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Chapter

Spectral Properties of a
Non-Self-Adjoint Differential
Operator with Block-Triangular
Operator Coefficients
Aleksandr Kholkin

Abstract

In this chapter, the Sturm-Liouville equation with block-triangular, increasing at
infinity operator potential is considered. A fundamental system of solutions is
constructed, one of which decreases at infinity, and the second increases. The
asymptotic behavior at infinity was found out. The Green’s function and the resol-
vent for a non-self-adjoint differential operator are constructed. This allows to
obtain sufficient conditions under which the spectrum of this non-self-adjoint dif-
ferential operator is real and discrete. For a non-self-adjoint Sturm-Liouville opera-
tor with a triangular matrix potential growing at infinity, an example of operator
having spectral singularities is constructed.

Keywords: differential operators, spectrum, non-self-adjoint, block-triangular
operator coefficients, Green’s function, resolvent

1. Introduction

The question of the generalization of the oscillatory Sturm theorem for scalar
equations of higher orders and for equations with matrix coefficients for a long time
remained open. Only in recent joint papers by F. Rofe-Beketov and A. Kholkin (see
[1]) a connection was established between spectral and oscillatory properties for
self-adjoint operators generated by equations of arbitrary even order with operator
coefficients and boundary conditions of general form. Later, a Sturm-type oscilla-
tion theorem was proved [2] for a problem on finite and infinite intervals for a
second-order equation with block-triangular matrix coefficients. In the case of non-
self-adjoint differential operators, oscillation theorems have not been considered
earlier.

Results turning out in self-adjoint and non-self-adjoint cases differentiate sub-
stantially. The theory of non-self-adjoint singular differential operators, generated
by scalar differential expressions, has been well studied. An overview on the theory
of non-self-adjoint singular ordinary differential operators is provided in V.E.
Lyantse’s Appendix I to the monograph [3]. In the study of the connection between
spectral and oscillation properties of non-self-adjoint differential operators with
block-triangular operator coefficients [2, 4] the question arises of the structure of
the spectrum of such operators. For scalar non- self-adjoint differential operators
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these questions were studied in the papers [5–8]. The theory of singular non-self-
adjoint differential operators with matrix and operator coefficients is relatively
new. In the context of the inverse scattering problem, for an operator with a
triangular matrix potential decreasing at infinity, the first moment of which is
bounded, the structure of the spectrum was established in [9, 10]. The theory of
equations with block - triangular operator coefficients the first results were
published in 2012 in the works of the author [11–13].

In this works we construct the fundamental system of solutions of differential
equation with block-triangular operator potential that increases at infinity, one of
that is decreasing at infinity, and the second growing. The asymptotics of the
fundamental system of solutions of this equation is established. The Green’s func-
tion is constructed for a non-self-adjoint system with a block-triangular potential,
the diagonal blocks of which are self-adjoint operators. We obtained a resolvent for
a non-self-adjoint differential operator, using which the structure of the operator
spectrum is set. Sufficient conditions at which a spectrum of such non-self-adjoint
differential operator is real and discrete are obtained. Here the rate of growth
elements, not on the main diagonal, is subordinated to the rate of growth of the
diagonal elements. In case of infringement of this condition, the operator can have
spectral singularities [14].

2. The fundamental solutions for an non-self-adjoint differential
operator with block – triangular operator coefficients.

Let us designate Hk, k ¼ 1, r as a finite-dimensional or infinite-dimensional
separable Hilbert space with inner product �, �ð Þ and norm �j j. Denote by H ¼
H1 ⊕H2 ⊕ … ⊕Hr: Element h∈H will be written in the form of h ¼
col h1, h2, … , hr
� �

, where hk ∈Hk, k ¼ 1, 2, … , r, Ik, I- are identity operators in Hk

and H accordingly.
We denote by L2 H, 0,∞ð Þð Þ the Hilbert space of vector-valued functions y xð Þ

with values in H with inner product y, zh i ¼
Ð

∞

0 y xð Þ, z xð Þð Þdx and the norm �k k.
Now let us consider the equation with block-triangular operator potential in B Hð Þ

l y½ � ¼ �y00 þ V xð Þy ¼ λy, 0≤ x<∞, (1)

where

V xð Þ ¼ v xð Þ � I þ U xð Þ, U xð Þ ¼

U11 xð Þ U12 xð Þ … U1r xð Þ
0 U22 xð Þ … U2r xð Þ
… … … …

0 0 … Urr xð Þ

0

B

B

B

@

1

C

C

C

A

, (2)

v xð Þ is a real scalar function such that 0< v xð Þ ! ∞monotonically, as x ! ∞,
and it has monotone absolutely continuous derivative. Also, U xð Þ is a relatively small
perturbation, e. g. as x ! ∞ U xð Þj j � v�1 xð Þ ! 0 or Uj jv�1 ∈L∞ þð Þ. The diagonal
blocks Ukk xð Þ,  k ¼ 1, r are assumed to be bounded self-adjoint operators in Hk.

In case where

v xð Þ≥Cx2α,C>0, α> 1, (3)

we suppose that coefficients of the Eq. (1) satisfy relations:

2
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ð

∞

0

U tð Þj j � v�1
2 tð Þdt<∞, (4)

ð

∞

0

v0
2
tð Þ � v�5

2 tð Þdt<∞,

ð

∞

0

v00 tð Þ � v�3
2 tð Þdt<∞: (5)

In case of v xð Þ ¼ x2α, 0< α≤ 1, we suppose that the coefficients of the Eq. (1)
satisfy the relation

ð

∞

a

U tð Þj j � t�αdt<∞, a>0: (6)

2.1 Construction of the fundamental system of solutions for an operator
differential equation with a rapidly increasing at infinity potential

Consider first the case where v xð Þ≥Cx2α,C>0, α> 1.
Condition (3) is performed, for example, quickly increasing functions

ex, exp exf g etc.
Rewrite the Eq. (1) in the form

�y00 þ v xð Þ þ q xð Þð Þy ¼ λþ q xð Þð ÞI � U xð Þð Þy, (7)

where q xð Þ determined by a formula (cf. with the monograph [15])

q xð Þ ¼ 5

16

v0 xð Þ
v xð Þ

� �2

� 1

4

v00 xð Þ
v xð Þ : (8)

Now let us denote.

γ0 x, λð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

4v xð Þ4
p � exp �

ð

x

0

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

0

@

1

A, γ
∞

x, λð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

4v xð Þ4
p � exp

ð

x

0

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

0

@

1

A

: (9)

It is easy to see that γ0 x, λð Þ ! 0, γ
∞

x, λð Þ ! ∞ as x ! ∞. These solutions
constitute a fundamental system of solutions of the scalar differential equation

�z00 þ v xð Þ þ q xð Þð Þz ¼ 0, (10)

in such a way that for all x∈ 0,∞½ Þ one has.

W γ0, γ∞ð Þ≔ γ0 x, λð Þ � γ0
∞

x, λð Þ � γ00 x, λð Þ � γ
∞

x, λð Þ ¼ 1: (11)

Theorem 2.1 Under conditions (3), (4), (5) Eq. (1) has a unique decreasing at
infinity operator solution Φ x, λð Þ∈B Hð Þ, satisfying the conditions

lim
x!∞

Φ x, λð Þ
γ0 x, λð Þ ¼ I and lim

x!∞
Φ

0 x, λð Þ
γ00 x, λð Þ ¼ I: (12)

Also, there exists increasing at infinity operator solution Ψ x, λð Þ∈B Hð Þ satisfying the
conditions
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lim
x!∞

Ψ x, λð Þ
γ
∞

x, λð Þ ¼ I and lim
x!∞

Ψ
0 x, λð Þ

γ0
∞

x, λð Þ ¼ I: (13)

Proof

a. Eq. (7) equivalently to integral equation

Φ x, λð Þ ¼ γ0 x, λð ÞI þ
ð

∞

x

K x, t, λð Þ �Φ t, λð Þdt, (14)

where

K x, t, λð Þ ¼ C x, t, λð Þ � λþ q tð Þð ÞI �U tð Þ½ �, (15)

C x, t, λð Þ ¼ γ
∞

x, λð Þ � γ0 t, λð Þ � γ
∞

t, λð Þ � γ0 x, λð Þ, (16)

with C x, t, λð Þ being the Cauchy function that in each variable satisfies Eq. (10)
and the initial conditions C x, t, λð Þ x¼tj ¼ 0, C0

x x, t, λð Þ x¼t ¼ 1,j C0
t x, t, λð Þ x¼t ¼ �1j .

