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Chapter

Rare Event Simulation in a
Dynamical Model Describing the
Spread of Traffic Congestions in
Urban Network Systems
Getachew K. Befekadu

Abstract

In this chapter, we present a mathematical framework that provides a new insight
for understanding the spread of traffic congestions in an urban network system. In
particular, we consider a dynamical model, based on the well-known susceptible-
infected-recovered (SIR) model from mathematical epidemiology, with small random
perturbations, that describes the process of traffic congestion propagation and dissi-
pation in an urban network system. Here, we provide the asymptotic probability
estimate based on the Freidlin-Wentzell theory of large deviations for certain rare
events that are difficult to observe in the simulation of urban traffic network dynam-
ics. Moreover, the framework provides a computational algorithm for constructing
efficient importance sampling estimators for rare event simulations of certain events
associated with the spread of traffic congestions in the dynamics of the traffic network.

Keywords: diffusion processes, exit probability, HJB equations,
importance sampling, large deviations, rare-event simulation, SIR model,
traffic network dynamics

1. Introduction

In recent years, there have been a number of interesting studies related to
modeling the spread of traffic congestion propagation and traffic dissipation in
urban network systems (e.g., see [1–5] in the context of macroscopic traffic model
involving traffic flux and traffic density; see [6, 7] in the context of percolation
theory; see [8] for results based on machine-learning methods; and see [9, 10] for
studies based on queuing theory). In this paper, without attempting to give a
literature review, we consider a dynamical model, based on the well-known
susceptible-infected-recovered (SIR) model from mathematical epidemiology, with
small random perturbation, that describes the spread of traffic congestion propaga-
tion and dissipation in an urban network system, i.e.,

dcε tð Þ ¼ �μþ βk 1� rε tð Þ � cε tð Þð Þð Þcε tð Þdt
þ

ffiffiffi

ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μþ βk 1þ rε tð Þ þ cε tð Þð Þð Þcε tð Þ
p

dW1 tð Þ
(1)

drε tð Þ ¼ μrε tð Þ þ
ffiffiffi

ε
p ffiffiffiffiffiffiffiffiffiffiffiffi

μrε tð Þ
p

dW2 tð Þ (2)
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df ε tð Þ ¼ �βk 1� rε tð Þ � cε tð Þð Þð Þcε tð Þdt

þ
ffiffiffi

ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βk 1þ rε tð Þ þ cε tð Þð Þð Þcε tð Þ
p

dW3 tð Þ
(3)

where

• cε tð Þ represents the fraction of congested links in the network

• rε tð Þ represents the fraction of recovered links in the network

• f ε tð Þ represents the fraction of free flow links in the network

• the parameters β and μ represent respectively the propagation and recovery
rates considering that a certain fraction of congested links will eventually
recover as the demand for travel diminishes

• the quantity kβ=μ represents the average number of newly congested links
that, in a fully freely flowing traffic network, each already congested link can
potentially create,

• W1 tð Þ, W2 tð Þ and W3 tð Þ are three independent standard (one-dimensional)
Wiener processes, and

• ε is a small positive number that represents the level of random perturbation in
the network.

Notice that Eq. (1) describes the rate at which the fraction of congested links,
i.e., cε tð Þ, changes over time given the propagation rate β and recovery rate μ
considering that a fraction of congested links will eventually recover as the demand
for the travel volume diminishes. Moreover, Eq. (2) describes the rate at which
congested links normally recover given the recovery rate μ. Finally, Eq. (3) repre-
sents how the fraction of free flow links f ε tð Þ in the network changes over time
given cε tð Þ and rε tð Þ. Note that, for a normalized SIR based traffic network dynamic
model, the following mathematical condition cε tð Þ þ rε tð Þ þ f ε tð Þ ¼ 1 holds true for
all t>0, where f ε tð Þ represents links that have remained in a free flow state starting
from t ¼ 0 (e.g., see Saberi et al. [11] for detailed discussions related to determinis-
tic models).

In this chapter, we provide the asymptotic probability estimate based on the
Freidlin-Wentzell theory of large deviations for certain rare events that are difficult
to observe in the simulation of urban traffic network dynamics. The framework
considered in this study basically relies on the connection between the probability
theory of large deviations and that of the values functions for a family of stochastic
control problems, where such a connection also provides a desirable computational
algorithm for constructing an efficient importance sampling estimator for rare
event simulations of certain events associated with the spread of traffic congestions
in the dynamics of the traffic network. Here, it is worth mentioning that a number
of interesting studies based on various approximations techniques from the theory
of large deviations have provided a framework for constructing efficient impor-
tance sampling estimators for rare event simulation problems involving the behav-
ior of diffusion processes (e.g., [12–16] for additional discussions). The approach
followed in these studies is to construct exponentially-tilted biasing distributions,
which was originally introduced for proving Cramér’s theorem and its extension,
and later on it was found to be an efficient importance sampling distribution for
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certain problems with various approximations involving rare-events (e.g., see
[17–19] or [13] for detailed discussions). The rationale behind our framework fol-
lows in some sense the settings of these papers. However, to our knowledge, the
problem of rare event simulations involving the spread of traffic congestions in an
urban network system has not been addressed in the context of large deviations and
stochastic control arguments in the small noise limit; and it is important because it
provides a new insight for understanding the spread of traffic congestions in an
urban network system.

