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Chapter

Pretargeted Theranostics
Markus Staudt, Matthias M. Herth  

and Christian B.M. Poulie

Abstract

Personalized medicine is becoming an integral part of our healthcare system, 
in which theranostics play a fundamental role. Nanomedicines such as monoclonal 
antibodies are a commonly used targeting vector in such approaches due to their 
outstanding targeting abilities as well as their capabilities to function as drug 
delivery vehicles. However, the application of nanomedicines in a clinical setting is 
connected with several challenges. For example, nanomedicines typically possess 
slow pharmacokinetics in respect to target accumulation and excretion. For targeted 
radionuclide therapy, this results in high radiation burden to healthy tissue. For 
drug delivery systems, long circulation and excretion times of the nanomedicine 
complicate site-specific release approaches and limit as such the usability of these 
strategies. One way to circumvent these challenges is the use of pretargeting strate-
gies, which allow to separate the accumulation and excretion of nanomedicines 
from the actual diagnostic or therapeutic application. As such, pretargeting allows 
to use theranostic concepts utilizing the same nanomedicine and determine the 
 success chances with diagnostic measures before initiating therapy. This chapter 
will explain the concept of pretargeted theranostics, which pretargeting systems 
have thus far been developed and compare how these systems performed.

Keywords: radionuclide therapy, PET, SPECT, MRI, radiopharmaceuticals,  
bispecific antibodies, oligonucleotides, tetrazine/TCO ligation, pretargeting

1. Introduction

Theranostics is a portmanteau of the words therapeutics and diagnostics and is 
referring to a system were the modus operandi of both therapeutic and diagnostic 
aspects are combined. In this personalized medicine approach, patients are in the 
first phase non-invasively imaged to identify potential responders to a certain 
therapy (Figure 1) [1]. The ideal theranostic system comprises of a diagnostic 
and therapeutic agent, which are chemically nearly identical. In reality, the term 
theranostics is used in a much broader context, i.e. systems that can be used for 
both diagnostic and therapeutic approaches are also defined as theranostics, even if 
they differ in their chemical nature [2]. In this chapter, we will discuss theranostics 
applications mainly in the field of nuclear medicine.

Nanomedicines, especially monoclonal antibodies (mAbs), are finding an 
ever widespread use in theranostic radionuclide or drug delivery approaches [3]. 
Unfortunately, nanomedicines typically possess slow target accumulation and 
excretion times resulting in unwanted and often unacceptably high radiation 
doses to healthy tissue or limited control in drug release combined with increased 
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systemic toxicity [4]. Pretargeted approaches have the potential to address this 
challenge by separating the target accumulation process from the diagnostic or 
therapeutic step.

In pretargeting, a tagged nanomedicine is first administered and allowed to accu-
mulate at its target and excrete from non-targeted tissues over the course of several 
hours to days. In a second step, a pretargeting agent is administered that bioorthogo-
nally reacts with the tag of the nanomedicine, but is excreted fast from systemic 
circulation. As such, high and rapid accumulation at the target site can be reached 
while exposure of the diagnostic or therapeutic component to non-targeted tissues 
is minimized [5, 6]. Pretargeting is optimally suited for theranostic applications 
since the pretargeted vector – the nanomedicine – can initially be used for diagnostic 
purposes and only after having identified the feasibility of the approach, a therapeu-
tic step is initiated (Figure 2). Especially in nuclear medicine, such strategy could 
be highly useful as within the diagnostic phase not only possible responders can be 
identified, but also the maximum tolerated radiation dose estimated and conse-
quently, on an individual level, best therapeutic efficacy reached (Figure 1) [7].

Figure 1. 
Personalized medicine. In the diagnostic phase, individuals from the patient cohort that are responding, 
measured as target accumulation of the nanomedicine, are separated from the non-responders. The responders 
can move on to the therapeutic phase, whereas for non-responders an alternative treatment form should be 
applied.

Figure 2. 
Simplified schematic overview of a typical pretargeted theranostic strategy.
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2. Pretargeted theranostics

2.1 Diagnostic imaging modalities

2.1.1  Positron emission tomography (PET) and single photon emission computed 
tomography (SPECT)

PET or SPECT are routinely used in the clinic for diagnosis or monitoring of 
treatment response. Their high sensitivity (the level of detection approaches tracer 
concentrations of 10−12 M) combined with isotopic detection make their clinical 
applications unmatched [8]. Furthermore, PET can easily be applied for quantita-
tive measurements and as such used to determine e.g. the amount of pretargeting 
vectors delivered to a specific target. This makes PET especially suited for personal-
ized medicine [9]. One drawback of PET and SPECT is their limited spatial resolu-
tion, which lies within the millimeter range [10].