Set χ x, λð Þ ¼ Φ x, λð Þ
γ0 x, λð Þ to rewrite Eq. (14) in form

χ x, λð Þ ¼ I þ
ð

∞

x

R x, t, λð Þχ t, λð Þdt, (17)

where R x, t, λð Þ ¼ K x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ. Thus

C x, tð Þ � γ0 t, λð Þ
γ0 x, λð Þ

�

�

�

�

�

�

�

�

¼ γ20 t, γð Þ � γ∞ x, λð Þ
γ0 x, λð Þ � γ0 t, λð Þ � γ

∞
t, λð Þ

�

�

�

�

�

�

�

�

¼

¼ 1

2
ffiffiffiffiffiffiffiffi

v tð Þ
p � exp �2

ð

t

0

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

0

@

1

A � exp 2

ð

x

0

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

0

@

1

A� 1

2
ffiffiffiffiffiffiffiffi

v tð Þ
p

�

�

�

�

�

�

�

�

�

�

�

�

¼

¼ 1

2
ffiffiffiffiffiffiffiffi

v tð Þ
p � exp �2

ð

t

x

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

0

@

1

A� 1

�

�

�

�

�

�

�

�

�

�

�

�

(18)

and since with x≤ t one has exp �2
Ð

t

x

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

� �

≤ 1, we deduce that

C x, tð Þ � γ0 t, λð Þ
γ0 x, λð Þ

�

�

�

�

�

�

�

�

≤
1
ffiffiffiffiffiffiffiffi

v tð Þ
p : (19)

Hence.

R x, t, λð Þj j ¼ C x, tð Þ � γ0 t, λð Þ
γ0 x, γð Þ � λþ q tð Þð ÞI �U tð Þ½ �

�

�

�

�

�

�

�

�

≤
1
ffiffiffiffiffiffiffiffi

v tð Þ
p λj j þ q tð Þj j þ U tð Þj jð Þ:

(20)

By virtue of (3)–(5), (8),

1
ffiffiffiffiffiffiffiffi

v tð Þ
p λj j þ q tð Þj j þ U tð Þj jð Þ∈L 0,∞ð Þ, (21)
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and therefore integral equation has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const.
By (17), one has that lim x!∞χ x, λð Þ ¼ I, where the first part of formula (12) follows
from.

Differentiable (14) to get Φ
0 x, λð Þ
γ00 xð Þ ¼ I þ

Ð

∞

x S x, t, λð Þχ t, λð Þdt, where S x, t, λð Þ ¼
K0

x x, t, λð Þ γ0 t, λð Þ
γ00 x, λð Þ ¼ C0

x x, tð Þ � γ0 t, λð Þ
γ00 x, λð Þ � λþ q tð Þð ÞI �U tð Þ½ �. We have similarly (18), that

C0
x x, tð Þ � γ0 t, λð Þ

γ00 x, λð Þ

�

�

�

�

�

�≤ 1
ffiffiffiffiffiffi

v tð Þ
p , and therefore S x, t, λð Þj j≤ 1

ffiffiffiffiffiffi

v tð Þ
p � λj j þ q tð Þj jþ½

U tð Þj j�∈L 0,∞ð Þ, where the second part of formula (12) follows from.

b. Denote by Ψ̂ x, λð Þ∈B Hð Þ block-triangular operator solution of Eq. (1) that

increases at infinity, Ψkk x, λð Þ∈B Hk,Hkð Þ, k ¼ 1, r -its diagonal blocks. Now
Eq. (7) is equivalent to the integral equation

Ψ̂ x, λð Þ ¼ γ
∞

x, λð Þ � I �
ð

x

0

K x, t, λð Þ � Ψ̂ t, λð Þdt, (22)

where, just as in (14), the kernel K x, t, λð Þ is given by (15). Now set χ x, λð Þ ¼
Ψ̂ x, λð Þ
γ
∞

x, λð Þ to rewrite Eq. (22) in form

χ x, λð Þ ¼ I �
ð

x

0

R x, t, λð Þ � χ t, λð Þdt, (23)

where R x, t, λð Þ ¼ C x, t, λð Þ � γ
∞

t, λð Þ
γ
∞

x, λð Þ � q tð Þ þ λð Þ � I � U tð Þ½ �. Similarly we can prove

that the integral Eq. (23) has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const. Pass in

(23) to a limit as x ! ∞ to get lim x!∞χ x, λð Þ ¼ I þ ~C λð Þ where ~C λð Þ is block-
triangular operator in H, that is

lim
x!∞

Ψ̂ x, λð Þ
γ
∞

x, λð Þ ¼ I þ ~C λð Þ: (24)

Now consider another block-triangular operator solution ~Ψ x, λð Þ that increases at
infinity diagonal blocks which are defined by.

~Ψkk x, λð Þ ¼ Φkk x, λð Þ
ð

x

a

Φ
�1
kk t, λð Þ Φ

∗
kk t, λð Þ

� ��1
dt, k ¼ 1, r, a≥0ð Þ, (25)

Φkk x, λð Þ are the diagonal blocks of operator solution Φ x, λð Þ as in Section a).
In view (16) and the definition of the functions γ0 xð Þ, γ

∞
xð Þ can be proved that

lim
x!∞

~Ψkk x, λð Þ
γ
∞

x, λð Þ ¼ Ik, k ¼ 1, r: (26)

Since Ψ̂ x, λð Þ and ~Ψ x, λð Þ are the operator solutions of Eq. (1) that increase at
infinity,

Ψ̂ x, λð Þ ¼ ~Ψ x, λð Þ þΦ x, λð Þ � C0 λð Þ, (27)
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where C0 λð Þ is some block-triangular operator. Thus lim
x!∞

Ψ̂ x, λð Þ
γ
∞

xð Þ ¼ lim
x!∞

~Ψ x, λð Þ
γ
∞

xð Þ ,

hence, by virtue (26), lim
x!∞

Ψkk x, λð Þ
γ
∞

xð Þ ¼ Ik, k ¼ 1, r and in (24) has

~C λð Þ ¼

0 C12 λð Þ … C1r λð Þ
0 0 … C2r λð Þ
… … … …

0 0 … 0

0

B

B

B

@

1

C

C

C

A

: (28)

The solution Ψ x, λð Þ given by Ψ x, λð Þ ¼ Ψ̂ x, λð Þ I þ ~C λð Þ
� ��1

is subject to first

from condition (13). Use (12) to differentiate (27), then find the asymptotes of
~
Ψ

0 x, λð Þ as x ! ∞ similarly to (21) to obtain the second part of formula (13).
Theorem is proved. □

In this section, the fundamental system of solution is constructed for an operator
differential equation with a rapidly increasing at infinity potential.