This chapter is organized as follows. In Section 2, we provide an asymptotic
estimate on the exit probability using the Freidlin-Wentzell theory of large devia-
tions [20] (see also [21], Chapter 4) and the stochastic control arguments from
Fleming [22] (see also [23]), where such an asymptotic estimate relies on the
interpretation of the exit probability function as a value function for a family of
stochastic control problems that can be associated with the underlying SIR based
traffic network dynamic model with small random perturbations. In Section 3, we
discuss importance sampling and the necessary background upon which our main
results rely. In Section 4, we provide our main results for an efficient importance
sampling estimator for rare event simulations of certain events associated with the
spread of traffic congestions in the dynamics of the traffic network. Finally, Section
5 provides some concluding remarks.

2. The Freidlin-Wentzell theory

In this section, we briefly review the classical Freidlin-Wentzell theory of large
deviations for the stochastic differential equations (SDEs) with small noise terms.
In what follows, let us denote the solution of the SDEs in Eqs. (1)–(3) by a bold face

letter xε
t

� �

t≥0
¼ xε,1t , xε,2t , xε,3t
� �

t≥0
≜ cε tð Þ, rε tð Þ, f ε tð Þð Þt≥0 as an 

3-valued diffusion

process and rewrite the above equations as follows

dxε
t ¼ f xε

t

� �

dtþ
ffiffiffi

ε
p

σ xε
t

� �

dW t, (4)

where f xε
t

� �

¼ f 1 xε
t

� �

, f 2 xε
t

� �

, f 3 xε
t

� �� �T
with

f 1 xε,1t , xε,2t , xε,3t
� �

¼ �μþ βk 1� xε,2t � xε,1t
� �� �

xε,1t

f 2 xε,1t , xε,2t , xε,3t
� �

¼ μxε,2t

f 3 xε,1t , xε,2t , xε,3t
� �

¼ �βk 1� xε,2t � xε,1t
� �� �

xε,1t

(5)

and σ xε
t

� �

¼ σ1 xε
t

� �

, σ2 xε
t

� �

, σ3 xε
t

� �� �T
with

σ1 xε,1t , xε,2t , xε,3t
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μþ βk 1þ xε,2t þ xε,1t
� �� �

xε,1t

q

σ2 xε,1t , xε,2t , xε,3t
� �

¼
ffiffiffiffiffiffiffiffiffiffi

μxε,2t

q

σ3 xε,1t , xε,2t , xε,3t
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βk 1þ xε,2t þ xε,1t
� �� �

xε,1t

q

:

(6)

Moreover, W t is a standard three-dimensional Wiener process. Note that the
corresponding backward operator for the diffusion process xε

t , when applied to a
certain function υε t,xð Þ, is given by
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∂tυ
ε þ Lευ≜

∂υε t,xð Þ
∂t

þ ε

2

X

3

i, j¼1

ai,j xð Þ ∂
2υε t,xð Þ
∂xi∂x j

þ f xð Þ � ∇xυ
ε t,xð Þ, (7)

where a xð Þ ¼ σ xð ÞσT xð Þ.
Let Ω∈

3 be bounded open domains with smooth boundary (i.e., ∂Ω is a

manifold of class C2) and let ΩT be an open set defined by

Ω
T ¼ 0,Tð Þ � Ω: (8)

Furthermore, let us denote by C∞ Ω
T

� �

the spaces of infinitely differentiable

functions on Ω
T and by C∞0 Ω

T
� �

the space of the functions ϕ∈C∞ Ω
T

� �

with

compact support in Ω
T. A locally square integrable function υε t,xð Þ on Ω

T is said to
be a distribution solution to the following equation

∂tυ
ε þ Lευε ¼ 0, (9)

if, for any test function ϕ∈C∞0 Ω
T

� �

, the following holds true

ð

Ω
T
�∂tϕþ Lε ∗ϕð ÞυεdΩT ¼ 0, (10)

where dΩT denotes the Lebesgue measure on 
3 � þ and Lε ∗ is an adjoint

operator corresponding to the infinitesimal generator Lε of the process xε
t .

Moreover, we also assume that the following statements hold for the SDE in (4).
Assumption 1

a. The function f is a bounded C∞ 0,∞ð Þ �Ωð Þ-function, with bounded first

derivatives. Moreover, σ and σ�1 are bounded C∞ 0,∞ð Þ � 
3

� �

-functions,
with bounded first derivatives.

b. Let n xð Þ be the outer normal vector to ∂Ω and, further, let Γþ and Γ
0 denote

the sets of points t,xð Þ, with x∈∂Ω, such that

f t,xð Þ, n xð Þh i (11)

is positive and zero, respectively.
Remark 1 Note that


ε
s,xεs

τε,xε
τε

� �

∈Γ
þ ⋃Γ

0, τε <∞
� �

¼ 1, ∀ s,xε
s

� �

∈Ω
∞

0 : (12)

where τε ¼ inf t> s jxε
t ∈∂Ω

� �

. Moreover, if


ε
s,xεs

t,xε
t

� �

∈Γ
0 for some t∈ s,T½ �

� �

¼ 0, ∀ s,xε
s

� �

∈Ω
∞

0 , (13)

and τε ≤T, then we have τε,xε
τε

� �

∈Γ
þ, almost surely (see [24], Section 7).

