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Chapter

Physiological Functions  
Mediated by Yuzu (Citrus junos) 
Seed-Derived Nutrients
Mayumi Minamisawa

Abstract

This section is focused on the physiological functions of yuzu (Citrus junos) 
to improve health. The modern lifestyle involves number of modern lifestyles 
involve various factors that may increase the production of active oxygen spe-
cies. Nutritional supplements and medicines are commonly utilized to maintain 
health. Yuzu seeds contain >100-fold the limonoid content of grapefruit seeds and 
are rich in polyamines (PAs), including putrescine, spermidine, and spermine. 
Limonoid components mediate the antioxidant properties of citrus. Limonoids and 
PAs convey various bioactivities. PAs are closely associated with maintaining the 
function of the intestinal mucosal barrier, which might be involved in the metabolic 
processes of indigenous intestinal bacteria and in the health of the host. After 
ingestion, food is digested and absorbed in the intestinal tract, which is also respon-
sible for immune responses against food antigens and intestinal bacteria. Detailed 
investigations of the physiological functions of extracted yuzu seed extracts may 
help to develop new treatment strategies against diseases associated with  
inflammatory responses.

Keywords: Yuzu (Citrus junos), limonoids, polyamine, gut microbiota,  
anti-inflammatory, short-chain fatty acid (SCFA), central neurodegenerative disease

1. Introduction

In 1997, the World Cancer Research Fund published 14 articles concerning 
dietary recommendations in addition to smoking cessation for the prevention of 
cancer in Food, Nutrition and the Prevention of Cancer: a Global Perspective (2007 
revised edition) to promote international awareness of the relationship between 
nutrition, diet, and cancer. Articles 1, 4, and 5 strongly recommend the consump-
tion of foods of plant origin, and especially emphasized the importance of fruits 
and vegetables for the prevention of many types of cancer [1].

There are more than 1000 species of citrus and various varieties account a major 
part of all fruit production worldwide. In particular, citrus species native to Asia 
are believed to have originated in the Assam area of India around 30–40 million 
years ago and were propagated in China, Thailand, Malaysia, Indonesia, and Taiwan 
before being brought to Japan [2]. The tachibana orange, which is the oldest variety 
of mandarin orange in Japan, was introduced in Japan from Taiwan via the Korean 
Peninsula from mainland China, and is listed in the Manyoshu, the oldest extant 



Citrus - Research, Development and Biotechnology

2

collection of classical Japanese poetry compiled sometime after 759 AD during 
the Nara period, as the only citrus fruit that existed in the wild. After that, it is 
estimated that the daidai, an Asian variety of bitter orange, and other small oranges 
arrived in Japan around 2 to 300AD. Yuzu (Citrus junos Sieb. ex Tanaka) originated 
in China and was introduced to Japan and other countries around the 4th to 8th cen-
turies, as this fruit is mentioned in the Shyoku-Nihongi, an imperially-commissioned 
Japanese history text completed in 797 AD.

The traditional Japanese meal washoku was recognized as a UNESCO Intangible 
Cultural Heritage of Humanity in 2013.The Japanese have the highest life expec-
tancy of any other ethnicity. Therefore, washoku has attracted attention as a healthy 
diet. Especially, yuzu is an essential ingredient of the Japanese diet in the winter 
months. A traditional 0sechi dish, including yuzu, to be eaten on New Year’s Day is 
shown in the photo in Figure 1.

Yuzu is a commercially important fruit, as compared to other sour citrus fruits, 
and has become very popular in Japan. Although rarely eaten as a fruit, yuzu is a 
common ingredient in Japanese cuisine, where the aromatic zest (outer rind) as 
well as juice are used much in the same way as lemons in other cuisines. The yuzu 
fruit and juice are traditionally used in making vinegar and seasoning yuzu peel and 
juice, and along with sudachi, daidai, and other similar citrus fruits, are integral 
ingredients in the citrus-based sauce ponzu. In addition, yuzu is often used as an 
ingredient in alcoholic drinks, such as the yuzu sour. Recently, yuzu kosho “yuzu 
and pepper” has become a very popular spicy Japanese sauce made from the peel 
(zest) of green or yellow yuzu, combined with green or red chili peppers and salt. 
Yuzu is also well-known because of its pleasant aroma and essential oil of the outer 
rind. In fact, in Japan, it has been customary since ancient times to take a bath with 
yuzu in hot water during the winter solstice. The yuzu peel is particularly high in 
aromatic compounds and pectin; therefore, the waste peel from juice extraction 
is sometimes used to produce essential oils and flavorings as well as for medicinal 
purposes. Similarly, yuzu is industrially used in the production of sweetened bever-
ages, cosmetics, and perfumes, as well as oils for aromatherapy [3]. Only a small 
portion of produce is used for natural medicine, while satsuma mandarins, oranges, 
and grapefruits are commonly used for the production of fruit juices.