2.2 Asymptotic of the fundamental system solutions of equation with
block-triangular potential

Now consider the case when v xð Þ ¼ x2α, 0< α≤ 1 and coefficients of Eq. (1)
satisfy the condition (6). Rewrite Eq. (1) in the form

�y00 þ x2α � λþ q x, λð Þ
� �

y ¼ q x, λð Þ � I �U xð Þð Þy, (29)

where q x, λð Þ determined by a formula

q x, λð Þ ¼ 5α2

4

x2α�1

x2α � λ

� �2

� α 2α� 1ð Þx2α�2

2 x2α � λð Þ : (30)

Denote

γ0 x, λð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 x2α � λð Þ4
p � exp �

ð

x

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2α � λ
p

du

0

@

1

A, (31)

γ
∞

x, λð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 x2α � λð Þ4
p � exp

ð

x

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2α � λ
p

du

0

@

1

A

: (32)

There solutions constitute a fundamental system of solutions of the scalar dif-
ferential equation �z00 þ x2α � λþ q x, λð Þð Þz ¼ 0, in such a way that for all x∈ 0,∞½ Þ
one has W γ0, γ∞ð Þ≔ γ0 x, λð Þ � γ0

∞
x, λð Þ � γ00 x, λð Þ � γ

∞
x, λð Þ ¼ 1.

We are about to establish the asymptotics1 of γ0 x, λð Þ as x ! ∞:

γ0 x, λð Þ ¼ 2xαð Þ�1
2 � 1� λ

x2α

� ��1
4

� exp �
ð

x

a

uα 1� λ

u2α

� �1
2

du

0

@

1

A

: (33)

1 For α ¼ 1 and α ¼ 1
2, i.e., for v xð Þ ¼ x2 and v xð Þ ¼ x, the asymptotics of the functions γ0 x, λð Þ and

γ
∞

x, λð Þ is known.
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After expanding here the integral, we obtain the exponential as follows

exp �
ð

x

a

uα � 1� 1

2
� λ

u2α
�
X

∞

k¼2

1 � 3 � … � 2k� 3ð Þ
k! � 2k

� λ

u2α

� �k
 !

du

0

@

1

A

: (34)

In case αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1, this expression after integration acquires the

form:

c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
X

n�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�  exp 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� ln xþ o 1ð Þ
� �

¼

¼ c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
X

n�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�

� x
1�3�… � 2n�3ð Þ

n! � λ
2ð Þn � 1þ o 1ð Þð Þ: (35)

The asymptotics of γ0 x, λð Þ as x ! ∞ is as follows:

γ0 x; λð Þ ¼ c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
X

n�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�x
1�3�… � 2n�3ð Þ

n! � λ
2ð Þn�α

2 � 1þ o 1ð Þð Þ:
(36)

In particular, for α ¼ 1 n ¼ 1ð Þ, γ0 x, λð Þ has the following asymptotics at infinity:

γ0 x, λð Þ ¼ c � xλ�1
2 � exp � x2

2

� �

1þ o 1ð Þð Þ: (37)

In case αþ1
2α ∉ N we set n ¼ αþ1

2α

� 	

þ 1, with β½ � being the integral part of β, to

obtain the following asymptotics for γ0 x, λð Þ at infinity:

γ0 x, λð Þ ¼ c � x�α
2 exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
X

n�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�

� exp � 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� x
�α

α

� �

� 1þ o x�αð Þð Þ

(38)

In particular, with α ¼ 1
2 n ¼ 2ð Þ one has

γ0 x, λð Þ ¼ cx�
1
4 � exp � 2

3
x

3
2 þ λx

1
2 � λ

2

� �2

x�
1
2

 !

� 1þ o x�
1
2


 �
 �

: (39)

A similar procedure allows to establish the asymptotics of γ
∞

xð Þ as x ! ∞: If
αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1, then

7

Spectral Properties of a Non-Self-Adjoint Differential Operator with Block-Triangular…
DOI: http://dx.doi.org/10.5772/intechopen.95820



γ
∞

x, λð Þ ¼ c � exp x1þα

1þ α
� λ

2
� x

1�α

1� α
�
X

n�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�

� x�
1�3�… � 2n�3ð Þ

n! � λ
2ð Þnþα

2ð Þ � 1þ o 1ð Þð Þ:
(40)

With α ¼ 1 n ¼ 1ð Þ, this becomes

γ
∞

x, λð Þ ¼ c � x�λþ1
2 � exp x2

2

� �

1þ o 1ð Þð Þ: (41)

In case αþ1
2α ∉ N, we set n ¼ αþ1

2α

� 	

þ 1 to get the asymptotics.

γ
∞

x, λð Þ ¼ c � x�α
2 exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
X

n�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�

� exp 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� x
�α

α

� �

� 1þ o x�αð Þð Þ:

(42)

In case α ¼ 1
2 n ¼ 2ð Þ, one has

γ
∞

x, λð Þ ¼ cx�
1
4 � exp 2

3
x

3
2 � λx

1
2 þ λ

2

� �2

x�
1
2

 !

� 1þ o x�
1
2


 �
 �

: (43)

Theorem 2.2 Under 0< α≤ 1 and condition (6), the statement of Theorem 2.1 is also
valid for Eq. (1).

Proof is similar to Theorem 2.1. Moreover, note that

C x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ

�

�

�

�

�

�

�

�

¼ γ20 t, λð Þ � γ∞ x, λð Þ
γ0 x, λð Þ � γ0 t, λð Þ � γ

∞
t, λð Þ

�

�

�

�

�

�

�

�

¼

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2α � λ
p � exp �2

ð

t

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2α � λ
p

du

0

@

1

A � exp 2

ð

x

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2α � λ
p

du

0

@

1

A� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2α � λ
p

�

�

�

�

�

�

�

�

�

�

�

�

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2α � λ
p � exp �2

ð

t

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2α � λ
p

du� 1

0

@

1

A

�

�

�

�

�

�

�

�

�

�

�

�

:

(44)

As x≤ t, one has exp �2
Ð

t

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2α � λ
p

du

� �

≤ 1, and that is why

C x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ

�

�

�

�

�

�

�

�

≤
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2α � λ
p : (45)

Hence

R x, t, λð Þj j ¼ C x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ � q t, λð Þ � I �U tð Þ½ �

�

�

�

�

�

�

�

�

≤
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2α � λ
p q t, λð Þj j þ U tð Þj jð Þ: (46)

By virtue of (6) and (30), 1
ffiffiffiffiffiffiffiffi

t2α�λ
p q t, λð Þj j þ U tð Þj jð Þ∈L a,∞ð Þ and therefore inte-

gral equation has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const. By (17), one has that
lim x!∞χ x, λð Þ ¼ I, where the first part of formula (12) follows from.
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The remaining statements of Theorem 2.1 are proved similarly. □
From Theorem 2.2 and the asymptotic formulas (37), (39), (41), (43) follows.
Corollary 2.1 If α ¼ 1, i.e. v xð Þ ¼ x2, then, under condition (6), the solutions

Φ x, λð Þ and Ψ x, λð Þ have common (known) asymptotics, as in the quality γ0 x, λð Þ and
γ
∞

x, λð Þ you can take the following functions.

γ0 x, λð Þ ¼ x
λ�1
2 � exp � x2

2

� �

, ::γ
∞

x, λð Þ ¼ x�
λþ1
2 � exp x2

2

� �

: (47)

If α ¼ 1
2, i.e. the coefficient v xð Þ ¼ x, and the condition (6) holds, then.

γ0 x, λð Þ ¼ x�
1
4 � exp � 2

3
x

3
2 þ λx

1
2

� �

, γ
∞

x, λð Þ ¼ x�
1
4 � exp 2

3
x

3
2 � λx

1
2

� �

: (48)

Remark 2.1 It is known that scalar equation

�φ00 þ x2 � φ ¼ λφ (49)

for λ ¼ 2nþ 1 has the solution φn xð Þ ¼ Hn xð Þ � exp � x2

2


 �

, where Hn xð Þ is the
Chebyshev – Hermitre polynomial, that at x ! ∞ has next asymptotics Hn xð Þ ¼
2xð Þn 1þ o 1ð Þð Þ. Hence the solution φn xð Þ of the Eq. (49) at x ! ∞ will have the

following asymptotics at infinity: φn xð Þ ¼ 2xð Þn � exp � x2

2


 �

� 1þ o 1ð Þð Þ.
In the case of U xð Þ ¼ 0, v xð Þ ¼ x2 in (2), the Eq. (1) is splitting into infinity

system scalar equations of the form (49). The operator solution Φ x, λð Þ will be
diagonal in this case. Denote by φ x, λð Þ the diagonal elements of the operator Φ x, λð Þ.
Then, by Corollary 2.1, the solution φ x, λð Þ will have the following asymptotics at

infinity: φ x, λð Þ ¼ xð Þλ�1
2 � exp � x2

2


 �

1þ o 1ð Þð Þ. In particular, for λ ¼ 2nþ 1, this

yields the solution proportional to φn xð Þ.
In this section, the asymptotics of the fundamental system of solutions for the

Sturm-Liouville equation with block-triangular operator potential, increasing at
infinity is established. One of the solutions is found decreasing at infinity, the other
one increasing.