In what follows, let xε
t , for 0≤ t≤T, be the diffusion process associated with (4)

(or Eqs. (1)–(3)) and consider the following boundary value problem

∂sυ
ε þ Lευε ¼ 0 in Ω

T

υε s,xð Þ ¼ 1 on Γ
þ
T

υε s,xð Þ ¼ 0 on Tf g �Ω

9

>

=

>

;

(14)
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where Lε is the backward operator in (7) and

Γ
þ
T ¼ s,xð Þ∈Γ

þ j0< s≤Tf g: (15)

Further, let Ω0T be the set consisting of ΩT ∪ Tf g �Ω, together with the bound-
ary points s,xð Þ∈Γ

þ, with 0< s<T. Then, the following proposition, whose proof is
given in [25], provides a solution to the exit probability 

ε
s,xεs

τε ≤Tf gwith which the

diffusion process xε
t exits from the domain Ω.

Proposition 1 Suppose that the statements in Assumption 1 hold true. Then, the
exit probability qε s,xεð Þ ¼ 

ε
s,xεs

τε ≤Tf g is a smooth solution to the boundary value

problem in (14) and, moreover, it is a continuous function on Ω
0T.

Note that, from Proposition 1, the exit probability qε s,xεð Þ is a smooth solution
to the boundary value problem in (14). Further, if we introduce the following
logarithmic transformation (e.g., see [22, 26] or [23])

Iε s,xεð Þ ¼ �ε log qε s,xεð Þ: (16)

Then, using ideas from stochastic control theory (see [22] for similar argu-
ments), we present results useful for proving the following asymptotic property

Iε s,xεð Þ ! I0 s,xεð Þ as ε ! 0: (17)

The starting point for such an analysis is to introduce a family of related sto-
chastic control problems whose dynamic programming equation, for ε>0, is given
below by (21). Then, this also allows us to reinterpret the exit probability function
as a value function for a family of stochastic control problems associated with the
underlying urban traffic network dynamics with small random perturbation. More-
over, as discussed later in Section 5, such a connection provides a computational
paradigm – based on an exponentially-tilted biasing distribution – for constructing
an efficient importance sampling estimators for rare-event simulations that further
improves the efficiency of Monte Carlo simulations.

Then, we consider the following boundary value problem

∂sg
ε þ ε

2
Lε ¼ 0 in Ω

T

gε ¼ 
ε
s,x exp � 1

ε
Φ

ε

	 
� �

on ∂
∗
Ω

T

9

>

>

=

>

>

;

(18)

where Φε s,xεð Þ is a bounded, nonnegative Lipschitz function such that

Φ
ε s,xεð Þ ¼ 0, ∀ s,xεð Þ∈Γ

þ
T : (19)

Observe that the function gε s,xεð Þ is a smooth solution in Ω
T to the backward

operator in (9); and it is also continuous on ∂
∗
Ω

T . Moreover, if we introduce the
following logarithm transformation

Jε s,xεð Þ ¼ �ε log gε s,xεð Þ: (20)

Then, Jε s,xεð Þ satisfies the following dynamic programming equation (i.e., the
Hamilton-Jacobi-Bellman equation)

∂sJ
ε þ ε

2

X

3

i, j¼1

ai,j
∂
2Jε

∂xi∂x j
þHε ¼ 0, in Ω

T, (21)
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where Hε ¼ Hε s,xε,∇xJ
εð Þ is given by

Hε s,xε,∇xJ
εð Þ ¼ f xεð Þ � ∇xJ

ε s,xεð Þ � 1

2
∇xJ

ε s,xεð Þð ÞTa xεð Þ∇xJ
ε s,xεð Þ: (22)

Note that the duality relation between Hε s,xε, �ð Þ and Lε s,xε, �ð Þ, i.e.,

Hε s,xε,∇xJ
εð Þ ¼ inf

û
Lε s,xε, ûð Þ þ ∇xJ

ε � ûif g, (23)

with

Lε s,xε, ûð Þ ¼ 1

2
f xεð Þ � ûk k2a xεð Þ½ ��1 , (24)

where ∥ � ∥2
a xεð Þ½ ��1 denotes the Riemannian norm of a tangent vector.

Then, it is easy to see that Jε s,xεð Þ is a solution in Ω
T, with Jε ¼ Φ

ε on ∂
∗
Ω

T, to
the dynamic programming in (21), where the latter is associated with the following
stochastic control problem

Jε s,xεð Þ ¼ inf
û∈ Û s,xε

sð Þ
s,xε

s

ðθ

s
Lε s,xε, ûð ÞdtþΦ

ε θ,xεÞð g
�

(25)

that corresponds to the following system of SDEs

dxε
t ¼ û tð Þdtþ

ffiffiffi

ε
p

σ xε
t

� �

dW t, (26)

with an initial condition xε
s ¼ xε and Û s,xεð Þ is a class of continuous functions

for which θ≤T and θ, xεθ
� �

∈Γ
þ
T .

Next, we provide bounds, i.e., the asymptotic lower and upper bounds, on the
exit probability qε s,xεð Þ.