PET and SPECT are dependent on radionuclides that are attached to a specific 
ligand that is able to target e.g. a specific receptor, enzyme or protein [11]. The 
choice for the appropriate radionuclide depends on the context and system these 
diagnostic tools will be used in. For example, if diagnostic radionuclides will be 
attached to a nanomedicine, longer lived radionuclides are needed, as the biological 
half-life of the nanomedicines (accumulation or excretion) has to be matched with 
the physical decay half-life of the radionuclide. Typically, only after several days, 
nanomedicines display sufficient signal-to-background ratios for imaging purposes 
[4]. In case of pretargeting, radionuclides with a shorter decay half-life can be used 
as the good pharmacokinetic profile of small molecules results in fast accumulation 
and excretion [12]. This allows to use PET radionuclides such as fluorine-18, which 
is the most frequently used radionuclide within the clinic - due to its unique decay 
properties [13]. Table 1 lists several radionuclides that can be used in PET or SPECT 
imaging.

2.1.2 Fluorescence

While fluorophores are less harmful to tissue in comparison to the use of radio-
nuclides, offer higher temporal and spatial resolution - up to tens of nanometers, 
fluorophores are majorly disadvantaged by their severely lower tissue penetration 
of only a few millimeters. This limitation prohibits their use for imaging of deeper 
lying tissues [14]. Nevertheless, due to their ease of use, fluorescence-based imag-
ing probes are at least within preclinical development a commonly used imaging 
modality. A list of routinely used fluorophores and their absorption and emission 
maximum can be found in Table 2.

2.1.3 Magnetic resonance imaging (MRI)

MRI is an imaging technique that does not rely on ionizing radiation and there-
fore has a significantly lower sensitivity (approximately 10−4 M) compared to PET 
or SPECT. However, it results in better spatial resolution [15]. In the context of pre-
targeted theranostics, a contrasting agent is often added to the pretargeting vector - 
in order to enhance visibility of the target. The most commonly used contrast agent 
is gadolinium(III) (Gd3+), in various chelated forms and works by shortening the 
T1 (spin–lattice) relaxation time [16]. Another T1 signal enhancer is manganese(II) 
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(Mn2+) [17]. Several T2 (spin–spin) signal enhancers exists, but are less commonly 
used options. One of these are magnetic nanoparticles (MNP), such as iron oxide or 
iron/platinum alloys, or alternatively barium(II) (Ba2+) salts. Especially in a ther-
anostic context, decorated MNPs are of great interest as they can simultaneously be 
used as passive targeting vectors - due to the enhanced permeability and retention 
(EPR) effect [18].

2.2 Therapy approaches

2.2.1 Radionuclide therapy

Targeted radionuclide therapy approaches have the potential to treat micrometas-
tases and residual tumor tissue remaining after surgical resection – both of which play 
a major role in the mortality of cancer patients. Currently, only very few radionuclide 
therapies have found application in clinical practice [19]. This is likely to change in the 
coming decade, as radionuclide therapy may be more effective than standard thera-
peutic strategies, e.g. external radiation therapy or state-of-the-art chemotherapy. 
Two types of radiation can be used in radionuclide-based therapies, namely α- and 

Fluorophore Absorption maximum [nm] Emission maximum [nm]

Fluorescein 495 517

AlexaFluor 488 494 519

Cyanine 5 647 665

Cyanine 5.5 672 692

Cyanine 7 753 775

Methylene Blue 665 684

CF-680 681 698

IRDye-800CW 774 789

Indocyanine Green 776 792

Dylight 800 777 794

Table 2. 
Absorption and emission maxima of commonly used fluorophores in PBS.

SPECT PET

Isotope T1/2 (h) γ (keV) Isotope T1/2 (h) β+ (%)

99mTc 6.01 140 11C 0.33 99.8

111In 67.3 171 and 245 18F 1.83 96.7

123I 13.3 159 64Cu 12.7 17.5

68Ga 1.13 89.1

86Y 14.7 33.0

89Zr 78.4 22.7

124I 100.2 22.8

Their corresponding half-lives (T1/2) are noted in hours (h). For SPECT radionuclides, the energy of the gamma (γ) 
photon is noted in keV, for PET radionuclides, their corresponding percent (%) of positron (β+) decay is noted.