3. Green’s function for an operator differential equation with
block – triangular coefficients

Let us suppose that at the x ¼ 0 given boundary conditions

cosA � y0 0ð Þ � sinA � y 0ð Þ ¼ 0, (50)

where A- the block-triangular operator of the same structure as the coefficients

of the differential equation, Akk,  k ¼ 1, r- bounded self-adjoint operators in Hk,
which satisfy the conditions

� π

2
Ik < <Akk ≤

π

2
Ik: (51)

Together with the problem (1), (50) we consider the separated system

lk yk
� 	

¼ �yk
00 þ v xð ÞIk þUkk xð Þð Þyk ¼ λyk, k ¼ 1, r (52)
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with the boundary conditions

cosAkk � yk0 0ð Þ � sinAkk � yk 0ð Þ ¼ 0, k ¼ 1, r: (53)

Let L0 denote the minimal differential operator generated by differential expres-

sion l y½ � (1) and the boundary condition (50), and let Lk
0, k ¼ 1, r denote the minimal

differential operator on L2 Hk, 0,∞ð Þð Þ generated by differential expression lk yk
� 	

and
the boundary conditions (53). Taking into account the conditions on coefficients, as
well as sufficient smallness of perturbations Ukk xð Þ and conditions (51), we conclude
that, for every symmetric operator Lk

0, there is a case of limit point at infinity. Hence
their self-adjoint extensions Lk are the closures of operators Lk

0 respectively. The
operators Lk are semi-bounded below, and their spectra are discrete.

Let L denote the operator extensions L0, by requiring that L2 H, 0,∞ð Þð Þ be the
domain of operator L.

The following theorem is proved in [4].
Theorem 3.1 Suppose that, for Eq. (1) conditions (3)-(5) are satisfied for α> 1 or

condition (6) for 0< α≤ 1. Then the discrete spectrum of the operator L is real and

coincides with the union of spectra of the self-adjoint operators Lk, k ¼ 1, r , i.e.,
σd Lð Þ ¼ ∪r

k¼1σ Lkð Þ.
Comment 3.1 Note that this theorem contains a statement of the discrete spec-

trum of the non-self-adjoint operator L only and no allegations of its continuous and
residual spectrum.

Along with the Eq. (1) we consider the equation

l1 y½ � ¼ �y00 þ V ∗ xð Þy ¼ λy (54)

(V ∗ xð Þ is adjoint to the operator V xð Þ). If the space H is finite-dimensional, then
the Eq. (54) can be rewritten as

~l ~y½ � ¼ �~y00 þ ~yV xð Þ ¼ λ~y, (55)

where ~y ¼ ~y1 ~y2 …~yr
� �

and the equation is called the left.
For operator -functions Y x, λð Þ,Z x, λð Þ∈B Hð Þ let

W Z ∗ ,Yf g ¼ Z ∗ 0 x, λ
� �

Y x, λð Þ � Z ∗ x, λ
� �

Y 0 x, λð Þ: (56)

If Y x, λð Þ - operator solution of the Eq. (1), and Z x, λð Þ - operator solution of
Eq. (54), the Wronskian does not depend on x.

Now we denote Y x, λð Þ and Y1 x, λð Þ the solutions of the Eqs. (1) and (54),
respectively, satisfying the initial conditions

Y 0, λð Þ ¼ cosA,Y 0 0, λð Þ ¼ sinA,Y1 0, λð Þ ¼ cosAð Þ ∗ ,Y1
0 0, λð Þ ¼ sinAð Þ ∗ , λ∈:

(57)

Because the operator function Y ∗
1 x, λ
� �

satisfies equation

�Y ∗
1
00 x, λ
� �

þ Y ∗
1 x, λ
� �

� V xð Þ ¼ λY ∗
1 x, λ
� �

, (58)

the operator function ~Y x, λð Þ≕Y ∗
1 x, λ
� �

is a solution to the left of the equation

�~Y
00
x, λð Þ þ ~Y x, λð Þ � V xð Þ ¼ λ~Y x, λð Þ (59)

and satisfies the initial conditions ~Y 0, λð Þ ¼ cosA,  ~Y
0
0, λð Þ ¼ sinA,  λ∈.
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Operator solutions of Eq. (54) decreasing and increasing at infinity will be
denoted byΦ1 x, λð Þ, Ψ1 x, λð Þ, and the corresponding solutions of the Eq. (59) denote

by ~Φ x, λð Þ and ~Ψ x, λð Þ. For the system operator solutions Y x, λð Þ, ~Φ x, λð Þ∈B Hð Þ of
the Eqs. (1) and (59), respectively, will take the form of Wronskian W ~Φ,Y

� 

¼
~Φ
0
x, λð ÞY x, λð Þ � ~Φ x, λð ÞY 0 x, λð Þ and do not depend on x.
Let us designate

G x, t, λð Þ ¼
Y x, λð Þ W ~Φ,Y

� � ��1
~Φ t, λð Þ 0≤ x≤ t

�Φ x, λð Þ W ~Y,Φ
� � ��1

~Y t, λð Þ x≥ t

8

<

:

: (60)

In the following theorem it is proved that the operator function G x, t, λð Þ
possesses all the classical properties of the Green’s function.

Theorem 3.2 The operator function G x, t, λð Þ is the Green’s function of the
differential operator L, i.e.:

1.The function G x, t, λð Þ is continuous for all values x, t∈ 0,∞½ Þ;

2.For any fixed t, the function G x, t, λð Þ has a continuous derivative with respect to x
on each of the intervals 0, t½ Þ and t,∞ð Þ, and at x ¼ t it has the jump

Gx
0 xþ 0, x, λð Þ � Gx

0 x� 0, x, λð Þ ¼ �I: (61)

3.For a fixed t, the function G x, t, λð Þ of the variable x is an operator solution of
Eq. (1) on each of the intervals 0, t½ Þ, t,∞ð Þ, and it satisfies the boundary condition
(50), and at a fixed x function G x, t, λð Þ of the variable t is an operator solution of
the Eq. (59) on each of the intervals 0, x½ Þ, x,∞ð Þ, and it satisfies the boundary
condition ~y0 0ð Þ � cosA� ~y 0ð Þ � sinA ¼ 0:

Proof The function G x, t, λð Þ is continuous with respect to x at each of the
intervals 0, t½ Þ and t,∞ð Þ. Similarly to the variable t. To prove the continuity of the
function G x, t, λð Þ for all x, t≥0, it is sufficient that the identity shown as

Y x, λð Þ W ~Φ,Y
� � ��1

~Φ x, λð Þ þΦ x, λð Þ W ~Y,Φ
� � ��1

~Y x, λð Þ � 0: (62)

is satisfied for all x≥0: This identity shown as

Y x, λð Þ ~Φ x, λð ÞY 0 x, λð Þ � ~Φ
0
x, λð ÞY x, λð Þ


 ��1
~Φ x, λð Þ�

�Φ x, λð Þ ~Y
0
x, λð ÞΦ x, λð Þ � ~Y x, λð ÞΦ0 x, λð Þ


 ��1
~Y x, λð Þ � 0 (63)

or

Y 0 x, λð ÞY�1 x, λð Þ � ~Φ
�1

x, λð Þ~Φ0
x, λð Þ


 ��1
� ~Y

�1
x, λð Þ~Y 0

x, λð Þ �Φ
0 x, λð ÞΦ�1 x, λð Þ


 ��1
,

Y 0 x, λð ÞY�1 x, λð Þ � ~Φ
�1

x, λð Þ~Φ0
x, λð Þ � ~Y

�1
x, λð Þ~Y 0

x, λð Þ �Φ
0 x, λð ÞΦ�1 x, λð Þ,

(64)

which is equivalent to

Y 0 x, λð ÞY�1 x, λð Þ � ~Y
�1

x, λð Þ~Y 0
x, λð Þ � ~Φ

�1
x, λð Þ~Φ0

x, λð Þ �Φ
0 x, λð ÞΦ�1 x, λð Þ (65)
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or to.