Define

Iε
Ω

s,xεð Þ; ∂Ωð Þ ¼ � lim
ε!0

ε logε
s,xε

s
xε
θ ∈∂Ω

� �

,

≜� lim
ε!0

ε log qε s,xεð Þ,
(27)

where θ (or θ ¼ τε∧T) is the first exit-time of xε
t from the domain Ω. Further-

more, let us introduce the following supplementary minimization problem

~I
ε

Ω
s,φ, θð Þ ¼ inf

φ∈CsT s,T½ �,3ð Þ, θ≥ s

ðθ

s
Lε t,φ tð Þ, _φ tð Þð Þdt, (28)

where the infimum is taken among all φ �ð Þ∈CsT s,T½ �,3
� �

(i.e., from the space

of d-valued locally absolutely continuous functions, with
Ð T
s _φ tð Þj j2dt<∞ for each

T > s) and θ≥ s>0 such that φ sð Þ∈Ω
T, for all t∈ s, θ½ Þ, and θ,φ θð Þð Þ∈Γ

þ
T . Then, it is

easy to see that

~I
ε

Ω
s,φ, θð Þ ¼ Iε

Ω
s,xεð Þ; ∂Ωð Þ: (29)

Next, we state the following lemma that will be useful for proving Proposition 2
(cf. [22], Lemma 3.1).
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Lemma 1 If φ∈CsT s,T½ �,3
� �

, for s>0, and φ sð Þ ¼ xε
s , t,φ tð Þð Þ∈Ω

T, for all

t∈ s,T½ Þ, then lim T!∞
Ð T
s L

ε t,φ tð Þ, _φ tð Þð Þdt ¼ þ∞.

Consider again the stochastic control problem in (25) together with (26). Sup-

pose that Φε
M (with Φ

ε
M ≥0) is class C2 such that Φε

M ! þ∞ asM ! ∞ uniformly on

any compact subset of ΩTnΓþ
T and Φ

ε
M on Γ

þ
T . Further, if we let Jε ¼ Jε

ΦM
, when

Φ
ε ¼ Φ

ε
M, then we have the following lemma.

Lemma 2 Suppose that Lemma 1 holds, then we have

liminf
M!∞

t,xε
tð Þ! s,xε

sð Þ

Jε
ΦM

s,xεð Þð Þ≥ Iε s,xεð Þ: (30)

Then, we have the following result.
Proposition 2 [25, Proposition 2.8] Suppose that Lemma 1 holds, then we have

Iε s,xεð Þ ! I0 s,xεð Þ as ε ! 0, (31)

uniformly for all s,xε
s

� �

in any compact subset Ω
T
.

Proof: It is suffices to show the following conditions

lim sup
ε!0

ε logε
s,xε

s
xε
θ ∈∂Ω

� �

≤ � Iε
Ω

s,xεð Þ; ∂Ωð Þ (32)

and

lim inf
ε!0

ε logε
s,xε

s
xε
θ ∈∂Ω

� �

≥ � Iε
Ω

s,xεð Þ; ∂Ωð Þ, (33)

uniformly for all s,xε
s

� �

in any compact subset Ω
T
. Note that Iε

Ω
s,xεð Þ; ∂Ωð Þ ¼

Iε s,xεð Þ (cf. Eq. (29)), then the upper bound in (32) can be verified using the
Freidlin-Wentzell asymptotic estimates (e.g., see [27], pp. 332–334, [20] or [28]).

On the other hand, to prove the lower bound in (33), we introduce a penalty
function Φ

ε
M (with Φ

ε
M t,y
� �

¼ 0 for t, y
� �

∈Γ
þ
T ); and write gε ¼ gεM

(� 
ε
s,xεs

exp � 1
ε
Φ

ε
M

� �� �

) and Jε ¼ Jε
ΦM

, with Φ
ε ¼ Φ

ε
M. From the boundary condition

in (18), then, for each M, we have

gε s,xεð Þ≤ gεM s,xεð Þ: (34)

Using Lemma 2 and noting further the following

Jε
ΦM

s,xεð Þ≥ Iε
Ω

s,xεð Þ; ∂Ωð Þ: (35)

Then, the lower bound in (33) holds uniformly for all s,xε
s

� �

in any compact

subset Ω
T
. This completes the proof of Proposition 2. □

3. Importance sampling

In this paper, we are mainly concerned with estimating the following quantity


ε
s,xε

s
exp � 1

ε
Φ

ε xεð Þ
	 
 �

, (36)
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where Φε is an appropriate functional on C 0,T½ �;3
� �

and xε is a solution of the

SDE in (4) and our analysis is in the situation where the level of the random
perturbation is small, i.e., ε≪ 1, and the functional ε

s,xεs
exp � 1

ε
Φ

ε xεð Þ
� �� �

is rapidly

varying in xε. Note that the challenge presented by such an analysis of rare event
probabilities is well documented (see [12, 18, 29] for additional discussions). In the
following (and see also Section 4), we specifically consider the case when the
functional Φε is bounded and nonnegative Lipschitz, with Φ

ε ¼ 0, if

xε
t ∈Ω

T ⊂C 0,T½ � : 3
� �

and Φ
ε ¼ ∞ otherwise; and we further consider analysis on

the asymptotic estimates for exit probabilities from a given bounded open domain
in the small noise limit case.

