levels of intracellular mucin. 
MOCs are more prevalent in women below 40 years and unlike other EOC types, 
the only risk factor identified is smoking [14, 79]. Early-stage MOCs have an excel-
lent prognosis and beyond stage II, they are addressed by standard chemotherapeu-
tic agents with poor outcomes, as these tumors are chemoresistant.

Though rare, MOCs have been well characterized. The predominant mutation 
present in MOCs is KRAS mutations reported in 66% of cases [79, 80]. A recent 
large cohort study identified many other mutations in MOCs besides KRAS in 
varying degrees which are TP53 mutation, HER2 amplification (a member of the 
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epidermal growth factor receptor family), PIK3CA/PTEN (regulator of PI3K-
PTEN-AKT pathway), BRAF mutation, CTNNB1/APC mutations (regulator of 
Wnt-signaling pathway), and ARID1A mutation (a member of the SWI/SNF family) 
[79, 80]. One of the potential drugs for the treatment of MOCs is 5-fluorouracil. 
MOCs and mucinous colorectal cancer (CRC) share a similar mutational profile 
with unfavorable outcome [81]. 5-fluorouracil, which is currently utilized for CRC 
treatment has been effective in various MOC cell lines in combination with oxali-
platin [82]. Moreover, the multiple mutational spectra reported in MOCs are a great 
avenue for identifying the most potent target for tailored therapies. Some targeted 
drugs like BRAF inhibitors, PI3K inhibitors are already being investigated in various 
other cancer types. Combinatorial therapy using dual inhibitors is warranted for 
MOC treatment due to its varied mutational landscape.

2.1.5 Clear-cell carcinomas

Clear cell carcinomas (CCCs) of the ovary constitute >5% of all OCs and 10% 
of all EOCs [83]. The incidence rates of CCCs vary by ethnicity; the majority of 
the cases are reported in East Asian countries (mainly Japan) for unknown reasons 
[84]. They are mostly diagnosed in younger women with an option of fertility-spar-
ing surgery before standard chemotherapy. These are chemoresistant tumors with a 
poor prognosis if diagnosed at an advanced stage, but most of these cases are diag-
nosed early with a good prognosis [83]. They are a distinct class of EOCs thought to 
arise from endometriosis or clear cell adenofibroma, hence they are associated with 
endometriosis which is thought to be the precursor for CCC manifestation and this 
association is considered a good prognosis [85]. Late menopause and endometriosis 
are considered to be the highest risk factors for developing CCCs.

The most common genomic alterations identified in CCCs are activating muta-
tions in PIK3CA, a regulator of the PI3K-PTEN-AKT pathway (50%), and loss of 
function in ARID1A, component of SWI/SNF chromatin remodeling complex 
(50%) [86]. Other mutations reported in varying degrees are MET gene amplifica-
tion, mutations in ARID1B, SMARCA4, ERBB2, PIK3CA, PIK3R1, AKT2, PTEN, 
KRAS, PPP2R1A, TP53, TERT promoter, and ZNF217 overexpression [85, 87]. 
Antioxidant genes like Glutathione peroxidase 3 (GPX3), glutaredoxin (GLRX), and 
superoxide dismutase 2 (SOD2) are reported to be highly expressed in CCCs render-
ing them resistant to chemotherapy [88]. A recent report on the pharmacological 
inhibition of EZH2 for loss of function of ARID1A has shown considerable promise 
in treating CCCs [89]. The overexpression of the transcription factor ZNF217 is a 
poor prognostic marker. In-vitro studies in ZNF217-overexpressing cells treated 
with triciribine, a DNA synthesis inhibitor, have shown inhibitory effects suggest-
ing ZNF217 be a druggable target [90]. Targeting PI3K/AKT/mTOR pathways using 
PI3K inhibitor (idelalisib, Voxtalisib) or mTOR pathway inhibitor (Metformin) are 
other viable options.