There is a reason why yuzu is not often eaten as a fruit in Japan because it contain 
large seeds that convey a bitter taste to the juice. The well-known constituents 
of citrus fruits include essential oil components, flavonoid glycosides, and other 
basic substances with biological activities, including limonene, a major component 
of essential oils found in the juice and rind, polymethoxyflavones, coumarins, 
carotenoids, which are pigments, vitamins, and terpenoids [4–7]. In the past, the 
bitterness of citrus juices, skins, and seeds hindered the demand for citrus fruits. 

Figure 1. 
A typical Osechi package for New Year’s day in Japan.
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Much research has been conducted to produce bitter-free citrus fruits. At the time 
when there was very little demand for bitter fruit and juice, Hasegawa et al. [8–10] 
reported that the high physiological activity of limonoids was responsible for the 
bitter taste in citrus juice. Limonoids are a group of triterpene derivatives found 
in plants of the Rutaceae and Meliaceae families. So far, more than 300 types of 
limonoids have been reported, and about 100 types have been isolated from the 
neem and sendan plants of the family Meliaceae.

Limonoids are characterized by a furan ring at C-17, a lactone ring at C-3 or C-6, 
and an epoxide between C-14 and C-15 (Figure 2). Of the four basic structures of 
limonoids, reversible opening and closing occurs in A, D lactone rings. For exam-
ple, in the case of limonin, one of the major limonoids, a closed D-ring creates a bit-
ter taste, while the open D-ring form (limonate A-ring lactone) has no bitter taste. 
Furthermore, the limonate A-ring lactone at C-17 is converted into the limonoid 
glycoside 17-β-D-glucopyranoside, which is D-glucose bound with β-glucoside.

Until recently, not much had been known about the metabolism of limonoids 
found in fruit. In 1991, Hasegawa et al. [11] discovered that limonate A-ring lac-
tone, an open D-ring form of a limonoid aglycone, was metabolized to a glucoside 
derivative in the late stages of fruit growth and maturation, and suggested that this 
occurred independently in both the seeds and fruit. It is known that the limonoid 
aglycone and glycosides accumulate in the seeds [12].

To date, 36 types of aglycones and 17 types of glycosides have been identified 
mainly in citrus fruits of the family Rutaceae, which is composed of 160 genera 
and about 2,070 species [13]. The first study of the physiological effects of Citrus 
limonoids reported inhibitory effects on the eating behaviors of armyworms and 
predatory insects [14]. Strong inhibitory effects on eating were subsequently 
observed in termites. It has been reported that the ligand activity of the bile acid 
receptor TGR5 increases the inhibition of tumor formation and the activity of 
glutathione S-transferase, which is a detoxification enzyme that assists with the 
excretion of toxic substances by the liver and digestive organs, as well as increasing 
anti-obesity effects via insulin and increased heat production [15]. The seeds of cit-
rus fruits contain particularly potent limonoids. The metabolic pathway of limonoid 
biosynthesis in citrus fruits has been nearly elucidated by Hasegawa et al. [16] with 
the use of 14C-labeled radioisotopes as tracers (Figure 3). Within the phloem of the 
stem, nomilin is synthesized through the metabolism of acetic acid, mevalonic acid, 

Figure 2. 
D lactone ring structures of limonin.
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and furnesole phosphate. Especially in the stems of seedlings, nomilin synthesis 
becomes very active [17].

Nomilin is synthesized only in the stem and then transferred to the leaves, fruits, 
and seeds where it is metabolized into other limonoids. Since metabolism proceeds 
with the D-ring open form, limonoids exist in the D-ring open form in the stems, 
fruits, and leaves, and mostly form glycosides. In seeds, metabolism to limonoid 
aglycone with a closed D-ring also proceeds at the same time, so that aglycone and 
glycoside are accumulated simultaneously. Therefore, the aglycon in the fruit tissue 
decreases during maturation, but continues to accumulate in the seeds.

2. Bioactive substances of yuzu seeds

Minamisawa et al. [18, 19] has been searching for new antioxidants to maximize 
the original functions of living organisms with the use of waste resources derived 
from natural products, including yuzu seeds, that can be regenerated as many times 
as possible in the human life span. In 2011, the oldest original species of yuzu in 
Japan was discovered in the village of Mizuo, which is located in the north-west of 
Kyoto city [2]. This yuzu is characterized by “seedlings” grown from seeds in the 
land associated with Emperor Seiwa (9th century) and Emperor Hanazono (15th 
century), and it takes about 20 years to harvest. Most of the citrons cultivated 
in Japan today originate from the yuzu of Mizuo, which is cultivated mainly by 
grafting, and the growth is faster than that of seedlings. Since the yuzu of Mizuo is 
considered to be the finest quality, the fruit is highly demanded by high-end res-
taurants serving Japanese cuisine in Kyoto. However, yuzu seeds, which are closer 
to the ancestral citrus, account for 20–30% of the fruit weight, but are discarded as 
waste after the juice extraction process.

