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Chapter

Monospecific and Polyreactive
Monoclonal Antibodies against
Human Leukocyte Antigen-E:
Diagnostic and Therapeutic
Relevance
Mepur H. Ravindranath and Fatiha E.L. Hilali

Abstract

A monoclonal antibody (mAb) binds to an antigen recognizing an epitope
(a sequence of amino acids). A protein antigen may carry amino acid sequence
unique to that antigen as well as sequences found in other proteins. Human leuko-
cyte antigens (HLA), a family of proteins expressed by the Major Histocompatibil-
ity Complex gene family represent a special case, in that it displays a high degree of
polymorphism. Every HLA molecule possesses both specific (private) epitopes and
epitopes shared (public) with other HLA class Ia and class Ib molecules. HLA-E is
overexpressed in cancer cells more than any other HLA Class I molecules. Therefore
specific localization of HLA-E with mAbs is pivotal for developing targeted therapy
against cancer. However, the commercially available mAbs for immunodiagnosis
are polyreactive. We have developed anti-HLA-E mAbs and distinguished mono-
specific from polyreactive mAbs using Luminex multiplex single antigen bead
(SAB) assay. HLA-E-binding of monospecific-mAbs was also inhibited by
E-restricted epitopes. The amino acid sequences in the region of the epitopes bind to
CD94/NKG2A receptors on CD8+ T cells and NK cells and block their antitumor
functions. Monospecific-HLA-E mAbs recognizing the epitopes sequences can
interfere with the binding to restore the anti-tumor efficacy of NK cells. Also,
monospecific-mAbs augment the proliferation of CD4-/CD+ cytotoxic
T-lymphocytes. Therefore, anti-HLA-E monospecific-mAb can serve as a
double-edged sword for eliminating tumor cells.

Keywords: human leukocyte antigen (HLA), epitope, monospecific, polyreactive,
cytotoxic T-lymphocytes, inhibitory receptors, NK cells

1. Introduction

An in-depth understanding of amino acid sequences and conformations of pri-
mary antigens recognized by any monoclonal antibody (mAb) is a necessary pre-
requisite for clarifying the specificity and functional limitations of a mAb. A protein
antigen may be glycosylated or can occur as a monomer or a dimer or a trimer.
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In this regard, human leukocyte antigen (HLA) classes are a structurally identical
complex family of glycosylated homo- or hetero-dimeric proteins. They are
expressed on cell surface complexed with an exogenous or endogenous peptide, as
trimers. Defining the monospecificity of mAb raised against one family member of
HLA is challenging. Often anti-HLA mAbs are polyreactive in that they bind to
sequences common to all family member antigens, which are also known as “public
epitopes”. It is difficult to identify mAbs binding to unique sequences or private
epitopes. Identifying such monospecific mAbs are critical for defining specific
functions of antigens. Although sensitive and specific assay protocols are available
to define the monospecificity of mAbs, many commercial mAbs, apparently specific
for a unique HLA antigen, remain without defining their monospecificity. This
review aims to distinguish monospecific mAbs that recognize private epitopes from
polyreactive mAbs that bind to public epitopes of one of the HLA class Ib molecules,
namely HLA-E, commonly overexpressed on human cancers. A pool of mouse
mAbs was developed at Terasaki Foundation Laboratory (TFL) after immunizing
with HLA-E. After validating the monospecificity of anti-HLA-E mAbs, their diag-
nostic and therapeutic potentials have been evaluated. These include (i)
immunolocalization of cell surface expression HLA-E on human cancers, (ii)
upregulation of CD8+ cytotoxic T lymphocytes, and (iii) restoration of antitumor
activity of CD8+ T cells, NKT cells, and NK cells by preventing binding of HLA-E
expressed on cancer cells to the inhibitory receptors (CD94/NKG2A) on the
immune cells.

2. Nature and characteristics of human leukocyte antigens

Human Leukocyte antigens (HLA) are a subgroup of the Major Histocompati-
bility Complex (MHC) gene family. The genes that encode the HLA class-I and
class-II antigens are located on the short arm of human chromosome 6 [1]. Three
constituent regions of the HLA gene complex are illustrated in Figure 1. Class, I
genes are those encoding the heavy chains (HC) or α chains, of the six class I
isoforms HLA-A, -B, -C, -E, -F, and -G. Extensive polymorphism of the
glycosylated heavy chains of these HLA molecules are presented in Table 1. We
carry a pair of alleles that represent each isoform derived from their mother and
father (Table 2). Understanding HLA profiles of a patient is necessary when
administering mAbs targeting a particular HLA molecule, for amino acid sequences
of target HLA may cross-react with other HLA alleles of the patient. Native HLA-I