~Y
�1

x, λð Þ ~Y x, λð ÞY 0 x, λð Þ � ~Y
0
x, λð ÞY x, λð Þ


 �

Y�1 x, λð Þ �

� �~Φ
�1

x, λð Þ ~Φ x, λð ÞΦ0 x, λð Þ � ~Φ
0
x, λð ÞΦ�1 x, λð Þ


 �

Φ
�1 x, λð Þ: (66)

This follows from the fact that W ~Y,Y
� 

¼ W ~Φ,Φ
� 

¼ 0.
To make sure that the jump in the first derivative at t ¼ x is equal to �Ið Þ, i.e.,

that the equality (61) holds, it is sufficient to prove the identity

Y 0 x, λð Þ W ~Φ,Y
� � ��1

~Φ x, λð Þ þΦ
0 x, λð Þ W ~Y,Φ

� � ��1
~Y x, λð Þ � I: (67)

Now we consider the function

C x, t, λð Þ ¼ Y x, λð Þ W ~Φ,Y
� � ��1

~Φ t, λð Þ þΦ x, λð Þ W ~Y,Φ
� � ��1

~Y t, λð Þ, (68)

which is an analogue of the Cauchy function. This function is the solution of
Eq. (1) of the variable x, and it is the solution of Eq. (59) of the variable t. By (62),
we have C x, x, λð Þ � 0. But in this case Cxx

00jt¼x ¼ V xð Þ � λIð ÞCjt¼x � 0, and,

therefore, Cx
0 x, t, λð Þjt¼x � Ω1 λð Þ, i.e.,

Y 0 x, λð Þ W ~Φ,Y
� � ��1

~Φ x, λð Þ þΦ
0 x, λð Þ W ~Y,Φ

� � ��1
~Y x, λð Þ � Ω1 λð Þ: (69)

It shows that Ω1 λð Þ ¼ I, we obtain (61).
Since operator solutions Φ x, λð Þ and Ψ x, λð Þ form a fundamental system of

solutions of Eq. (1), the operator solution Y x, λð Þ of Eq. (1) satisfying the initial
conditions (57), can be written as Y x, λð Þ ¼ Φ x, λð ÞA λð Þ þΨ x, λð ÞB λð Þ, where

A λð Þ ¼ �W ~Ψ,Y
� 

,B λð Þ ¼ W ~Φ,Y
� 

,

Y x, λð Þ ¼ Ψ x, λð ÞW ~Φ,Y
� 

�Φ x, λð ÞW ~Ψ,Y
� 

: (70)

Similarly, operator solution ~Y x, λð Þ of Eq. (59) can be represented in the form

~Y x, λð Þ ¼ ~W ~Φ,Y
� 

~Ψ x, λð Þ � ~W ~Ψ,Y
� 

~Φ x, λð Þ, (71)

where

~W ~Φ,Y
� 

¼ sinA �Φ 0, λð Þ � cosA �Φ0 0, λð Þ ¼ �Ω 0, λð Þ ¼ �W ~Y,Φ
� 

: (72)

Similarly we get ~W ~Ψ,Y
� 

¼ �W ~Y,Ψ
� 

. Thus,

~Y x, λð Þ ¼ W ~Y,Ψ
� 

~Φ x, λð Þ �W ~Y,Φ
� 

~Ψ x, λð Þ: (73)

Substituting (70) and (73) into the formula (69), using the fact that the equality
(69) is performed on x identically, we obtain

Ω1 λð Þ ¼ lim
x!∞ Ψ

0 x, λð Þ~Φ x, λð Þ �Φ
0 x, λð Þ~Ψ x, λð Þ

� 	

: (74)

By Theorem 2.1, on the asymptotic behavior of functions Φ x, λð Þ and Ψ x, λð Þ at
infinity, we have

12

Recent Developments in the Solution of Nonlinear Differential Equations



Ω1 λð Þ ¼ lim
x!∞ γ0 x, λð Þγ

∞

0 x, λð Þ � γ0
0 x, λð Þγ

∞
x, λð Þ½ � � I ¼ W γ0, γ∞f g � I ¼ I: (75)

This completes the proof of the formula (61), and with it the theorem 3.1. □
Corollary. By the definition (60), function G x, t, λð Þ is meromorphic of the

parameter λ with the poles coincide with the eigenvalues of the operator L.
We constructed Green’s function for the non-self-adjoint differential operator.

4. Resolvent for an non-self-adjoint operator differential equation with
block – triangular coefficients

We consider the operator Rλ defined in L2 H, 0,∞ð Þð Þ by the relation

Rλf

 �

xð Þ ¼
ð

∞

0

G x, t, λð Þf tð Þdt ¼ (76)

¼ �
ð

x

0

Φ x, λð Þ W ~Y,Φ
� � ��1

~Y t, λð Þf tð Þdtþ
ð

∞

x

Y x, λð Þ W ~Φ,Y
� � ��1

~Φ t, λð Þf tð Þdt:

Theorem 4.1 The operator Rλ is the resolvent of the operatorL.

Proof One can directly verify that, for any function f xð Þ∈L2 H, 0,∞ð Þð Þ, the
vector-function y x, λð Þ ¼ Rλf


 �

xð Þ is a solution of the equation l y½ � � λy ¼ f when-

ever λ ∉ σ Lð Þ. We will prove that y x, λð Þ∈L2 H, 0,∞ð Þð Þ.
Since operator solutions Φ x, λð Þ and Ψ x, λð Þ form a fundamental system of

solutions of Eq. (1), the operator solution Y x, λð Þ of Eq. (1) satisfying the initial
conditions (57), can be written as Y x, λð Þ ¼ Φ x, λð ÞA λð Þ þΨ x, λð ÞB λð Þ, where

A λð Þ ¼ W ~Ψ,Y
� 

,B λð Þ ¼ �W ~Φ,Y
� 

,

Y x, λð Þ ¼ Φ x, λð ÞW ~Ψ,Y
� 

� Ψ x, λð ÞW ~Φ,Y
� 

: (77)

Similarly, the operator solution ~Y x, λð Þ of Eq. (59) can be represented in the
following form

~Y x, λð Þ ¼ W ~Y,Φ
� 

~Ψ x, λð Þ �W ~Y,Ψ
� 

~Φ x, λð Þ: (78)

By using formulas (77) and (78), we can rewrite the relation (76) as follows:

Rλfð Þ xð Þ ¼ �
ð

a

0

Φ x, λð Þ W ~Y,Φ
� � ��1

~Y t, λð Þf tð Þdtþ χ1 x, λð Þ � χ2 x, λð Þ þ χ3 x, λð Þ � χ4 x, λð Þ,

(79)

where a>0 and

χ1 x, λð Þ ¼ Φ x, λð Þ W ~Y,Φ
� � ��1

W ~Y,Ψ
� 

ð

x

a

~Φ t, λð Þf tð Þdt, (80)

χ2 x, λð Þ ¼ Φ x, λð Þ
ð

x

a

~Ψ t, λð Þf tð Þdt , (81)
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χ3 x, λð Þ ¼ Φ x, λð ÞW ~Ψ,Y
� 