Hence, our team chose to evaluate the this development of active natural 
resources would encompass the application in nutrition and environmental 
attributes of yuzu seeds as natural resources with bioactivities [20]. In 2014, we 
reported the development of a relatively simple technique to simultaneously extract 
secondary metabolites of yuzu seeds, including expensive limonoids and yuzu seed 
oil with high total antioxidant capability, from the waste of fully ripe fruits [2]. 
Yuzu seeds contain higher amounts of fat-soluble limonoid aglycones, water-soluble 
limonoid glycosides, and oil than other citrus fruits (Figure 4).

Analysis of the components of limonoids from yuzu seeds by high-performance 
liquid chromatography–mass spectrometry identified five limonoid aglycones 
(deacetylnomilin, limonin, nomilin, obacunone, and ichangensin) and eight 

Figure 3. 
The limonoid biosynthesis pathway of yuzu seeds.
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limonoid glycosides (limonin glucoside, ichangin glucoside, deacetyl nomilinic acid 
glucoside, deacetylnomilin glucoside, nomilin glucoside, nomilinic acid glucoside, 
ichangensin glucoside, and obacunone glucoside) (Figure 4, Table 1). Yuzu seed oil 
extracts (Table 2) contain large amounts of oleic and linoleic acids ([2], in prepara-
tion). The contents of limonoids extracted from yuzu seeds compared with the 
results of previous studies are shown in Table 1 [21–23].

As compared to other citrus seeds, the concentrations of limonoid aglycones 
extracted from the seeds of yuzu fruit from Kyoto were two- or three-fold greater 
than in fruits from Tokushima and California (334 vs. 167 and 0.94 mg/g, respec-
tively). According to Nogata [22], the iyokan fruit (C. iyo), Valencia orange (C. 
sinensis Osbeck), and hyuganatsu (C. tamurana Hort. ex Tanaka) belong to the same 
family as the daidai (C. aurantium group V). Hence, the limonoid compositions 
of these varieties are similar (Table 1). Although the amount of nomilin in the 
Valencia orange is similar to that in the iyokan and hyuganatsu varieties, the amount 
of limonin is approximately two-fold greater, while the amount of deacetylnomilin 
is higher and that of obacunone is significantly lower.

The yuzu and hanayu (C. hanaju) varieties are classified to yuzu group VI. 
However, both the compositions and amounts of the limonoid aglycones differed 
markedly between these two species in the present study, which may be attributed 
to differences in the metabolism of the seeds and fruits [24, 25]. For this reason, 
the ratio of aglycone to glycosides in mature fruit tissues is mostly due to glyco-
sides, whereas the glycoside content in seeds may be the same or lower than that 
of aglycones (Table 1). These findings indicate that limonoids are biosynthesized 
completely independently of fruit tissues and seeds.

Nogata et al. [22] pointed out that the high amounts of glycosides in seeds of the 
iyo and shiikuwasha fruits could be due to the high activity of uridine diphosphate-
D-glucose transferase, and perhaps in the yuzu seeds as well. The high limonoid 
content in the seeds of yuzu fruit grown in Kyoto is thought to be related to the 
seedling cultivation method. Similar to yuzu seeds, the glycosides deacetyl nomi-
linic acid glucoside and deacetylnomilin glucoside, but not ichangensin glucoside, 
accumulate in hanayu seeds. Ichangensin is reportedly metabolized from nomilin 
through the intermediaries deacetylnomilin and deacetyl nomilinic acid [26, 27]. 

Figure 4. 
The extracted components from Yuzu seed.
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Content (mg/g of dry seeds)

Seeds Limonoids aglycones Total

Nomilin Deacetyl-nomilin Limonin Obacu-none Ichan-gensin Aglycones Glucosides Aglycones/glucosides

Yuzu (Kyoto, Japan) 114 106 95.0 16.7 2.10 334 452 0.74

Yuzu (Tokushima, Japan) 58.4 48.3 54.0 5.20 1.60 167 192 0.87

Yuzu* [21] (California) 0.25 0.22 0.47 — 0.23 0.94

Hanayu [22] 0.12 0.86 0.54 0.07 — 1.59 15.9 0.10

Shiikuwasha [22] 0.96 — 1.87 0.45 — 3.28 12.7 0.30

Iyo [22] 2.53 0.72 4.57 0.91 — 8.73 4.46 2.00

Hyuganatu [23] 3.73 0.35 4.68 0.28 — 9.04 3.12 2.90

Grapefruit [23] 1.84 1.10 19.1 1.86 — 23.9 6.98 3.40

Lemon [23] 3.03 — 8.95 0.58 — 12.6 6.37 2.00

Valencia [23] 2.30 1.24 10.0 0.08 — 13.6 8.71 1.60

*Units are mg/g of fresh weight.