Consider the following simple estimator for the quantity of interest in (36)

ρ εð Þ ¼ 1

N

X

N

j¼1

exp � 1

ε
Φ

ε xε jð Þ
� �

	 


, (37)

where xε jð Þ� �N

j¼1
are N-copies of independent samples of xε. Here we remark

that such an estimator is unbiased in the sense that


ε
s,xε

s
ρ εð Þ½ � ¼ 

ε
s,xεs

exp � 1

ε
Φ

ε xεð Þ
	 
 �

, (38)

Moreover, its variance is given by

Var ρ εð Þð Þ ¼ 1

N

ε
s,xε

s
exp � 2

ε
Φ

ε xεð Þ
	 
 �

� 
ε
s,xεs

exp � 1

ε
Φ

ε xεð Þ
	 
 �2

 !

: (39)

Then, we have the following for the relative estimation error

Rerr ρ εð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ρ εð Þð Þ
p


ε
s,xε

s
ρ εð Þ½ � (40)

which can be further rewritten as follows

Rerr ρ εð Þð Þ ¼ 1=
ffiffiffiffi

N
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ρ εð Þð Þ � 1
p

, (41)

where

Δ ρ εð Þð Þ ¼

ε
s,xε

s
exp � 2

ε
Φ

ε xεð Þ
� �� �


ε
s,xεs

exp � 1
ε
Φ

ε xεð Þ
� �� �2 : (42)

Note that, as we might expect, the relative estimation error may decrease with
increasing the number of the sample size N. However, from Varahhan’s lemma
(e.g., see [30]; see also [20, 28]), under suitable assumptions, we also have the
following conditions

lim sup
ε!0

ε logε
s,xε

s
exp � 1

ε
Φ

ε xεð Þ
	 
 �

¼ � inf
φ∈CsT s,T½ �,ndð Þ

φ sð Þ¼xs

I φð Þ þΦ
ε φð Þf g (43)
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and

lim sup
ε!0

ε logε
s,xε

s
exp � 2

ε
Φ

ε xεð Þ
	 
 �

¼ � inf
φ∈CsT s,T½ �,ndð Þ

φ sð Þ¼xs

I φð Þ þ 2Φε φð Þf g (44)

where CsT s,T½ �,3
� �

is the set of absolutely continuous functions from s,T½ � into


3, with 0≤ s≤ t≤T, and I φð Þ is the rate functional for the diffusion process xε
t .

From Jensen’s inequality, the above equations in (43) and (44) also imply the
following condition Δ ρ εð Þð Þ≥ 1.

4. Main results

In this section, we present our main result that asserts the relative error
decreases to zero as the small random perturbation tends to zero, which in turn
implies the uniform log-efficiency for the estimation problem in (36).

In what follows, let x̂ε
t be the solution to the following SDE

dx̂ε
t ¼ f t, x̂ε

t

� �

dtþ bσ t, x̂ε
t

� �

vε t, x̂ε
t

� �

dtþ
ffiffiffi

ε
p

bσ t, x̂ε
t

� �

dW t,

with an initial condition x̂ε
s ¼ xε

s ,
(45)

where vε is an appropriate control function (which also depends on ε) to be
chosen so as to reduce the variance of the importance sampling estimator.

Let

zε ¼ exp � 1
ffiffiffi

ε
p
ðT

s
hvε t, x̂ε

t

� �

, dW ti �
1

2ε

ðT

s
vε t, x̂ε

t Þ
� �

�

2
dt

�

�

�

�

:

	

(46)

Then, the corresponding importance sampling estimator is given by

ρ̂ εð Þ ¼ 1

N

X

N

j¼1

exp � 1

ε
Φ

ε x̂ε jð Þ
� �

	 


zε jð Þ, (47)

where x̂ε jð Þ
, zε jð Þ

� �n oN

j¼1
are N-copies of independent samples of x̂ε, zεð Þ. Note

that, for an appropriately chosen control function vε, the above importance sam-
pling estimator in (47) is an unbiased estimator for (37), i.e.,


ε
s,xε

s
ρ̂ εð Þ½ � ¼ 

ε
s,xεs

exp � 1

ε
Φ

ε xεð Þ
	 
 �

� 
ε
s,xε

s
ρ εð Þ½ �:

(48)

Moreover, the relative estimation error is given by

Rerr ρ̂ εð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ρ̂ εð Þð Þ
p


ε
s,xε

s
ρ̂ εð Þ½ � (49)

which can be rewritten as follows

Rerr ρ̂ εð Þð Þ ¼ 1=
ffiffiffiffi

N
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ρ̂ εð Þð Þ � 1
p

, (50)
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where

Δ ρ̂ εð Þð Þ ¼

ε
s,xεs

exp � 2
ε
Φ

ε x̂εð Þ
� �� �

zεð Þ2


ε
s,xεs

exp � 1
ε
Φ

ε xεð Þ
� �� �2 : (51)

Hence, in order to reduce the relative estimation error Rerr ρ̂ εð Þð Þ, we need to
control the term Δ ρ̂ εð Þð Þ in (50). Note that, from Jensen’s inequality, we have the
following condition

lim sup
ε!0

� ε logε
s,xε

s
exp � 2

ε
Φ

ε x̂εð Þ
	 
 �

≤ 2 lim
ε!0

� ε logε
s,xεs

exp � 1

ε
Φ

ε x̂εð Þ
	 
 �

(52)

which also implies Δ ρ̂ εð Þð Þ≥ 1 with lim ε!0Δ ρ̂ εð Þð Þ ¼ 1. Moreover, the statement
in (49) further implies the following