Table 1. 
Nuclear properties of common SPECT and PET radionuclides.
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β−-radiation. In general, α-emitting radionuclides are far more effective due to the 
significantly higher linear energy transfer (LET) (approx. 100 keV/μm), compared 
to the much lower LET of β−-emitting radionuclides (approx. 0.2 keV/mm) [4]. 
However, α-emitters might even be too toxic for many applications.

Just like for the diagnostic case, the choice of radionuclide is highly dependent 
on the context and system, these radionuclides are used in. With the exception of 
iodine-131 and astatine-211, all other commonly used radionuclide are radiometals 
and need to be chelated. As such, these radiopharmaceuticals are typically very 
polar (Table 3). Another factor to be considered is the limited availability of certain 
radionuclides, such as astatine-211, bismuth-213, lead-212 or actinium-225 [20]. 
Additionally, lead-212 and actinium-225 have several radioactive daughter nuclides 
which contribute to radiotoxicity throughout the body when released from the 
chelator and distributed throughout the body. Due to the high energy released after 
the first decay event, typically daughter nuclides are released from the chelator and 
not bound to the chelator any longer [21].

2.2.2 Chemotherapy

Chemotherapy involves the use of highly cytotoxic compounds which are 
supposed to kill cancer cells more efficiently than healthy cells. In the context of 
pretargeted approaches, these compounds work in exactly the same manner as 
in standard chemotherapy approaches, with the crucial difference that they are 
delivered from the nanomedicine to the target side and then (selectively) released 
e.g. using click-to-release strategies [22, 23]. A locally increased concentration of 
the chemotherapeutic is as such achievable, whereas the systemic concentration and 
its subsequent toxicity is reduced [24]. A few examples of cytotoxic compounds that 
have been used in conjunction with pretargeted theranostics are paclitaxel, mertan-
sine or doxorubicin [25–27]. However, in theory any cytotoxic drug could be used.

2.3 Pretargeting strategies and their applications as potential Theranostics

2.3.1 Biotin/streptavidin binding

Pretargeting approaches based on the strong, non-covalent interaction between 
biotin and streptavidin, with a Kd in the order of approximately 10−14 M were 

Isotope T1/2 (h) Decay Photon energy (keV) %

67Cu 61.8 β− 185 49

90Y 64.6 β− 1700 0.01

131I 192.5 β− 364 81

177Lu 159.5 β− 208 11

188Re 17.0 β− 155 15

211At 7.2 α 79 21.3

213Bi 0.8 α 440 26

212Pb 10.6 β− and α a a

225Ac 238.1 β− and α a a

Their corresponding half-lives (T1/2) are noted in hours, the energy of the photon is noted in keV.
a. Multiple photons, at different energies, are emitted, due to multiple daughter radionuclides.

Table 3. 
Nuclear properties of common therapeutic radionuclides.
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among the earliest strategies to be successfully applied for pretargeted radioim-
muno-imaging and –therapy [4]. In fact, several clinical studies were initiated and 
are ongoing [28–30]. The strong binding affinity is leveraged by most commonly 
attaching the tetrameric streptavidin - capable of binding up to four biotins - to 
a mAb and after sufficient accumulation of this pretargeting vector, radiolabeled 
biotin is injected as the targeting agent. Despite these successes, reports of this 
strategy in a theranostic setting are limited. This might be due to the observed 
increased levels of human anti-streptavidin antibodies, potentially leading to 
allergic reactions upon subsequent applications [31, 32].

2.3.2 Bispecific antibodies

Bispecific antibodies (bsAb) are artificially constructed immunoconjugates, 
possessing both an antigen-binding fragment (Fab) - typically targeting an over-
expressed receptor on the target cell surface - and an anti-hapten Fab. This allows 
for targeting the cancer cell while also retaining high affinity to a hapten of choice, 
which can be used to bind imaging or therapeutic vectors after sufficient accumula-
tion time of the bsAb. Antibody fragments are typically derived from the immuno-
globulin G (IgG) antibody, which consists of two Fab sites and a constant fragment 
crystallizable (Fc) region. Digestion of IgG by pepsin yields the F(ab’)2 fragment, 
which can be further split into two Fab’ fragments by mild reduction. Digestion by 
papain on the other hand yields two Fab fragments. Removal of the two remaining 
constant domains and relinking them yields fusion proteins called single-chain 
variable fragment (scFv) (Figure 3) [33].