Table 1. 
Limonoids in various citrus seeds.
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The hanayu are, therefore, different from other citrus varieties. Although both 
belong to the same yuzu group, there are differences in characteristics, such as 
aglycones contents.

Several in vitro studies have shown that limonoid components mediate the 
antioxidant properties of citrus. Reactive oxygen is believed to be a factor in dis-
eases with underlying cellular disorders [28]. Modern lifestyles and diets involve a 
number of factors that can increase the production of active oxygen species, which 
can overwhelm the body’s self-regulating defense mechanisms [29, 30]. One way to 
protect oneself from active oxygen species is to consume foods containing antioxi-
dants. One of the main reasons for our interest in antioxidants is the link between 
active oxygen species and aging.

Limonoids components of C. junos are known to possess a vast range of bio-
logical activities, including antioxidant functions, protective effects on vascular 
endothelial cells [31], and anti-carcinogenic activities [15, 20, 32–34].

Study also evaluated the in vitro antioxidant activities of yuzu seed aglycones, 
glycosides, and oil extracts. Notably, the yuzu seed oil, the potential extracts had 
high antioxidant activities due to the presence of lipophilic aglycones (Figure 5, new 
unpublished data). Yuzu seed oil is a semi-drying oil that contains large amounts of 
unsaturated fatty acids (FAs), mainly oleic acid and linoleic acid, in addition to a lot 
of palmitic acid.

Virgin yuzu seed oil, which is obtained by a pressing process without heating, 
contains about 2% of limonoid aglycones. Pure oil with the composition shown 
in Table 2 can be obtained by heating and drying roasted yuzu seeds, followed by 
extraction with an organic solvent, such as hexane, and purification.

Lipophilic limonoid aglycones, which were extracted from the residual extracts 
of yuzu seed oil [2], were composed of the following concentrations of limonoids 
per gram of dry seeds: deacetylnomilin, 105 mg; limonin, 95 mg; nomilin, 115 mg; 
obacunone, 17 mg; and ichangensin, 2.1 mg.

Fatty acid 16:0 16:1 18:0 18:1 18:2n-6 18:3n-3 20:0 20:1 24:0

% 19.7 0.5 3.8 37.9 34.7 1.6 0.3 0.2 0.1

Table 2. 
The FA content was determined by gas chromatography with the use of a GC-14 gas chromatograph (Shimadzu 
corporation, Kyoto, Japan) equipped with a DB-1 column (30 m, 0.25 mm, Agilent Technologies, Inc., Santa 
Clara, CA, USA), which was maintained at a constant temperature of 300°C. The yield of yuzu seed oil was 
100 mg/g of dry seeds.

Figure 5. 
Total potential antioxidant activities of various plant seed oils and yuzu aglycones by the total potency of 
antioxidants that are soluble in oil method [35]. Measurements were performed 4–6 times or more. The 
inhibition ratio is presented as the average value ± standard deviation (S.D.).



Citrus - Research, Development and Biotechnology

8

The total potential antioxidant capacity of yuzu seed oil and lipophilic limonoid 
aglycones was measured by utilizing the reduction reaction of copper (Cu++/Cu+) 
[35]. Many other plant oils, including olive oil [36], tea tree oil, grape seed oil [37], 
and neem seed oil [38], which have strong antioxidant activities, were measured at 
the same time for comparisons. Among all of the tested plant seed oils, limonoid 
aglycones extracted from yuzu seeds had the highest antioxidant capacity, followed 
by yuzu seed oil, neem seed, grape seed, tea tree, olive oil, and pure yuzu seed oil. 
The antioxidant capacity of pure yuzu seed oil was approximately 6–9-fold greater 
than that of palmitic acid, oleic acid, and linoleic acid.