W ~Φ,Y
� � ��1

ð

∞

x

~Φ t, λð Þf tð Þdt, (82)

χ4 x, λð Þ ¼ Ψ x, λð Þ
ð

∞

x

~Φ t, λð Þf tð Þdt: (83)

Let us show that each of these vector-functions χ1 x, λð Þ, χ2 x, λð Þ, χ3 x, λð Þ, χ4 x, λð Þ
belongs to L2 H, 0,∞ð Þð Þ. Since the operator solution Φ x, λð Þ decays fairly quickly as
x ! ∞, then Φ x, λð Þj j∈L2 0,∞ð Þ. It follows that

χ1 x, λð Þj j≤ c λð Þ � Φ x, λð Þj j �
ð

x

a

~Φ t, λð Þ
�

�

�

� � f tð Þ
�

�

�

�dt≤

≤ c λð Þ � Φ x, λð Þj j �
ð

x

a

~Φ t, λð Þ
�

�

�

�dt

0

@

1

A

1
2

�
ð

x

a

f tð Þ
�

�

�

�dt

0

@

1

A

1
2

<

< c λð Þ � Φ x, λð Þj j �
ð

∞

a

~Φ t, λð Þ
�

�

�

�dt

0

@

1

A

1
2

�
ð

∞

a

f tð Þ
�

�

�

�dt

0

@

1

A

1
2

≤ c1 λð Þ � Φ x, λð Þj j, (84)

and therefore χ1 x, λð Þ∈L2 H, 0,∞ð Þð Þ. Similarly we get that
χ3 x, λð Þ∈L2 H, 0,∞ð Þð Þ. First we prove the assertion for the function χ2 x, λð Þ, when
α> 1 and the coefficients of the Eq. (1) satisfy the conditions (3)-(5). In this case,

we have χ2 x, λð Þj j≤ Φ x, λð Þj j
Ð x
a

~Ψ t, λð Þ
�

�

�

� f tð Þ
�

�

�

�dt.

By virtue of the asymptotic formulas for the operator solutions Φ x, λð Þ and
Ψ x, λð Þ we obtain that

χ2 x, λð Þj j≤ c1 λð Þγ0 x, λð Þ
ð

x

a

γ
∞

t, λð Þ f tð Þ
�

�

�

�dt: (85)

Let us rewrite this relation in the following form

χ2 x, λð Þj j≤ c1 λð Þγ0 x, λð Þγ
∞

x, λð Þ
ð

x

a

γ
∞

t, λð Þ
γ
∞

x, λð Þ f tð Þ
�

�

�

�dt: (86)

By using the definition of the functions γ0 x, λð Þ and γ
∞

x, λð Þ (see (9)) and by
applying the Cauchy-Bunyakovskii inequality we obtain

χ2 x, λð Þj j≤ 1

2
c1 λð Þ 1

ffiffiffiffiffiffiffiffiffi

v xð Þ
p

ð

x

a

ffiffiffiffiffiffiffiffiffi

v xð Þ
v tð Þ

s

exp �2

ð

x

t

ffiffiffiffiffiffiffiffiffi

v uð Þ
p

du

0

@

1

Adt

0

@

1

A

1
2
ð

∞

0

f tð Þ
�

�

�

�

2
dt

0

@

1

A

1
2

:

(87)

Since t≤ x, we get exp �2
Ð

x

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v uð Þdu
p

� �

≤ 1, and then the latter estimate for

χ2 x, λð Þ can be rewritten as follows
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χ2 x, λð Þj j≤ c2 λð Þ 1
ffiffiffiffiffiffiffiffiffi

v xð Þ4
p

ð

x

a

1
ffiffiffiffiffiffiffiffi

v tð Þ
p dt

0

@

1

A

1
2

≤ c2 λð Þ 1
ffiffiffiffiffiffiffiffiffi

v xð Þ4
p

ð

∞

a

1
ffiffiffiffiffiffiffiffi

v tð Þ
p dt

0

@

1

A

1
2

: (88)

By formula (3), we get χ2 x, λð Þj j≤ c3 λð Þ
ffiffiffiffiffiffi

v xð Þ4
p , and hence, if α> 1 and the coefficients

of the Eq. (1) satisfy the conditions (3)-(5), we have χ2 x, λð Þ∈L2 H, 0,∞ð Þð Þ. In the
case of v xð Þ ¼ x2α, 0< α≤ 1, the assertion can be proved similarly.

For the function χ4 x, λð Þ we will conduct the proof for the case when v xð Þ ¼
x2α, 0< α≤ 1 and the coefficients of the Eq. (1) satisfy the condition (6). As in (85)

we have χ4 x, λð Þj j≤ c1 λð Þγ
∞

x, λð Þ
Ð

∞

x γ0 t, λð Þ f tð Þ
�

�

�

�dt, which can be rewritten as fol-

lows χ4 x, λð Þj j≤ c1 λð Þγ0 x, λð Þγ
∞

x, λð Þ
Ð

∞

x
γ0 t, λð Þ
γ0 x, λð Þ f tð Þ

�

�

�

�dt.

Let us use the asymptotics of the functions γ0 x, λð Þ and γ
∞

x, λð Þ, for example, in

the case αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1 (see (36) and (40)). Setting a α, λð Þ ¼ 1�3�… � 2n�3ð Þ
n! �

λ
2

� �n
, we obtain

χ4 x, λð Þj j≤ c2 λð Þx�α

ð

∞

x

γ0 t, λð Þ
γ0 x, λð Þ f tð Þ

�

�

�

�dt≤ c2 λð Þx�α

ð

x

a

γ0 t, λð Þ
γ0 x, λð Þ

� �2

dt

0

@

1

A

1
2
ð

∞

0

f tð Þ
�

�

�

�

2
dt

0

@

1

A

1
2

,

(89)

χ4 x, λð Þj j≤ c3 λð Þx�α

ð

∞

x

t

x


 �2a α,λð Þ�α

exp
�2xαþ1 t

x

� �αþ1 � 1

 �

1þ α
dt

0

@

1

A

1
2

: (90)

Replacing variables t ¼ xu, we get

χ4 x, λð Þj j≤ c3 λð Þx�αþ1
2

ð

∞

1

u2a α,λð Þ�α exp
�2xαþ1 uαþ1 � 1ð Þ

1þ α
du

0

@

1

A

1
2

: (91)

Since the inequality exp
�xαþ1 uαþ1�1ð Þ

1þα
≤ x�2 holds for all α∈ 0, 1ð � and u∈ 1,∞½ Þ

with sufficiently large u∈ 1,∞½ Þ, we have

χ4 x, λð Þj j≤ c3 λð Þx�α�1
2

ð

∞

1

u2a α,λð Þ�α exp
�xαþ1 uαþ1 � 1ð Þ

1þ α
du

0

@

1

A

1
2

: (92)

Hence it follows that χ4 x, λð Þj j≤ c4 α, λð Þx�α�1
2, therefore χ4 x, λð Þ∈L2 H, 0,∞ð Þð Þ:

In case, where 0< α≤ 1 and αþ1
2α ∉ N and where α> 1, the proof is similar.

Thus, Rλf ∈L2 H, 0,∞ð Þð Þ for any function f ∈L2 H, 0,∞ð Þð Þ. □
Since the resolvent Rλ is a meromorphic function of λ, the poles of which

coincide with the eigenvalues of the operator L, the statement of Theorem 3.1 can
be refined.

Theorem 4.2 If the conditions (3)-(5)) whereα> 1 or condition (6) where 0< α≤ 1
are satisfied for the Eq. (1), then the spectrum of the operator L is real, discrete and

coincides with the union of spectra of self-adjoint operators Lk, k ¼ 1,m, i.e.
σ Lð Þ ¼ ∪r

k¼1σ Lkð Þ.
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In this section, a resolvent for a non-self-adjoint differential operator with a
block-triangular operator potential, increasing at infinity, is constructed. Sufficient
conditions under which the spectrum is real and discrete are obtained.