Aniline modified DOTA (DOTA-Bn, Figure 4) can act as an efficient chelator 
for a large variety of (radio)metals and also serve as the hapten. Haptens are small 
molecular entities that are used to engineer antibodies possessing high affinity to 
these small molecules, allowing for fragmentation into smaller hapten-binding 
scFv. In the case of DOTA-Bn, the scFv C825 is capable of binding DOTA-Bn 
chelated yttrium (Y3+) and lutetium (Lu3+) with picomolar affinity (~15 and 11 
pM respectively). This allowed for construction of a IgG-scFv bsAb huA33-C825 
(Figure 4) targeting GPA33-positive human colorectal cancer cell lines SW1222 
[34]. Utilizing this system, SW1222 xenograft bearing mice were subjected to three 
treatment cycles of pretargeted immunotherapy (PRIT) consisting of injection of 
bsAb injection, followed by injection of a dextran-hapten clearing agent 24 hours 
later and injection of [177Lu]Lu-DOTA-Bn after four more hours. SPECT/CT was 
utilized to follow the treatment, showing high specific tumor uptake (~7% ID/g) 
and only low uptake (10–15 fold lower) in the liver, the spleen and the kidneys. 
After three cycles of treatment with 55.5 MBq activity of [177Lu]Lu-DOTA-Bn (at 
days 7, 14 and 21 after tumor inoculation), 100% histologic cures in 9 of 9 treated 

Figure 3. 
IgG antibody and its fragments used in the construction of bispecific antibodies.
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animals were achieved. Therefore, this approach allows for a theranostic platform 
with a single radiopharmaceutical entity, allowing for SPECT imaging and provid-
ing tumor radiation estimate by changing the amount of radioactivity administered. 
However, using a therapeutic radionuclide for clinical diagnosis is not optimal since 
only low amounts can be administered, which often result in insufficient count rates 
for imaging purposes.

In a similar approach, the food and drug administration (FDA)-approved anti-
HER2 antibody trastuzumab, modified with scFv C825 (Figure 4), was utilized 
to target HER2-positive human breast cancer BT-474 xenograft bearing mice [35]. 
Although internalizing targets like HER2 are normally not suitable for PRIT, it was 
found that 24 hours post injection of the bsAb around 11% of the initially bound 
trastuzumab-C825 remained on the cell surface. Using a clearing agent 24 hours 
after injection of the bsAb, followed by 5.6 MBq of [177Lu]Lu-DOTA-Bn allowed for 
biodistribution-based dosimetry, showing ~7% ID/g uptake in the tumor with high 
tumor to blood and kidney ratios (T/B: ~27, T/K: ~10). Given this, the estimated 
maximum tolerated activity was calculated to be 180 MBq, with blood being the 
dose-limiting organ. In following therapeutic studies, a single-cycle treatment with 
55.5 MBq of [177Lu]Lu-DOTA-Bn was found to lead to 100% complete response (CR) 
in small tumors up to 30 mm3, but did not produce a high CR in medium sized tumors 
(100–400 mm3). The latter could be successfully treated through three cycle PRIT 
using 55.5 MBq of [177Lu]Lu-DOTA-Bn, showing 25% complete tumor disappearance 
and 75% regression to palpitation threshold. Once again, SPECT/CT was used to 
monitor treatment progression 24 hours p.i. of 55.5 MBq of [177Lu]Lu-DOTA-Bn.

In clinical practice, PET results in better spatial resolution than SPECT. In 
this regard, a PET tracer based hapten probe was developed [36]. Hapten [86Y]
Y-DOTA-Bn was synthesized and used to image a bsAb targeting GPA33-positive 
cancers [37]. The biodistribution data was in line with the one determined using 
[177Lu]Lu-DOTA-Bn. Consequently, hapten [86Y]Y-DOTA-Bn can be used as a 

Figure 4. 
A: Schematic representation of bsAb huA33–825 and trastuzumab-C825. B: Structure of DOTA-Bn  
chelating M3+.