While water-soluble antioxidants are rapidly excreted through the urine if an 
excessive amount is ingested, fat-soluble antioxidants are adsorbed onto lipopro-
teins and cell membrane lipids, and are therefore considered to exhibit a higher 
activity in the body. For this reason, fat-soluble antioxidants are expected to be 
beneficial in preventing diseases caused by oxidative stress. Vitamin E, oryzanol, 
and carotenoids are well-known examples of fat-soluble antioxidants. Neem 
(Azadirachta indica) seed oil, which has the same total antioxidant capacity as 
yuzu seed oil, contains the triterpene derivative azadirachtin, which is similar to 
the triterpene limonoids of yuzu seed oil, which is a potent insect repellent [39]. 
Press-extracted virgin olive oil contains oleocanthal that has a potent anti-inflam-
matory effect strikingly similar to that of ibuprofen. Both of these molecules 
inhibit the same cyclooxygenase enzymes in the prostaglandin-biosynthesis 
pathway [40].

The result in Figure 5 suggest the presence of other types of fat-soluble 
antioxidants. Limonoid aglycones also contribute to the high antioxidant capacity 
of yuzu seed oil.

3. Yuzu seeds contain arginine and polyamines (PAs)

Atherosclerosis has become a serious health concern worldwide, as one-third of 
the global population is at risk for diseases associated with arteriosclerosis, which 
accounts for about half of deaths in developed countries. In particular, cardiovas-
cular disease (CVD), which is a consequence of atherosclerosis, is the leading cause 
of death in industrialized nations. Besides lifestyle habits, body weight, socio-eco-
nomic factors, and certain pre-existing conditions, a number of foods seem to play a 
role in the incidence of CVD [41, 42]. In addition, many studies have suggested the 
importance of inflammation in atherosclerosis and CVD [43, 44].

Some food components with anti-inflammatory properties can decrease the risk 
of CVD [44, 45]. Many foods contain wide-ranging concentrations of natural PAs, 
such as spermidine (Spd) and spermine (Spm), which suppress the synthesis of 
pro-inflammatory cytokines [46, 47]. In particular, an epidemiological survey of 
Westerners found that “people who eat cheese or yogurt every day are less likely to 
have myocardial infarction.” [48]. The Japanese consume a lot of traditional fer-
mented foods, mainly soybeans, which are thought to suppress arteriosclerosis [49]. 
PAs concentrations are relatively high in yogurt, cheese, and traditional Japanese 
foods. PAs are aliphatic amines that are essential for the growth of all living cells 
[50]. PAs exist primarily in association with RNA and are involved in promoting the 
synthesis of specific proteins and overall protein synthesis via the ribosome activa-
tion. As shown in Figure 6, the PAs comprising Put (NH2 (CH2)4NH2) → Spd (NH2

(CH2)3NH(CH2)4NH2) → Spm (NH2(CH2)3NH(CH2)4NH(CH2)3NH2) are produced 
from arginine via ornithine or agmatine [51].

PAs have been implicated in the regulation of several growth and development 
processes in plants, including cell division, morphogenesis, flower initiation, pollen 
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tube growth, and senescence [52]. Analyses of the PA contents of various fruits 
have mainly been conducted in Europe [53, 54].

Recent studies have indicated that citrus limonoids have antitumor, detoxifi-
cation, and anti-obesity effects [55, 56], which may indirectly contribute to the 
suppression of acrolein production, which is a side reaction product of PA metabo-
lism (Figure 6). Hence, we measured the PA and arginine contents of yuzu, which 
produces very high concentrations of limonoids, as well as lemons produced in 
Japan for comparison. The PA contents, as determined by high-performance liquid 

Figure 6. 
PA synthesis and degradation [50, 51]. AcPAO, acethylpolyamine oxidase; ODC, ornithine decarboxylase; 
SAMDC, S-adenosylmethionine decarboxylase; SMO, spermine oxidase; SPDS, spermidine synthase; SPMS, 
spermine synthase; SSAT, spermidine/spermine N1-acetyltransferase.

Citrus PAs Arginine

Putrescine Spermidine Spermine Total PAs

Yuzu (Kyoto, Japan) [58] 294.8 117 34.6 446.4 36625

Only seed 79.4 117 34.6 231 30540

Yuzu (Tokushima, Japan) [58] 466 144.6 24.7 635.3 20207

Only seed 125 89.5 24.7 635 14007

Lemons (Kamogawa, Japan) 320.0 56.2 3.8 380.0 37933

Only seed 71.1 56.2 3.8 371 33950

Grapefruit [54] 436 19.5 1.5 457

Lemons, Limes [54] 390.5 19 4.5 414

Oranges, Mandarins [54] 432 15.5 0 448

Bean Putrescine Spermidine Spermine Total PAs

Soybean [54] 297 909 235.5 1442

Beans [57] 147 644.8 299.7 1092

Sesame seed [54] 29 126 22 177

Table 3. 
PAs and arginine contents in several citrus (nmol/g).
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chromatography, as well as the arginine and free arginine contents, as determined 
by automated amino acid analysis, of various citrus fruits are shown in Table 3.