5. Spectral singularities of differential operator with triangular matrix
coefficients

Remark 5.1 If the perturbation U xð Þ in Eq. (1) does not satisfy conditions (3)-(5) or
condition (6), then the statement of Theorem 4.2 ceases to be true, which is shown by the
following example.

Example 5.1 Consider the equation:

l y½ � ¼ �y00 þ x2 q xð Þ
0 π2x2

� �

y ¼ λy, 0≤ x<∞, y ¼
y1
y2

� �

(93)

with the boundary condition

y 0ð Þ ¼ 0: (94)

Together with the problem (93), (94), consider the separated system

l1 y1
� 	

¼ �y1
00 þ x2y1 ¼ λy1, (95)

l2 y2
� 	

¼ �y002 þ π2x2y2 ¼ λy2 (96)

with the boundary conditions.

y1 0ð Þ ¼ 0, y2 0ð Þ ¼ 0: (97)

As above, denote by L0 the differential operator generated by the differential
expression l y½ � (93) and the boundary condition (94), and by L1,L2 denote the
minimal symmetric operators on L2 0;∞ð Þ, generated by the differential expressions

l1 y1
� 	

, l2 y2
� 	

and the boundary conditions (97). Their self-adjoint extensions ~L1, ~L2

are the closures of the operators L1,L2, respectively. The operators ~L1, ~L2 are semi-

bounded; let us denote their spectra by σ1 ¼ σ ~L1

� �

, σ2 ¼ σ ~L2

� �

.

The Eq. (95) (cf. (49)) has the solution y1,n xð Þ ¼ Hn xð Þ � exp � x2

2


 �

for λ ¼
2nþ 1. Since H2nþ1 0ð Þ ¼ 0, the eigenvalues of the operator ~L1 are λn ¼ 4nþ 3. The
sets σ1 and σ2 do not intersect.

Denote by L the extension of the operator L0 generated by the requirement on
the functions from the domain of the operator L to belong to L2 H2, 0;∞ð Þð Þ, and by
σ Lð Þ its spectrum.

Denote by Y x, λð Þ ¼
y11 x, λð Þ y12 x, λð Þ

0 y22 x, λð Þ

� �

the matrix solution of the Eq. (93),

satisfying the initial conditions Y 0, λð Þ ¼ 0,Y 0 0, λð Þ ¼ I.

If some λ0 ∈ σ ~L1

� �

, and y x, λ0ð Þ- is the corresponding eigenfunction of the

operator ~L1, then the vector function y x, λ0ð Þ ¼
y x, λ0ð Þ

0

� �

is the eigenfunction of

the operator L, corresponding to the eigenvalue λ0, i.e. λ0 ∈ σ Lð Þ. Moreover,

λ0 ∈ σ ~L2

� �

is the eigenvalue of the operator L if and only if the solution y12 x, λ0ð Þ of
the equation
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�y12
00 þ x2y12 þ q xð Þy22 ¼ λ0y12, (98)

satisfying the initial conditions y12 0, λð Þ ¼ y12
0 0, λð Þ ¼ 0, belongs to L2 0;∞ð Þ. Let

u x, λð Þ, v x, λð Þ be the solutions of the Eq. (95), satisfying the initial conditions
u 0, λð Þ ¼ 0, u0 0, λð Þ ¼ 1, v 0, λð Þ ¼ �1, v0 0, λð Þ ¼ 0, and let C x, t, λð Þ ¼
u x, λð Þv t, λð Þ � v x, λð Þu t, λð Þ- be the Cauchy function of the Eq. (95). Then the
solution y12 x, λ0ð Þ is given by

y12 x, λ0ð Þ ¼
ð

x

0

q tð Þ � C x, t, λ0ð Þ � y22 t, λ0ð Þdt: (99)

Choose the coefficient q xð Þ ¼ y22 x, λ0ð Þexμ, where μ> 2 (for instance, μ ¼ 4), and

show that the integral
Ð

∞

0

y212 x, λ0ð Þdx diverges and, consequently, λ0 ∉ σ Lð Þ. Indeed,

since the solution y22 x, λ0ð Þ has finitely many zeros, we conclude that, for any
x≥N1 >0,

y22 x, λ0ð Þ≥ c1e
�αx2 , α>0, (100)

and the Cauchy function decays no faster than e� x�tð Þ2 . Hence, if x� tj j>N2,
we have

C x, t, λ0ð Þ≥ c2e
� x�tð Þ2

: (101)

In the case of x
4 ≤ t≤ x

2 and x≥ max 4N1, 2N2ð Þ, the inequalities (100) and (101)

are fulfilled simultaneously, therefore, y12 x, λ0ð Þ> c3
Ð x

2
x
4
et

4 � e�2α t2 � e� x�tð Þ2 dt. Since

e� x�tð Þ2 ≥ e�
x2

4 for t≤ x
2, we get y12 x, λ0ð Þ> c3e

�x2

4

Ð x
2
x
4
et

4 � e�2α t2 dt. If x is sufficiently large

and t∈ x
4 ,

x
2

� 	

, we have et
4�2α t2

> e
1
2 t

4
≥ e

x4

32 , hence for x ! ∞y12 x, λ0ð Þ> c3
x
4 e

�x2

4þx4

32 !
∞. It follows that y12 x, λ0ð Þ ∉ L2 0;∞ð Þ and λ0 ∉ σ Lð Þ.

There arises the question on the nature of such values λ.
Consider the equation with a triangular matrix potential:

l y½ � ¼ �y00 þ
p xð Þ q xð Þ
0 r xð Þ

� �

y ¼ λy, 0≤ x<∞, y ¼
y1
y2

� �

, (102)

where p xð Þ, q xð Þ, r xð Þ are scalar functions, p xð Þ, r xð Þ are real functions and
p xð Þ, r xð Þ ! ∞ monotonically as x ! ∞.

Let the boundary condition is given at x ¼ 0:

cosA � y0 0ð Þ � sinA � y 0ð Þ ¼ 0, (103)

where A is a triangular matrix, cosA ¼
cos α11 cos α12

0 cos α22

� �

.

Consider the separated system

l1 y1
� 	

¼ �y1
00 þ p xð Þy1 ¼ λy1, (104)

l2 y2
� 	

¼ �y002 þ r xð Þy2 ¼ λy2: (105)
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with the boundary conditions

cos α11y
0
1 0ð Þ � sin α11y1 0ð Þ ¼ 0, (106)

cos α22y
0
2 0ð Þ � sin α22y2 0ð Þ ¼ 0: (107)

Let L0 be the differential operator generated by the differential expression l y½ �
(103) and the boundary condition (104), and let L1,L2 be minimal symmetric
operators on L2 0,∞ð Þ generated by the differential expressions l1 y1

� 	

, l2 y2
� 	

and the

boundary conditions (106), (108) respectively. Denote by ~L1, ~L2 the self-adjoint

extensions of the operators L1,L2 respectively. The operators ~L1, ~L2 are semi-
bounded; let us denote their spectra by σ1 and σ2 respectively. Denote by L the
extension of the operator L0 and by σ Lð Þ its spectrum.

Let u x, λð Þ, v x, λð Þ be the solutions of the Eq. (104) with the boundary conditions
u 0, λð Þ ¼ 0, u0 0, λð Þ ¼ 1, v 0, λð Þ ¼ �1, v0 0, λð Þ ¼ 0: The general solution of the
Eq. (104) has the form φ x, λð Þ ¼ u x, λð Þ þ lv x, λð Þ up to a constant. Choose an l such

that the condition φ b, λð Þ ¼ 0 holds true. This equality is valid for l ¼ l b, λð Þ ¼
� u b, λð Þ

v b, λð Þ (the solution v x, λð Þ has finitely many zeros for a fixed λ, hence v b, λð Þ 6¼ 0

whenever b is sufficiently large). Put φ bð Þ
11 x, λð Þ ¼ u x, λð Þ þ l b, λð Þv x, λð Þ. Since for

the operator L1 there is the case of a limit point, then, as is known, l b, λð Þ has a
unique limit m λð Þ as b ! ∞, and the solution of the Eq. (104) satisfies φ11 x, λð Þ ¼
u x, λð Þ þm λð Þv x, λð Þ∈L2 0,∞ð Þ. Similarly we obtain that the solution of the
Eq. (105) satisfies φ22 x, λð Þ∈L2 0,∞ð Þ.