Figure 5. 
A: Schematic representation of bsAb hu3F8–C825. B: Structure of proteus-DOTA (Pr) chelating  
non-radioactive 175Lu3+ and the radiometal of choice M3+.
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surrogate for the 177Lu-labeled derivative. Better diagnostic value and reduced 
radiation dose should be possible for clinical applications using [86Y]Y-DOTA-Bn.

While the hapten DOTA-Bn allows for straight forward incorporation of yttrium 
and lutetium, it comes with severe limitations to the modularity of the system as the 
affinity of the hapten towards scFv C825 varies depending on the chelated metal. 
This effect was observed in a study on the anti-DOTA antibody scFv –hu3F8-C825 
(Figure 5), which bound [177Lu]Lu-DOTA-Bn with picomolar affinity, whereas 
[225Ac]Ac-DOTA-Bn was found to have severely decreased binding [38]. This 
resulted in a decreased tumor accumulation. To circumvent this problem, a novel 
construct bearing two DOTA-moieties called proteus-DOTA (Pr, Figure 5) was 
synthesized. By chelating non-radioactive, isotopologic lutetium-175 in one of the 
DOTA moieties, the construct is able to bind with high affinity to previously uti-
lized scFv C825, while retaining the ability to chelate a radiometal of choice in the 
second DOTA chelator (Figure 5). Using this system, high tumor and relatively low 
normal tissue accumulation of both [111In]In-Pr and [225Ac]Ac-Pr was achieved. This 
approach was then successfully employed in a pretargeted therapeutic approach in 
treating three solid human cancer xenograft models of colorectal cancer (GPA33), 
breast cancer (HER2), and neuroblastoma (GD2) using the respective anti-tumor/
C825 bsAb, followed by injection of a dextran clearing agent after 24 h and four 
hours later the radiohapten [225Ac]Ac-Pr.

Another promising approach lies in changing the utilized hapten to the small 
peptidic sequence histamine-succinyl-glycine (HSG). In this respect, the bivalent 
hapten IMP288 modified with two HSG and DOTA and the trivalent bsAb TF2 were 
identified to be the most promising pair for clinical translation of this pretargeted 
system (Figure 6) [39]. The trivalent bsAb TF2 was build up through a dock-and-
lock approach, linking two anti-carcinoembryonic antigen (CEA) Fabs, binding to 
the cancers expressing CEA, and one anti-HSG Fab linked through two disulfide 
bounds (Figure 6). This approach allows to label IMP288 with a set of radiometals 
for both therapeutic and diagnostic purposes. Subsequent preclinical studies in 
mice bearing CEA-expressing colonic tumors showed very low uptake in normal 
tissues - apart from the kidneys (~2% ID/g) – and high tumor uptake using PET or 
SPECT imaging with [68Ga]Ga-IMP288 (~11% ID/G) or [111In]In-IMP288 (~26% 
ID/G) [40]. These imaging data was successfully used for dose estimations of 
[177Lu]Lu-IMP288 and [213Bi]Bi-IMP288 [41, 42].

Figure 6. 
A: Schematic representation of bsAb TF2. B: Structure of IMP288 chelating M3+.
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Given this promising data, the IMP288/TF2 system was translated into the clinic 
using [111In]In-IMP288 in the imaging cycle for predictive patient-specific dosimetry 
and [177Lu]Lu-IMP288 as the therapeutic agent. Herein, it was shown, that the 
treatment of metastatic colorectal cancer patients at activity doses ranging from 2.5 
to 7.4 GBq of [177Lu]Lu-IMP288 was safe, but only one of the four planned treatment 
cycles was carried out since all patients showed progression of the disease, 8 weeks 
after the first cycle [43]. Also immunogenic responses towards the humanized bsAb 
TF2 were observed in 11 out of 21 patients. Surprisingly, this immunogenic response 
was only observed to a very limited degree in one out of eight patients in another 
study using the same system on advanced lung cancer patients [44].