Rerr ρ̂ εð Þð Þ ¼ 1
ffiffiffiffi

N
p exp o 1ð Þ=εð Þ as ε ! 0, (53)

which is generally referred as asymptotic efficiency or optimality. In this paper, our
main objective is to choose appropriately the control function vε in (45), so that the
resulting importance sampling estimator achieves aminimum rate of error growth. For
this reason, we introduce the following standard definition from simulation theory
(e.g., see [29] or [12]) which is useful for interpreting our main result.

Definition 1 An importance sampling estimator of the form (47) is log-efficient
(i.e., asymptotic efficiency or optimal) if

lim
ε!0

� ε logΔ ρ̂ εð Þð Þ ¼ 0: (54)

Then, we state the following result as follows.
Proposition 3 Suppose that the importance sampling estimator ρ̂ εð Þ in (47),

with vε t,xð Þ ¼ �σT xð Þ∇xJ
ε t,xð Þ, is uniformly log-efficient (i.e., asymptotic effi-

cient), where Jε t,xð Þ satisfies the corresponding dynamic programming equation in

Ω
T with respect to the system in (45), with Jε ¼ Φ

ε on ∂
∗
Ω

T. Then, there exits a set

⊂
3 such that the Hausedorf dimension of c is zero and

lim
ε!0

Rerr ρ̂ εð Þð Þ ¼ 0, (55)

for all x∈.
Proof: The above proposition basically asserts that the relative error Rerr ρ̂ εð Þð Þ

decreases to zero as the small random perturbation level ε tends to zero. Note that,
if Jε s,xεð Þ satisfies the dynamic programming equation in (21), then, with
vε t,xð Þ ¼ �σT xð Þ∇xJ

ε t,xð Þ, the importance sampling for the estimation problem in

(36), i.e., ε
s,xεs

exp � 1
ε
Φ

ε xεð Þ
� �� �

, is uniformly log-efficient if the point s,xε
s

� �

is

contained in a region of sufficient regularity that encompasses almost all 3. As a
result of this, it only suffices to show that

lim
ε!0


ε
s,xε

s
exp � 2

ε
Φ

ε x̂εð Þ
� �

zεð Þ2
h i


ε
s,xε

s
exp � 1

ε
Φ

ε xεð Þ
� �� �2 ¼ 1 (56)

holds uniformly for all s,xε
s

� �

in any compact subset Ω
T
.
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Let us define following two functions

ψ ε
1 s,xε

s

� �

¼ �ε logε
s,xε

s
exp � 2

ε
Φ

ε x̂εð Þ
	 
 �

(57)

and

ψ ε
2 s,xε

s

� �

¼ �ε logε
s,xε

s
exp � 2

ε
Φ

ε x̂εð Þ
	 


zεð Þ2
 �

¼ �ε logε
s,xεs

exp � 2

ε
Φ

ε x̂εð Þ � 2
ffiffiffi

ε
p
ðT

s
hvεðt, x̂ε

t Þ, dW ti
	

� 1

ε

ðT

s
vε t, x̂ε

t

� ��

�

�

�

2
dt


�

:

(58)

Note that, from the large deviations results for the diffusion process x̂ε
t (e.g., see

[21], Chapter 4, [30] or [27], pp.332–334; and see also the asymptotic estimates in
Proposition 2 of Section 3), then there exists a constant C, γ >0 and ε0, with
ε∈ 0, ε0ð Þ, such that


ε
0,xε0

exp � 1

ε
ðψ ε

2 τ̂ε, x̂ε
τ̂ε

� �

� 2ψε
1ðτ̂ε, x̂ε

τ̂εÞÞ �
ð τ̂ε

0

X

3

i, j¼1

ai,j x
ε
s

� � ∂
2ψ1

ε s, x̂ε
s

� �

∂xi∂x j
ds

 !" #

≤C exp �γ=2εð Þ,
(59)

where τ̂ε ¼ inf t> s j x̂ε
t ∈∂Ω

� �

∧T. Note that the above relation further implies
that

lim
ε!0

exp � 1

ε
ψ ε
2 0,x0ð Þ � 2ψ0

1 0,x0ÞÞð Þ ¼ exp

ðT

0

X

3

i, j¼1

ai,j x
ε
s

� � ∂
2ψ1

ε s, x̂ε
s

� �

∂xi∂x j
ds

 !

:

  

(60)

Moreover, in the same way, we can also show the following relation

lim
ε!0

exp � 1

ε
ψ ε
1 0,x0ð Þ � ψ0

1 0,x0ÞÞð Þ ¼ exp

ðT

0

X

3

i, j¼1

ai,j x
ε
s

� � ∂
2ψ1

ε s, x̂ε
s

� �

∂xi∂x j
ds

 !

:

  

(61)

Finally, if we combine the above two equations, then we have the condition
following

lim
ε!0

exp � 1

ε
ðψ ε

2 0,x0ð Þ � ψ ε
1ð0,x0ÞÞ

	 


¼ 1, (62)

which implies the uniform log-efficiency for the estimation problem in (36).
This completes the proof of Proposition 3.