Denote by Φb x, λð Þ ¼ φ
bð Þ
11 x, λð Þ φ

bð Þ
12 x, λð Þ

0 φ
bð Þ
22 x, λð Þ

 !

the matrix solution of the

Eq. (103) satisfying the initial conditions Φb b, λð Þ ¼ 0, Φb
0 b, λð Þ ¼ I . We have

φ
bð Þ
11 x, λð Þ ! φ11 x, λð Þ∈L2 0,∞ð Þ; φ bð Þ

22 x, λð Þ ! φ22 x, λð Þ∈L2 0,∞ð Þ as b ! ∞.

The solution φ
bð Þ
12 x, λð Þ is given by φ

bð Þ
12 x, λð Þ ¼

Ð

x

0

q tð Þ � C x, t, λð Þ � φ bð Þ
22 t, λð Þdt, where

C x, t, λð Þ ¼ u x, λð Þv t, λð Þ � v x, λð Þu t, λð Þ is the Cauchy function of the Eq. (104).

Further, we have φ
bð Þ
12 x, λð Þ !

Ð

x

0

q tð Þ � C x, t, λð Þ � φ22 t, λð Þdt≔φ12 x, λð Þ as b ! ∞.

Put Φ x, λð Þ ¼
φ11 x, λð Þ φ12 x, λð Þ

0 φ22 x, λð Þ

� �

.

Together with the Eq. (102), we consider the left equation.

~l ~y½ � ¼ �~y00 þ ~yV xð Þ ¼ λ~y, ~y ¼ y1 y2
� �

: (108)

The matrix solutions of the Eq. (108) will be denoted by ~Φb x, λð Þ and ~Φ x, λð Þ.
Denote by Y x, λð Þ and ~Y x, λð Þ the solutions of the Eqs. (102) and (108) respec-

tively satisfying the initial conditions

Y 0, λð Þ ¼ cosA,Y 0 0, λð Þ ¼ sinA, ~Y 0, λð Þ ¼ cosA, ~Y
0
0, λð Þ ¼ sinA, λ∈:

(109)

Put

Gb x, t, λð Þ ¼
Y x, λð Þ W ~Φb,Y

� �� ��1
~Φb t, λð Þ 0≤ x≤ t

�Φb x, λð Þ W ~Y,Φb

� �� ��1
~Y t, λð Þ t≤ x≤ b

8

<

:

: (110)
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The function Gb x, t, λð Þ is the Green function of the operator L0
b generated by the

problem (102), (103), y bð Þ ¼ 0, which spectrum coincides with the union of spectra

of the operators L0
b,1,L

0
b,2 generated by the problems (104), (106), y1 bð Þ ¼ 0 and

(105), (107), y2 bð Þ ¼ 0 respectively. Eigenvalues of the operators L0
b,1 and L0

b,2 tend

to ones of the operators ~L1 and ~L2 respectively as b ! ∞, Φb x, λð Þ ! Φ x, λð Þ,
~Φb x, λð Þ ! ~Φ x, λð Þ, and

W ~Y,Φb

� �

¼ cosA �Φb
0 0, λð Þ � sinA �Φb 0, λð Þ ! cosA �Φ0 0, λð Þ � sinA �Φ 0, λð Þ ¼

¼ W ~Y,Φ
� �

,W ~Φb,Y
� �

! W ~Φ,Y
� �

,

(111)

Gb x, t, λð Þ ! G x, t, λð Þ ¼
Y x, λð Þ W ~Φ,Y

� �� ��1
~Φ t, λð Þ 0≤ x≤ t

�Φ x, λð Þ W ~Y,Φ
� �� ��1

~Y t, λð Þ t≤ x

8

<

:

: (112)

Poles of the Green function G x, t, λð Þ of the operator L coincide with the zero set
of the determinant Δ λð Þ≔detΩ λð Þ, where.

Ω λð Þ ¼ W ~Y,Φ
� ��

�

x¼0
¼ cosA �Φ0 0, λð Þ � sinA �Φ 0, λð Þ: (113)

Since the matrices cosA, sinA,Φ 0, λð Þ,Φ0 0, λð Þ are triangle, we have

/Δ λð Þ ¼ Δ1 λð Þ � Δ2 λð Þ, where Δk λð Þ ¼ cos αkk � φ0
kk 0, λð Þ � sin αkk � φkk 0, λð Þ, k ¼ 1, 2.

On the other hand, zeros of the function Δk λð Þ are eigenvalues of the self-adjoint
operator ~Lk. Hence the poles of the Green function G x, t, λð Þ of the operator L are
situated on the real axis, and their set coincides with the union of spectra of the

operators ~L1 and ~L2.
Consider the operator Rλ,b defined on L2 H2, 0; bð Þð Þ by.

Rλ,bf

 �

xð Þ ¼
ð

b

0

Gb x, t, λð Þf tð Þdt ¼ �
ð

x

0

Φb x, λð Þ W ~Y,Φb

� �� ��1
~Y t, λð Þf tð Þdtþ

þ
ð

b

x

Y x, λð Þ W ~Φb,Y
� �� ��1

~Φ t, λð Þf tð Þdt: (114)

One can directly verify that the operator Rλ,b is the resolvent of the operator L
0
b .

Let f xð Þ be an arbitrary vector function square integrable on 0,∞½ Þ. Choose a
sequence of finite continuous vector functions f n xð Þ

n o

n ¼ 1, 2, …ð Þ converging in

mean square to f xð Þ. Substituting f n for f in (114) and letting first b ! ∞ and then
n ! ∞, we obtain the following formula for the resolvent Rλ of the operator L:

Rλf

 �

xð Þ ¼
Ð

∞

0 G x, t, λð Þf tð Þdt, where the Green function of the operator L is defined

by the formula (112).
Theorem 5.1 The operator Rλ is the resolvent of the operator L. The resolvent’s poles

coincide with the union of the spectra of the self-adjoint operators ~L1 and ~L2.

Remark 5.2 As in Example 5.1, if λ0 ∈ σ ~L2

� �

and φ12 x, λ0ð Þ ∉ L2 0,∞ð Þ, then λ0 is

the pole of the resolvent Rλ of the operator L but it is not the eigenvalue of this operator,
i.e., λ0 is the point of the spectral singularity of the operator L.
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Theorem 5.1 implies that, if the rate of the coefficient’s growth q xð Þ of the
Eq. (102) is subordinated to one of p xð Þ and r xð Þ, then the operator L has no spectral
singularities, and its spectrum is real and coincides with the union of the spectra of

the operators ~L1 and ~L2.
For a non-self-adjoint Sturm-Liouville operator with a triangular matrix poten-

tial growing at infinity, an example of operator having spectral singularities is
constructed. A special role of these points was found first by M.A. Naimark in [16].
The notion “spectral singularity” was introduced later due to J. Schwartz [17] (see
also Supplement I in the monograph [3]).

6. Conclusion

We consider the Sturm-Liouville equation with block-triangular, increasing at
infinity operator potential. For him, built a fundamental system of solutions, one of
which is decreasing at infinity, and the second is growing. The asymptotics of these
solutions at infinity is defined. For non-self-adjoint operator generated by such
differential expression obtained the Green’s function. A resolvent of such an
operator is constructed. Sufficient conditions at which a spectrum of such
non-self-adjoint differential operator is real and discrete are obtained.
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