2.3.3 Oligonucleotides

A more recently employed pretargeting strategy relies on the strong interaction 
between complementary strands of oligonucleotides. Although unmodified desoxy-
ribonucleic acids (DNAs, Figure 7) and ribonucleic acids (RNAs, Figure 7) are not 
suitable for in vivo use due to their rapid degradation by nucleases, recent develop-
ments of peptide nucleic acids (PNAs, Figure 7) have shown promise in pretargeting. 
PNAs increase enzymatic stability by replacing the sugar-phosphate backbone of 
DNAs/RNAs by a pseudo-polypeptidic backbone consisting of a N-(2-aminoethyl)-
glycine units [45]. PNAs retain Watson-Crick base-pair binding to complementary 
PNA, DNA or RNA strands. The interaction between PNA/PNA is with greater 
specificity and binding affinity compared to the corresponding DNA/DNA ana-
logs. A fourth alternative to DNAs, which is stable to enzymatic degredation are 
phosphorodiamidate morpholino oligomer (morpholinos, Figure 7) [46]. Here, the 
sugar-phosphate moiety is replaced by a methylenemorpholine ring, linked through 
phosphordiamidate groups.

In a pretargeted study using the PNA-affibody conjugated with ZHER2:342-SR-HP1 
and a complementary PNA-based DOTA derivative (HP2), the biodistribution 
patterns of [68Ga]Ga-HP2 and the therapeutic PNA [177Lu]Lu-HP2 were evaluated 
in SKOV3 xenografts [47]. Overall, quite profound differences in biodistribution 
between [68Ga]Ga-HP2 (~6% ID/g tumor and ~ 9% kidney accumulation) and 
[177Lu]Lu-HP2 (~12% ID/g tumor and ~ 8% kidney accumulation) were found, 
making precise prediction of therapeutic uptake of the latter difficult [48]. This 
study exemplified that the choice of a theranostic pair, here gallium-68 and lute-
tium-177, can have an influence on the biodistribution of the labeled radiopharma-
ceutical. Different stability or altered dipole moments within the chelated structure 
are some of the possible reasons for this behavior.

2.3.4 Tetrazine/trans-cyclooctene (TCO) ligation

Another strategy for pretargeting involves the covalent bond forming liga-
tion between an 1,2,4,5-tetrazine and a TCO [49]. The reaction is initiated with 
an enthalpically driven strain release of the inverse electron demand Diels-Alder 

Figure 7. 
Structure of DNA, RNA, PNA and morpholino oligonucleotides.
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(IEDDA) cycloaddition. The cycloaddition is followed by an entropically driven 
retro Diels-Alder reaction, in which molecular nitrogen is expelled, making this 
reaction irreversible (Figure 8A) [50]. Variously substituted tetrazines and TCO 
analogues can be used for this ligation, all differing in their corresponding speed 
kinetics and in vivo stability. As a general trend, with increasing in vivo stability, a 
decrease in speed kinetics is observed and vice versa.

The most common approach for pretargeting using the tetrazine ligation is 
based on TCO-modifications of nanomedicines, which act as pretargeting vectors 
[51]. These vectors can first be imaged by a tetrazine probe and followed up with 
a treatment phase, using a therapeutic, tetrazine based probe. For example, the 
CEA targeting mAb 35A7 was decorated with approximately 3–4 TCO tags and four 
different [177Lu]-bispyridyl-tetrazine probes used to evaluate the effectiveness of 
the pretargeted approach. SPECT was used to determine the in vivo biodistribution 
of the various tracers and gain insights about maximum tolerated dose. The most 
promising probe was used in a treatment approach and a projected dose of 40 MBq 
was applied. This resulted in a significant slow-down of tumor progression, for 
up to 13 days, after which the tumors started to grow again, albeit much slower as 
compared to the control group [52].

In a similar approach, using a human colorectal carcinoma mouse model, a 
transmembrane glycoprotein (the A33 antigen) targeting mAb huA33 was deco-
rated with approximately 2–3 TCO tags. Two different tetrazine probes were admin-
istered [53]. 24 hours after administration of the huA33-TCO a [64Cu]-H-tetrazine 
probe was injected and used for diagnostic PET imaging. This was followed by an 
injection of a [177Lu]-H-tetrazine probe, after an additional 24 hours (48 hours post 
mAb injection). It was estimated that after the injection of the diagnostic tetrazine, 
roughly 64% of the TCOs on the mAb were available, for the therapeutic tetrazine 
probe. This study showed that the same targeting vector can be used for imaging 
and therapy purposes and as such for real theranostic approaches. The same group 
also evaluated a 67Cu-labeled H-tetrazine in the same setup for β—radiotherapy [54]. 
Within this study, the authors compared the therapeutic effect of pretargeted radio-
immunotherapy (PRIT) to conventional radioimmunotherapy (RIT). Even though 
RIT achieved a comparable survival rate, at lower injected dose, compared to PRIT, 
it is important to note that PRIT significantly reduced the individual organ dose 
rates, in comparison to RIT, i.e. the radiation dose to the blood for the PRIT strategy 