2.2 Sex cord-stromal tumors (SCSTs)

The rare ovarian sex cord-stromal tumors (SCSTs) constitute 8% of all OCs and 
are diagnosed in broad age groups with mixed prognosis [91]. These neoplasms 
originate from the stromal cells and/or the sex chord cells of the ovary, which are 
involved in the endocrine function of producing the female sex hormones, therefore 
unlike EOCs, they present with hormone-related disorders. Certain hereditary can-
cer syndromes predispose patients towards SCST. Based on the WHO classification 
of OCs, the various subtypes of SCSTs with their incidence, risk factors, prognosis, 
and molecular alterations are outlined in Table 1 [92].
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Due to the rarity of these tumor types, the molecular characteristics of only a 
few of these subtypes are reported. The cancers arising in the ovary’s granulosa cells 
are the most common in this group comprising 2–5% of all OCs [93]. Granulosa 
cells are somatic cells involved in folliculogenesis and ovulation, the variant adult 
granulosa cell tumors (AGCTs), which are estradiol producing are the most com-
mon in this group constituting 70% of all SCSTs [94]. Inhibin, a gonadal hormone 
secreted by granulosa cells, is reported to be elevated in GCT patients [95]. Inhibin 
level and CA-125 are utilized as a diagnostic biomarker to assess disease progres-
sion in GCTs [96]. 97% of AGCTs are characterized by the ubiquitous presence of 
FOXL2 mutations, a component of the TGFβ pathway [95]. The pleiotropic TGFβ 
pathway is reported to be deregulated in many cancers conferring chemoresistance 
and metastasis [97]. Moreover, TERT promoter mutations are reported in 40% 
of recurrent AGCT cases with poor prognosis [98]. Few small cohort studies of 
AGCTs, and juvenile granulosa cell tumors (JGCTs), have reported amplification in 

SCST subtypes Incidence 

rates

Incident 

age groups

Risk factors Prognosis Chromatic 

alteration

Stromal tumors

Fibroma 4% of all 

OCs

~ 40 years Meigs’ 

syndrome

Good

Thecoma 0.5–1% of 

all OCs

26–86 years Poor FOXL2 (~21%)

Fibrosarcoma 20–73 years Poor

Leydig cell 

tumor

0.1% of all 

SCST

Post-

menopausal 

women

Good

Steroid cell 

tumor

0.1% of all 

SCST

~ 43 years Cushing 

syndrome

Good

Sclerosing 

stromal tumor

>0.1% of 

all SCST

<30 years Good

Sex-chord tumors

Adult granulosa 

cell tumor

5% of 

all OCs, 

70% of all 

SCSTs

24–84 years Peutz Jeghers 

syndrome, 

Potters 

syndrome

Poor FOXL2 mutation 

(> 95%), TERT 

mutations (~40%), 

AKT1 amplification 

(~60%)

Juvenile 

granulosa 

tumor

5% of all 

GCTs

8–45 years Ollier 

disease, 

Maffucci 

disease

Good AKT1 amplification 

(~60%), GNAS 

mutations (~30%)

Sertoli cell 

tumor

2–76 years Peutz Jeghers 

syndrome

Good

Sex chord 

tumor with 

annular tubules

1.4% of all 

SCST

5–39 years Peutz Jeghers 

syndrome

Favorable

Mixed sex chord-stromal tumors

Sertoli-Leydig 

cell tumor

0.5% of all 

OCs

>30 years Dicer 

syndrome

Good Germline and 

somatic DICER1 

mutations (60%)

Table 1. 
Sex cord-stromal tumors subtypes: epidemiology, and molecular alterations.
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AKT leading to possible dysregulations in PI3K/AKT pathways [99, 100]. Activating 
GNAS mutations involved in tumor invasion are reported in 30% of JGCTs with 
aggressive nature [101]. The notch signaling pathway is also reported to be altered 
in GCTs [102]. Estrogen producing thecomas, composed of pure stromal cells are 
also reported to harbor FOXL2 mutation at a rate of 21% [103]. Sertoli-Leydig 
cell tumors (SLCTs), which belong to mixed-sex chord and stromal cells are 
androgen-secreting tumors that induce varying degrees of virilization (male physi-
cal characteristics) [104]. Mutation in DICER1, an endoribonuclease involved in 
microRNA biogenesis, is reported with a high frequency of 88% in undifferentiated 
SLCTs [105].

Targeting Activin A of the TGFβ pathway and aromatase, a downstream target of 
FOXL2 has been reported promising for targeted therapies [106, 107]. TERT pro-
moter mutations are present in various cancer types and are reported to activate the 
oncogenic MAPK pathway; targeting this pathway using MEK inhibitors (trametinib, 
MEK162) are potential treatment options [108]. Besides, other druggable pathways 
for GCTs include PI3K and NOTCH pathways. Identifying drugs targeting DICER1 is 
warranted which could provide novel modalities for tailored therapies for SLCTs.

2.3 Ovarian germ cell tumors (OGCTs)

Ovarian germ cell tumors (OGCTs) of the ovary are rare ovarian neoplasms 
comprising 2–3% of all OCs [109]. These histologically variant heterogeneous 
neoplasms arise in the egg or ovum, the ovary’s primordial germ cell. They primar-
ily manifest in young and adolescent women with excellent prognosis if diagnosed 
in earlier stages [110]. These tumors are chemosensitive allowing fertility-sparing 
surgery in most cases [111]. A recent small cohort study reported a low mutational 
burden in OGCTs explaining their chemosensitive disposition [112]. OGCTs are 
classified into dysgerminomas, immature teratomas, yolk sac tumors, and mixed 
germ cell tumors in order of their frequency. Embryonal carcinomas, choriocarci-
nomas, and malignant struma ovarii tumors are other very rare forms of OGCTs 
[113]. The understudied, very rare mixed germ cell tumors are the only aggressive 
OGCT subtype with poor prognosis [114]. There are no risk factors identified for 
OGCTs but certain genetic diseases like Turner’s syndrome, Triple X syndrome, 
and Swyer syndrome are reported to be high-risk factors for dysgerminomas [115]. 
The incidence rate, prognosis, risk factors, and their molecular characteristics are 
outlined in Table 2.