Remark 2 The above proposition basically ensures a minimum relative estima-
tion error in the small noise limit case for the estimation problem in (36). Note that,
if Jε t,xεð Þ satisfies the dynamic programming equation in (21) (i.e., if it is the
solution for the family of stochastic control problems that are associated with the
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underlying distributed system with small random perturbation). Then, with
vε t,xð Þ ¼ �σT xð Þ∇xJ

ε t,xð Þ, one can provide a numerical computational framework
for constructing efficient importance sampling estimators, with an exponential
variance decay rate � based on an exponentially-tilted biasing distribution – for
rare-event simulations involving the behavior of the diffusion process xε.

Remark 3 Here, our primary intent is to provide a theoretical framework, rather
than considering some specific numerical simulation results with respect to system
parameters (such as the propagation rate β and recovery rate μ of the network),
which is an ongoing research area.

5. Concluding remarks

In this chapter, we presented a mathematical framework that provides a new
insight for understanding the spread of traffic congestions in an urban network
system. In particular, we considered a dynamical model, based on the well-known
susceptible-infected-recovered (SIR) model from mathematical epidemiology, with
small random perturbations, that describes the process of traffic congestion propa-
gation and dissipation in an urban network system. Moreover, we also provided the
asymptotic probability estimate based on the Freidlin-Wentzell theory of large
deviations for certain rare events that are difficult to observe in the simulation of an
urban traffic network dynamic, where such a framework provides a computational
algorithm for constructing efficient importance sampling estimators for rare event
simulations of certain events associated with the spread of traffic congestions in the
traffic network.

Author details

Getachew K. Befekadu
Department of Electrical and Computer Engineering, Morgan State University,
Baltimore, USA

*Address all correspondence to: getachew.befekadu@morgan.edu

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

12

A Collection of Papers on Chaos Theory and Its Applications



References

[1]Meead Saberi, Mahmassani HS.
Exploring properties of network-wide
flow-density relations in a freeway
network. Transp. Res. Rec. 2012;2315:
153-163. https://doi.org/10.3141/2315-16
Accessed: 27 December 2020

[2]Meead Saberi, Hani S. Mahmassani:
Hysteresis and capacity drop
phenomena in freeway networks:
empirical characterization and
interpretation. Transp. Res. Rec. 2013;
2391:44–55. https://doi.org/10.3141/
2391-05 [Accessed: 27 December 2020]

[3]Nikolas Geroliminis, Carlos F.
Daganzo: Existence of urban-scale
macroscopic fundamental diagrams:
some experimental findings. Transp.
Res. B. 2008; 42:759–770. https://doi.
org/10.1016/j.trb.2008.02.002
[Accessed: 27 December 2020]

[4] Yuxuan Ji, Nikolas Geroliminis: On
the spatial partitioning of urban
transportation networks. Transp. Res. B.
2012; 46:1639–1656. https://doi.org/
10.1016/j.trb.2012.08.005 [Accessed: 27
December 2020]

[5]Mohammadreza Saeedmanesh,
Nikolas Geroliminis: Dynamic clustering
and propagation of congestion in
heterogeneously congested urban traffic
networks. Transp. Res. Procedia. 2017;
23:962–979. https://doi.org/10.1016/j.trb
.2017.08.021 [Accessed: 27 December
2020]

[6] Guanwen Zeng, Daqing Li, Shengmin
Guo, Liang Gao, Ziyou Gao, H. Eugene
Stanley, Shlomo Havlin: Switch between
critical percolation modes in city traffic
dynamics. Proc. Natl Acad Sci. USA.
2019; 116:23–28. https://doi.org/10.1073/
pnas.1801545116 [Accessed: 27
December 2020]

[7]Daqing Li, Bowen Fu, Yunpeng
Wang, Guangquan Lu, Yehiel Berezin,
H. Eugene Stanley, Shlomo Havlin:

Percolation transition in dynamical
traffic network with evolving critical
bottlenecks. Proc. Natl Acad. Sci. USA.
2015; 112:669–672. https://doi.org/
10.1073/pnas.1419185112 [Accessed: 27
December 2020]

[8]M.T. Asif, J. Dauwels, C.Y. Goh, A.
Oran, E. Fathi, M. Xu, M.M. Dhanya, N.
Mitrovic and P. Jaillet: Spatio-temporal
patterns in large-scale traffic speed
prediction. IEEE Trans. Intell. Transp.
Syst. 2014; 15:794–804. https://doi.org/
10.1109/TITS.2013.2290285 [Accessed:
27 December 2020]

[9] Richard Arnott: A bathtub model of
downtown traffic congestion. J. Urban
Econ. 2013; 76:110–121. https://doi.org/
10.1016/j.jue.2013.01.001 [Accessed: 27
December 2020]

[10]William S. Vickrey: Congestion
theory and transport investment. Am.
Econ. Rev. 1969; 59:251–260 https://
www.jstor.org/stable/1823678
[Accessed: 27 December 2020]

[11]Meead Saberi, H.
Hamedmoghadam, M. Ashfaq, et al. : A
simple contagion process describes
spreading of traffic jams in urban
networks. Nat Commun. 2020; 11:1616.
https://doi.org/10.1038/s41467-020-
15353-2 [Accessed: 27 December 2020]

[12] Amarjit Budhiraja, Paul Dupuis:
Analysis and approximation of rare
events: representations and weak
convergence methods. Prob. Theory and
Stoch. Modelling Series, 94, Springer,
2019. https://doi.org/10.1007/978-1-
4939-9579-0 [Accessed: 27 December
2020]

[13] Paul Dupuis Richard S. Ellis: A weak
convergence approach to the theory of
large deviations. Wiley, New York, 1997.