Figure 8. 
(A) Mechanism of the tetrazine/TCO ligation. (B) Chemical scaffold of a H-, a methyl- and a 
bispyridyl-tetrazine.
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was 5.9 cGy/MBq, compared to 71.3 cGy/MBq for the RIT strategy, highlighting the 
main advantage of PRIT over RIT. The authors argued that the PRIT strategy can be 
further optimized in regards of timing of the dosing regimen, in order to achieve 
optimal dose rates to the tumor.

In addition to small molecule tetrazine derivatives, also tetrazine functionalized 
nanocarriers, such as human serum albumin (ALB), can be used as pretargeting 
vectors. These structures can additionally be modified e.g. with chemotherapeutic 
agents or fluorophores. Such a strategy was used for trastuzumab, a human epi-
dermal growth factor receptor 2 positive (HER2+) targeting mAb. This mAb was 
decorated with six TCO moieties and two CF-680 near infrared (NIR) fluorophores 
[55]. After eight hours, a ALB nanocarrier was injected containing approximately 
2–3 paclitaxel molecules, 15 methyl-tetrazines and two DyLight 800 (DL-800) NIR 
fluorophores. Imaging studies revealed that the tumor uptake was twice as high in 
mice after two days in the pretargeted group compared to the control group. Also, 
treated animals only showed a relative increase of tumor volume of 3%, whereas the 
control group saw an increase of 14%. In another study, eight TCO’s were attached 
to 5D3, a prostate-specific membrane antigen (PSMA) targeting mAb, as well as 
eight TCO to its F(ab′)2 fragments [56]. Both moieties were additionally decorated 
with two AlexaFluor 488 (AF-488) fluorophores. ALB was used as the pretargeting 
agent and possessed 10 methyl-tetrazine handles, two rhodamine fluorophores and 
approximately 3–4 mertansine molecules, as a therapeutic component. Imaging 
studies revealed, that the F(ab′)2 fragments internalized faster compared to the 
whole mAb. Faster internalization is, however, disadvantageous since the internal-
ized targeting vector is not available for the ligation with ALB. This nanocarrier 
cannot cross the cell membrane. Consequently, less cytotoxic drug can reach its 
target. No in vivo evaluation of this approach was performed.

Recently, a new click-to-release strategy was described which results in local 
increased drug concentration and as such increased treatment efficacy. In such an 
approach, the TCO component acts as a bioorthogonally click partner as well as a 
drug releasing component. The initial click mechanism is also based on the IEDDA 
(Figure 8A). However, the formed 4,5-dihydropyridazine will partly tautomerize 
to 1,4-dihydropyridazine which can lead to a release - via a self-immolative cascade 
reaction - of the chemotherapeutic drug in allylic position (attached e.g. via a 
carbamate to the TCO) (Figure 9). Such a TCO is also called release TCO (rTCO). 
This click-to-release strategy has also been employed in a theranostic context. For 
example, in tumor bearing mice expressing the tumor-associated glycoprotein-72 
(TAG72), a CC49 diabody – targeting this glycoprotein and side-specifically 
conjugated to a rTCO decorated with monomethyl auristatin E (MMAE)) – was 
evaluated [57]. Mice were injected with the diabody 48 prior to injection of an 

Figure 9. 
Mechanism of the click-to-release reaction.
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111In-labeled releaser bisalkyl-tetrazine. This set-up allowed to image the release 
via SPECT. In a different setup, [111In]bispyridyl-tetrazine was used to determine 
the diabody tumor uptake, as bispyridyl-tetrazines have extremely poor release 
capabilities for the used rTCO. The gained information was then used to design a 
treatment study. Four cycles, over a period of two weeks, were used in this study 
and extended the median survival by 34–39 days. In a different study, a PEGylated 
hyper-branched polymeric (HBP) nanocarrier was developed bearing rTCOs bound 
to the drug doxorubicin [58]. In order to achieve a modular approach, HBP was 
bound to a bsAb, which could selectively interact with PEGs of the HBP with one 
binding site, whereas the other binding site simultaneously target with the epi-
dermal growth factor receptor (EGFR) or TAG72. A 64Cu-labeled H-tetrazine was 
used both as the releaser and as an imaging component. This theranostic approach 
was evaluated in mice bearing MCF7 and MDA-MB-468 tumors. Highest release of 
doxorubicin was found when the tetrazine was injected 24 hours post nanocarrier 
injection. Furthermore, better release was observed in non-internalizing targets 
compared to internalizing targets, as the polar tetrazine was not able to cross the cell 
membrane.