OGCT subtypes Incidence 

rates

Incident 

age groups

Prognosis Chromatic alteration

Dysgerminoma 40% of 

OGCTs

19–23 years Good KIT mutation (30–50%), 12p 

amplifications harboring KRAS 

(80%)

Immature teratoma ~35% of 

OGCTs

18–36 years Good

Yolk sac tumors 15% of 

OGCTs

15–40 years Good PIK3CA or AKT1 mutation (72%), 

12p amplifications harboring 

KRAS (60%)

Mixed germ cell 

tumors

5% of 

OGCTs

<20 years Poor 12p amplifications harboring 

KRAS (~40%)

Table 2. 
Ovarian germ cell tumors subtypes: epidemiology and molecular alterations.
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The most frequent mutations reported in OGCTs are KIT mutations and 12p 
amplification, which harbor KRAS [112]. The OGCT subtype, dysgerminomas 
harbor 12p amplification and KIT mutation at a frequency of 80% and 30–50%, 
respectively [116]. KIT is a proto-oncogene involved in PI3K/AKT/mTOR, JAK/
STAT and MAPK pathways [117], whereas the oncogene KRAS is involved in the 
tumor development pathway of Ras/Raf/MEK/ERK pathway [118]. The aneuploid, 
yolk sac tumors are reported to harbor PI3K and AKT1 mutations, besides KRAS 
altering PI3K/AKT/mTOR pathway. The TGFβ/BMP and Wnt/β-catenin signaling 
pathways are also reported to be activated in yolk sac tumors [116]. Few druggable 
targets of these pathways like AKT inhibitor (afuresertib) and MEK inhibitor 
(trametinib) are already under clinical trials for various OCs [119].

2.4 Small cell carcinoma of the ovary (SCCO)

Small cell carcinoma of the ovary (SCCO) is a group of extremely rare OCs 
accounting for <1% of all OCs [120]. Their biology is poorly understood as their 
cellular lineage is unknown. Based on histologic characterization, SCCO is classified 
into hypercalcemic type (SCCO-HT), which is chemoresistant and pulmonary type 
(SCCO-PT) which is chemo-sensitive. These are highly malignant cancers with an 
average survival of 5.7 years. The incidence rate, prognosis, risk factors and molecu-
lar characteristics are outlined in Table 3.

One of the significant mutations identified in 90% of cases of SCCOHT is germ-
line or somatic mutations of SMARCA4 [121]. SMARCA4 mutation is considered 
one of the hallmarks of SCCOHT, it is a key component of the switching/sucrose 
non-fermenting (SWI/SNF) chromatin remodeling complex [122, 123]. The loss 
of function of SMARCA4 leads to the upregulation of EZH2, the catalytic subunit 
of the PRC2 complex which is utilized as a druggable target for SCCOHT [124]. 
Targeting EZH2 using tazemetostat has reported antiproliferative and antitumor 
effects in SCCOHT cell lines [125]. Moreover, a recent study has reported oncolytic 
viruses’ effect on SCCOHT derived cell line BIN-1 in reducing its proliferation 
>75%, which holds promise in developing targeted therapies [126]. Some of the 
broad categories of drugs being investigated for SCCOHT and some of which are 
already in clinical trials, include tyrosine kinase inhibitors, immune checkpoint 
inhibitors and HDAC inhibitors [127]. There are no studies reported on the  
molecular characterization and pathogenesis of SCCO-PT due to its rarity.

3. Potential drugs for targeted therapies in OCs

Presently, targeted therapy is employed only to improve the efficacy of standard 
therapy in OC treatment with drugs such as bevacizumab, an anti-angiogenic agent 
which is licensed for use as front-line therapy for advanced OCs [57] and olaparib, 
a PARP inhibitor which is now approved for first-line maintenance therapy for 
patients with relapsed BRCA-mutated OCs [128]. Very recently, the combination of 

SCCO subtypes Incidence 

rates

Incident age 

groups

Prognosis Chromatic alteration

SCCO-hypercalcemic type <1% of all OCs <40 years Poor SMARCA mutation 

(90%)

SCCO- pulmonary type <1% of all OCs <59 years Poor None reported

Table 3. 
Small cell carcinoma of the ovary subtypes: Epidemiology, and molecular alterations.
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bevacizumab and olaparib is FDA approved for first-line maintenance treatment in 
advanced OCs with HRD positive status [129].