[14] Paul Dupuis, Hui Wang: Importance
sampling, large deviations, and

13

Rare Event Simulation in a Dynamical Model Describing the Spread of Traffic Congestions…
DOI: http://dx.doi.org/10.5772/intechopen.95789



differential games. Stoch. Stoch.
Rep. 2004; 76:481–508. https://doi.org/
10.1080/10451120410001733845
[Accessed: 27 December 2020]

[15]Weinan E, Weiqing Ren, Eric
Vanden-Eijnden: Minimum action
method for the study of rare events.
Comm. Pure Appl. Math. 2004; 57:637–
656. https://doi.org/10.1002/cpa.20005
[Accessed: 27 December 2020]

[16] Eric Vanden-Eijnden, Jonathan
Weare: Rare event simulation of small
noise diffusions. Comm. Pure Appl.
Math. 2012; 65:1770–1803. https://doi.
org/10.1002/cpa.21428 [Accessed: 27
December 2020]

[17]D. Siegmund: Importance sampling
in the monte carlo study of sequential
tests. The Annals of Statistics. 1976;
673–684. https://doi.org/10.1214/aos/
1176343541 [Accessed: 27 December
2020]

[18] Soren Asmussen, Peter W. Glynn:
Stochastic simulation: algorithms and
analysis. Springer, New York, 2010. h
ttps://doi.org/10.1007/978-0-
387-69033-9 [Accessed: 27 December
2020]

[19] Jügen Gärtner: On large deviations
from the invariant measure. Theory
Probab. Appl. 1977; 22(1), 24–39. h
ttps://doi.org/10.1137/1122003
[Accessed: 27 December 2020]

[20] A. D. Ventsel, M. I. Freidlin: On
small random perturbations of
dynamical systems. Russian Math. Surv.
1970; 25:1–55. https://doi.org/10.1070/
RM1970v025n01ABEH001254
[Accessed: 27 December 2020]

[21]Mark I. Freidlin, and Alexander D.
Wentzell: Random perturbations of
dynamical systems. Springer, Berlin,
1984. https://doi.org/10.1007/978-3-
642-25847-3 [Accessed: 27 December
2020]

[22]Wendell H. Fleming: Exit
probabilities and optimal stochastic
control. Appl. Math. Optim. 1978; 4:
329–346. https://doi.org/10.1007/
BF01442148 [Accessed: 27 December
2020]

[23]Wendell Fleming, Raymond Rishel:
Deterministic and stochastic optimal
control. Springer-Verlag, New York,
1975. https://doi.org/10.1007/978-1-
4612-6380-7 [Accessed: 27 December
2020]

[24]D. Stroock, S. R. S. Varadhan: On
degenerate elliptic-parabolic operators
of second order and their associated
diffusions. Comm. Pure Appl. Math.,
1972; 25:651–713. https://doi.org/
10.1002/cpa.3160250603 [Accessed: 27
December 2020]

[25]Getachew K. Befekadu, Panos J.
Antsaklis: On the asymptotic estimates
for exit probabilities and minimum exit
rates of diffusion processes pertaining to
a chain of distributed control systems.
SIAM J. Control Optim. 2015; 53:2297–
2318. https://doi.org/10.1137/140990322
[Accessed: 27 December 2020]

[26] L. C. Evans, H. Ishii: A PDE
approach to some asymptotic problems
concerning random differential
equations with small noise intensities.
Ann. Inst. H. Poincaré Anal. Non
Linearé. 1985; 2:1–20. https://doi.org/
10.1016/S0294-1449(16)30409-7
[Accessed: 27 December 2020]

[27] Avner Friedman: Stochastic
differential equations and applications.
Dover Publisher, Inc. Mineola, New
York, 2006.

[28] A. D. Ventcel: Limit theorems on
large deviations for stochastic processes.
Theo. Prob. Appl. 1973; 18:817–821.
https://doi.org/10.1137/1121030
[Accessed: 27 December 2020]

[29] James A. Bucklew: Introduction to
rare-event simulation. Springer Series in

14

A Collection of Papers on Chaos Theory and Its Applications



Statistics. Springer, New York, 2004.
https://doi.org/10.1007/978-1-4757-
4078-3 [Accessed: 27 December 2020]

[30] S. R. S. Varadhan: Large deviations
and applications, CBMS-NSF Regional
Conference Series in Applied
Mathematics, 46. SIAM, Philadelphia,
1985. https://doi.org/10.1137/
1.9781611970241 [Accessed: 27
December 2020]

15

Rare Event Simulation in a Dynamical Model Describing the Spread of Traffic Congestions…
DOI: http://dx.doi.org/10.5772/intechopen.95789