Lastly, dextran-coated iron oxide MNPs (~25 nm in size) were surface modified 
with methyl-tetrazines and the NIR fluorophore cyanine5.5 (Cy5.5) [59]. The MNP 
uptake was monitored by fluorescence, as well as by T2-weighted MRI. Targeting 
of these MNP was based on the EPR effect. Conceptually, selective drug release 
should be induced by a small molecule drug-TCO conjugate which should find the 
MNP-tetrazine modified targeting vector in vivo and upon reaction release the drug 
load. Unfortunately, the release was only in vitro, in MDA-MB-231 cells. As such, no 
real conclusion about the in vivo efficacy can be drawn as well as of the theranostic 
abilities of the system.

2.3.5 Strain-promoted azide-alkyne cycloaddition (SPAAC)

SPAAC has been applied in pretargeting. The reaction is based on a [3 + 2] 
cycloaddition between an azide and a strained alkyne (Figure 10). Opposed to the 
copper-catalyzed azide-alkyne cycloaddition (CuAAC), this reaction is metal free 
and instead entirely entropy driven. Various different constrained alkynes can be 
used for this biorthogonal reaction, i.e. difluorocyclooctynes (DIFO), bicyclononyne 
(BCN), dibenzocyclooctynes (DIBO), biarylazacyclooctynone (BARAC), among 
others. However, the most used alkyne is azadibenzylcyclooctyne (ADIBO/DIBAC), 
commonly referred to as DBCO. However, the feasibility of the SPAAC appears to be 
very limited due to its very slow reaction kinetics [60].

2.3.6 Miscellaneous

Besides the previously mentioned strategies, some lesser known and underex-
plored strategies exist. These are all based on high affinity interactions. One such 
set of interaction partners is based on the high affinity (~5 × 104 M−1) between 
β-cyclodextrin, as the host and an adamantine derivative as the guest molecule [61]. 

Figure 10. 
Mechanism of the strain-promoted azide-alkyne cycloaddition (SPAAC).
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This approach has been used in hepatic radioembolization where a macro ALB aggre-
gate (MAA) was decorated with approximately 108 adamantane derivatives and used 
as the pretargeting vector. Poly(isobutyl methacrylate) (PIMBA) functionalized with 
10 β-cyclodextrin handles was used as the pretargeting agent (Table 4) [62].

2.3.7 Comparison of the pretargeting strategies

3. Conclusion

The recently seen rapid increase in development of novel pretargeted conjuga-
tion strategies allowed for pretargeted PET imaging and α/β−-therapy resulting in 
lower off-target toxicity and overall radiation doses. Despite preclinical successes, 
the increased complexity of the pretargeting approach still hampers further 
clinical translation, resulting in only few pretargeted theranostics being clinically 
investigated. Since the required multicomponent approach comes with high entry 
barriers of current good manufacturing practice (cGMP) production, the pretarget-
ing approach must result in undoubtful benefits over more traditional imaging or 
treatment options. Although theranostics come with the large benefit of combining 
imaging and therapeutic agents, allowing for optimized treatment parameters, 
still more clinical trials need to be initiated and deliver prove of increased efficacy 
and decreased off-target toxicity to justify the inherently increased treatment 
challenges.
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- Reversible binding between hapten 

and bsAb

- Lower tumor uptake compared to 

other methods

PNA 105 High No + Stable to enzymatic degradation

+ Potentially allows for administering 
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clearing agents

- Challenging preparation

SPAAC 10−1–10−2 Low No + Easy access to pretargeting pairs

- Low reactivity requires high molar 

ratios between pretargeting pairs

TCO-Tz 
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103–6 Moderate No + Excellent speed kinetics

- Tetrazine synthesis challenging
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