Generic drugs being investigated for a variety of OC types are receptor tyrosine 
kinase (RTK) inhibitors. RTK inhibitors have been reported to be efficacious in 
treating a variety of malignant cancers by inhibiting tumor cell proliferation via 
blocking the signal transduction cascade. For e.g., Ponatinib is a multi-tyrosine 
kinase inhibitor that targets pathways like EGFR, FGFR, PDGFR, and VEGFR all of 
which are aberrantly activated in various cancer types [130]. Other RTK inhibitors 
being investigated for OCs are Palbociclib, Abemaciclib and Ribociclib [131, 132]. 
Likewise, immunotherapy using immune checkpoint inhibitors like Pembrolizumab 
and Nivolumab has been revolutionary in oncology research. These are monoclonal 
antibodies that trigger the immune T-cell activation to attack the cancer cells and 
Pembrolizumab is already under clinical trial for various cancer types [133, 134]. 
Epigenetic abnormalities being the hallmarks of cancers, epigenetic modulators like 
HDAC inhibitors have shown great promise as anti-cancer drugs. HDAC inhibitors 
like Vorinostat, Panobinostat, Quisinostat, and Trichostatin are under investigation 
for targeted therapies for OCs [126, 135].

4. Role of miRNAs in ovarian cancer

miRNAs are single-stranded RNA nucleotides that regulate gene expression. 
In the human body, they are reported to be involved in regulating around 60% of 
genes affecting various cellular and biological processes. Each miRNA has multiple 
gene targets or multiple miRNAs can act on one target gene. They can function 
either as an oncogene or a tumor suppressor and their expressions in cancer cells are 
deregulated [136]. The miRNA expression profile for each OC subtype is reported 
to be distinct, with a subset of miRNAs downregulated or upregulated [137]. The 
miRNA signatures identified in various cancer types are being investigated for their 
utility as cancer biomarkers in tumor diagnosis, prognosis and therapeutic outcome.

Ovarian cancer 

subtype

Upregulated Downregulated References

Serous Ovarian 

cancer

miR-429, miR-141, miR-200c, 

miR-93, miR-16, miR-20a, 

miR-21, miR-27a, miR-200a, 

miR-200b, miR-200c, miR-203, 

miR-205, miR-375, miR-145

miR-320c, miR-383, let-7b, 

miR-99a, miR-125b, miR-145, 

miR-100, miR-31, miR-137, 

miR-132, miR-26a

[138, 139]

Clear-cell 

carcinomas

miR-93, miR-126, miR-338, 

miR-200a, miR-200b, miR-30a, 

miR-141, miR-182, miR-200a, 

miR-510, miR-509,

miR-383, miR-424, miR-127, 

miR-155, miR-99b

[138, 139]

Mucinous ovarian 

carcinoma

miR-192, miR-194 — [137]

Endometrioid 

carcinomas

miR-7, miR-429, miR-21, 

miR-29a, miR-92, miR-30c1, 

miR-126, miR-126, miR-29a

miR-342, miR-181a, miR-

450b, miR-155, miR-25, 

miR-93, miR-127, miR-99b

[136–138]

Ovarian Germ cell 

tumors

miR-373-3p, miR-372-3p and 

miR-302c-3p, mir-302–367 

cluster, mir-371–373 cluster, 

miR-146b, miR-155, miR-182

miR-199a-5p, miR-214-5p and 

miR-202-3p, Let-7

[139, 140]

Table 4. 
Deregulated miRNAs in ovarian cancer subtypes.
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The sensitivity of a cancer drug profoundly affects treatment efficacy and 
prognosis. miRNAs are involved in conferring chemo-sensitive or chemoresis-
tant phenotype by regulating the drug-resistance related genes [138]. Therefore, 
manipulating the expression levels of specific miRNAs can aid in drug sensitivity. 
As previously mentioned, the sensitivity for platinum drugs varies among each 
OC subtype, and this profoundly affects the treatment efficacy and prognosis. 
Though still in its infancy, targeting miRNA holds great promise for a more custom-
ized therapeutic approach. Here, we highlight the key miRNAs reported in recent 
literature, which are deregulated in the various OC subtypes (Table 4).

5. Conclusion

The global incidence rate for OC is expected to increase by 47% by 2040 [141]. 
Except for the emergence of PARP inhibitors in women with HRD HGSOC tumors, 
the conventional treatment protocol for other OC subtypes has remained the same 
since the 1980s, with no significant impact on survival rates. Screening for high-
grade OCs remains a challenge. With the advances in the high throughput screening 
technologies, the focus is warranted to shift towards translational research to treat 
each OC subtype for their underlying genomic aberrations.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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