As compared with the juice and peel of yuzu and lemons, the seeds contain 
higher quantities of PAs and arginine. The Put contents are high in all citrus fruits, 
but the quantities of Spd and Spm in yuzu seeds were 5–23-fold greater than the 
reference values. The PA contents of yuzu and lemon fruit are not high as compared 
to legumes [57], but when the limonoid and arginine contents are also considered, 
these fruits have high levels of functional constituents.

As mentioned earlier, limonoids and PAs have various bioactivities and report-
edly have strong anti-inflammatory capabilities. Hence, the potential antioxidant 
activities (i.e., H2O2-scavenging activity, 2,2-diphenyl-1-picrylhydrazyl radical-
scavenging activity, and inhibition of superoxide dismutase [SOD] and antioxi-
dants with SOD-like activities) of PAs (Put, Spd, and Spm) and arginine were 
investigated (in preparation). The results showed that these compounds have no 
antioxidant activities or only weak (less than 10%) inhibitory potential. As reported 
in many studies, the anti-inflammatory activities of PAs and arginine are due to 
factors other than antioxidant capacity.

4.  Yuzu seed limonoids or Spm increased survival of mice with Sandhoff 
disease

In our previous study, we investigated the life-extending effect of limonoids 
(lipophilic limonoid aglycones) and Spm as an exogenous anti-inflammatory 
component in a mouse model of Sandhoff disease (SD), which is a lysosomal 
disease [58]. Lysosomal storage disorders are caused by functional defects of 
proteins that are essential for normal lysosome function, such as enzymes that 
play critical roles in the intracellular digestion of glycoproteins, glycolipids, 
glycosaminoglycans, and other macromolecules [59]. SD is an autosomal reces-
sive hereditary disease [60]. The gangliosides GM2 and GA2 accumulate in the 
nervous system, resulting in severe developmental and neurological disorders, 
and death, which usually occurs during infancy because of the lack of effective 
treatment methods. Neurological dysfunction is the major clinical manifestation 
of GM2 gangliosidosis [61–64].

SD mice present with trembling, startled responses, and decreased motor 
activities from 11 to 15 weeks of age (105 days) due to damage caused by microglial 
activation, macrophage infiltration, and oxidation associated with the accumula-
tion of glycolipids. It has been suggested that inflammation may be fatal [51]. The 
therapeutic effects of enzyme replacement therapy and anti-inflammatory drugs 
have been reported [65]. Inflammation due to the accumulation of lipids is inhibited 
by antioxidant and anti-inflammatory treatments, which can delay disease progres-
sion, but no cure exists at present.

We consider the degeneration of the nervous system might be rooted in oxida-
tive stress and inflammation. Given that dietary interventions can moderate these 
phenomena, consuming foods with antioxidants and anti-inflammatory compo-
nents, such as limonoid aglycons (limonoids) and Spm, could effectively combat or 
minimize neurological damage. Therefore, the inhibition of SD pathologies could 
be promoted by factors other than suppressing the storage of gangliosides.

Preventing inflammation appears to be one of the most effective approaches 
for increasing longevity [66, 67]. To test this hypothesis, the life spans of SD mice 
treated with limonoids or Spm were assessed. The prognostic outcomes of SD mice, 
a typical model of abnormal glycolipid metabolism in humans, were observed after 
administration of limonoids extracted from yuzu seeds and Spm. The treated mice 
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lived significantly longer than untreated littermates (9–10%, p < 0.01) and had a 
slower rate of disease progression (p < 0.01) [58]. When limonoid treatment was 
combined with Spm therapy, synergy resulted in a maximum improvement of 12% 
in survival (p < 0.001) (in preparation). The hematoxylin and eosin (H&E) stain-
ing results of thalamus sections of SD mice following administration of limonoids 
or Spm are shown in Figure 7.

H&E staining results of the neural tissues of the SD control mice (A) and(C) 
correspond to SD mice treated with limonoids (B) and Spm (D), respectively.

Gangliosidosis and inflammatory/autoimmune diseases are characterized by 
degeneration and the accumulation of fat, granulovacuolar degeneration, rod-
shaped microglia, and neuronal inflammation in metabolic diseases, as determined 
by analyses of pathological tissues (Tokyo Metropolitan Institute for Medical 
Science). The characteristic degeneration was clearly decreased in SD mice treated 
with limonoids or Spm. The numbers of neurons in the thalamus and midbrains 
of SD mice treated with limonoids were higher than those in the control SD mice. 
These results demonstrate that inflammation contributes to disease progression and 
the anti-inflammatory effects of Spm and limonoid therapies as a potential adjunc-
tive approach to slow the clinical course of inflammatory diseases.

5.  Bacterial flora analysis of SD mouse feces by the 16S ribosomal DNA 
(16S rDNA) terminal restriction fragment length polymorphism 
(T-RFLP) method

PAs possess anti-inflammatory activities by inhibiting the synthesis of inflam-
matory cytokines by macrophages and the regulation of nuclear factor-κB activa-
tion, which are closely associated with maintaining the intestinal mucosal barrier 
function [68]. Bilateral signals between the intestine and brain are involved in the 
control of nerve, hormone, and immune activities, as well as prolonging longevity 
[69]. Recent studies have shown that bilateral signals between the brain and intes-
tine are important for maintaining homeostasis and extending the life span [70]. 
In particular, the functions mediated by PAs may be involved in metabolism by 
indigenous intestinal bacteria and the health of the host [71].

Figure 7. 
H&E-stained thalamus sections of control SD mice (A and C) and SD mice administered yuzu limonoids (B) 
and Spm (D). Enlarged cells with ganglioside storage are indicated. The numbers of neurons in the thalamus 
and midbrain of SD mice administered limonoids (B) and control SD mice (A). Data are presented as the 
mean ± S.D. *p ≤ 0.05 (Student’s t-test).
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At 12 weeks of age for which the survival period was extended by limonoids or 
Spm, T-RFLP analysis of 16S rRNA was performed to classify the intestinal micro-
biota at the order level for each mouse group (Figure 8). The results showed that the 
taxonomic groups of the bacterial flora in feces after administration of limonoids or 
Spm were completely different from those of the SD control mice.

The bacterial flora in feces after administration of limonoids or Spm had increased 
proportions of Bacteroidales and Clostridiales. However, Lactobacillus was remarkably 
prevalent in feces of the SD control mice. The abundance of Clostridiales were signifi-
cantly increased in the feces of SD mice treated with Spm, whereas Bacteroidales were 
increased in the feces of SD mice treated with limonoids. The administration of Spm or 
limonoids slightly increased the proportion of Erysipelotrichales.

It is generally known that the abundance of Erysipelotrichaceae is increased due 
to fat accumulation in mice [72]. In this case, it was possible that the bacterial flora 
of the SD control mice caused dysbiosis [73]. In the SD control mice, dysbiosis may 
have been due to suppressed absorption of dietary fats and other nutrients. Even 
more interesting was the significant appearance of Verrucomicrobiaceae in feces 
after the administration of limonoids or Spm, which were not found in feces of the 
control SD mice. Verrucomicrobiaceae include mucin-degrading bacteria that are 
also present in the human intestine, and especially Akkermansia, which promote the 
suppression of obesity, diabetes, and inflammation [74, 75].

It will be necessary to investigate the specific bacteria involved in more detail. 
Unfortunately, the T-RFLP method made it difficult to analyze the bacterial flora in 
more detail, and it was not possible to identify particular species. We are currently 
preparing a report of the findings of next-generation sequencing that allowed for 
more detailed classification.

6. Short-chain fatty acid (SCFA) production in SD mouse feces

There have been many reports of the relationships between chronic inflamma-
tory diseases and the intestinal bacterial flora that have helped to clarify the balance 

Figure 8. 
Estimated ratios (%) of the taxonomic categories of the bacterial flora at the order level were identified by 
T-RFLP analysis of 16S rRNA in the feces of SD mice at 12 weeks of age in the control, Spm, and limonoids 
groups (n = 9/group). Values are presented as the mean ± S.D. data of the treatment groups are plotted against 
those of the control group. *p ≤ 0.05, **p ≤ 0.001, and ***p ≤ 0.0001 vs. the untreated control SD mice or each 
(dashed line----). All experiments were performed at least three times.
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between the intestinal ecosystem and diseases related to the intestinal tract. For 
example, genetic abnormalities and the breakdown of the intestinal ecosystem 
have been detected in inflammatory bowel disease [76]. In particular, members of 
the genus Clostridium promote the production of butyric acid, induce an immune 
response in the intestinal mucosa, and promote the differentiation of regulatory T 
cells (Tregs) that contribute to suppression. Thus, changes in intestinal Clostridium 
are considered to be closely related to the onset of inflammatory bowel disease [77, 
78]. It has been reported that the SCFAs produced by intestinal bacteria may func-
tion as bio-modifying factors. Hence, the SCFA composition of feces from the same 
mice at 12 weeks were determined (Figure 9).

The production levels of SCFAs comprising acetic acid, propionic acid, and 
butyric acid were increased in mice administered limonoids or Spm as compared 
to SD control mice. In particular, the production levels of all SCFAs were higher in 
SD mice following administration of limonoids or Spm. The experimental results 
demonstrated differences between the fecal microflora composition and these 
metabolites after administration of limonoids or Spm. Butyric acid is a SCFA that is 
produced by clostridia [78].

As shown by the results presented in Figures 8 and 9, the addition of Spm to 
the diet clearly increased the proportion of Clostridiales and butyric acid in feces. 
Previous metabolomic analyses have shown that butyric acid contributes to the 
induction of Treg differentiation in the colonic mucosa. Thus, butyric acid func-
tions as a histone deacetylase inhibitor and as an immunomodulator responsible 
for inducing Treg differentiation in the colonic mucosa, as well as the activation of 
dendritic cells [79]. Acetic acid produced by intestinal bacteria suppressed colitis in 
a mouse model by promoting apoptosis via the GPR43 receptor expressed by neu-
trophils and plays a central role in the inflammatory reaction [80, 81]. Furthermore, 
the addition of limonoids seems to contribute to the production of acetic acid and 
propionic acid as well as butyric acid.

Acetate, butyrate, and propionate are produced by members of the intestinal 
microbial community through fermentation of dietary fibers and starches, which 
are unable to be broken down by host metabolism [82]. In turn, these metabolites 
are sensed by host cells through various G-protein coupled receptors, known as free 

Figure 9. 
SCFA contents (μmol/g) in feces of SD mice in the control, Spm, and limonoid groups. SD mice were treated at 
12 weeks of age (n = 9/group). Values are presented as the mean ± S.D. data of the treatment groups are plotted 
against those of the control group. *p ≤ 0.05, **p ≤ 0.001, and ***p ≤ 0.0001 vs. the untreated control SD mice or 
each (dashed line----). All experiments were performed at least three times.
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fatty acid receptors, and intracellular peroxisome proliferator-activated receptor 
gamma. Furthermore, SCFAs can also regulate cellular responses through inhibition 
of histone deacetylases. Examples of the effects of SCFAs on the host include dif-
ferentiation of Tregs and macrophages, and downregulation of pro-inflammatory 
mediators. These effects underline the fine balance that SCFAs help to maintain 
between intestinal immunity and inflammation [82–84].

These results suggest that yuzu conveys anti-inflammatory and lipid metabo-
lism-promoting activities in mice following administration of limonoid aglycones 
and Spm. Thus, the metabolites of intestinal bacteria may be indirectly involved 
in suppressing the inflammatory mechanism to directly enhance the health of the 
host. Furthermore, administration of limonoids or Spm improved the propor-
tions of beneficial bacterial in the intestinal flora and associated metabolites. In 
the healthy intestinal tract, the microbiota and gut-associated immune system are 
assumed to be at a dynamic homeostatic equilibrium [85], but the inflammation 
process may undermine this balance. We consider that the human lifespan can be 
extended by inhibiting inflammation via control of the intestinal microbiota.

However, it was not possible to elucidate the mechanisms underlying the effects 
of limonoid aglycones and Spm on the extended life span of SD mice. Thus, in order 
to clarify the anti-inflammatory effects of yuzu seed extract, limonoids, and Spm, 
as well as to widely apply yuzu to promote health and enhance longevity, it will 
be necessary to determine the composition of the bacterial flora based on detailed 
metagenomic analyses of 16S rRNA. Furthermore, it will be necessary to analyze 
the anti-inflammatory effects of limonoids and Spm in yuzu seed extracts at the 
gene level.

PAs quantities have reference values. The reference values for the PAs contents 
of legumes are also shown in Table 3. The values for Japanese produced yuzu and 
lemons are shown, as well as the reference values for other citrus fruits. No previous 
studies reported the quantities of arginine in citrus fruits, so only the compared PA 
quantities are indicated by reference values. The reference values for the PA con-
tents of legumes are also shown.

7. Conclusions

Yuzu is a natural and renewable resource of limonoids, arginine, and PAs. The 
results of the present study suggest that yuzu limonoids and Spm improved the pro-
portions of beneficial bacteria and their metabolites in the intestinal flora. Thus, the 
ingestion of fruits that contain high concentrations of specific ingredients may be 
a simple method to suppress inflammation, thereby enhancing immune function, 
improving intestinal health, and increasing lifespan. In other words, our this study 
demonstrated the possibility that bilateral signals between the brain and intestine 
are important for maintaining homeostasis and extending lifespan. However, it 
was not possible to examine the physiological effects of limonoids and Spm. Thus, 
future studies are needed to evaluate the effects of limonoids and Spm on metabo-
lism and the immune response, and to explore the potential of these molecules as 
natural antioxidants/antibiotics for lysosomal diseases, such as SD.
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