Figure 1.
Profile of the HLA gene complex on chromosome 6. All regions contain additional genes.
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proteins are expressed on the cell surface as hetero-dimers, in combination with β2-
microglobulin (β2-m) (Figure 2A). The gene encoding β2-m is situated on human
chromosome 15. The hetero-dimers may also carry a peptide to form a trimer
(Figure 2B), which is designated as “Closed Conformers (CCs)” [2]. Under the
influence of cytokines (e.g. IFN- ɣ) and other activating factors (e.g. T-cell

HLA Class I

Gene A B C E F G

Alleles 6,291 7,582 6,223 256 45 82

Proteins 3,896 4,803 3,681 110 6 22

Table 1.
Numbers of HLA alleles (as of September 2020) and their proteins. See updated information at https://www.
ebi.ac.uk/ipd/imgt/hla/stats.html.

PROFILES OF HLA TYPING: HLA ISOFORMS AND THEIR ALLELES

HLA CLASS ISOFORMS BROTHER* SISTER

I A* [11:02] [33:01] [01:01] [11:02]

I B* [15:01] [58:01] [40:01] [57:01]

I C* [15:02] [15:02] [03:04] [06:02]

II DRB1 [04:03] [13:02] [07:01] [11:01]

II DRB3,4,5 [3*03:01] [4*01:01] [3*02:02] [4*01:01]

II DQA [01:02] [03:01] [01:02] [03:01]

II DQB [03:01] [06:09] [02:02] [03:01]

II DPA [01:03] [01:03] [01:03] [02:01]

II DPB [02:01] [03:01] [01:07] [01:11]

*Mepur H. Ravindranath (brother) and his first sister.
The alleles in bold letters refer to alleles shared by the brother and the sister.

Table 2.
Pair of HLA alleles representing each of the commonly typed HLA isoforms.

Figure 2.
(A) Conformational structure of HLA class I. the native HLA-I proteins are expressed on the cell surface as
hetero-dimers, the heavy chain in combination with β2-microglobulin (β2-m). (B) the hetero-dimer on the cell
surface may carry a short peptide to generate trimeric structure, designated as “closed conformer”(CC).

3

Monospecific and Polyreactive Monoclonal Antibodies against Human Leukocyte Antigen-E…
DOI: http://dx.doi.org/10.5772/intechopen.95235



antibodies) or during inflammation, infection and tumorigenesis, the surface of
metabolically active cells express only monomeric HLA heavy chains, called “Open
Conformers (OCs) [3]. The examples include human T-lymphocytes activated
in vitro and in vivo, as well as by EBV-transformed B-cells, CD19+ B-cells, CD8+ T
cells, CD56+ NK-cells, CD14+ monocytes, extravillous trophoblasts and monocytes,
dendritic cells (DCs), B-cell lines (RAJI, NALM6), and the myeloid cell line (KG-
1A) [4–12]. The kinetics of conformational alterations in the naturally-occurring
HLA-I OCs after activation has been investigated in healthy human T-cells [11]. The
cytoplasmic c-terminal tail of naturally-occurring HLA-I OCs is tyrosine phosphor-
ylated and plays a role in signal transduction [11].

HLA-I on antigen-presenting cells presents endogenous (intracellular) peptides.
Importantly, viral peptides that have been broken by the proteasome are trans-
ferred to the endoplasmic reticulum (ER) via transporters (TAP). In ER, peptides
are processed with OCs of HLA-I and exported to the cell surface as a trimer for
presentation to T-cell receptors of CD8+ T-cells. This strategy kills the cell, thus
preventing viral replication. After antigen presentation, the HLA-I is degraded
(Figure 3). Ultimately, such degradation results in exposing the cryptic epitopes on
the OCs to an individual’s own immune system. Antibodies formed against the
cryptic epitopes eliminate the degraded HLA from the circulation. The antibody-
producing cells may remain hidden and silent for long periods. They are referred to
as “long-lived B cells” [13]. Evidently, anti-HLA antibodies occur in normal and
healthy individuals [14–16], as well as in the pooled and purified plasma also known
as intravenous immunoglobulin (IVIg) [16, 17].

3. Diagnostic and clinical relevance of non-classical HLA class Ib
antigens

Unlike classical HLA-Ia (HLA-A, HLA-B & HLA-C), non-classical HLA-Ib
(HLA-E, HLA-F & HLA-G) genes and molecules are oligotrophic, with restricted
and selective tissue distribution [18–20]. HLA-Ib molecules are expressed in a
diverse array of cells including T and B lymphocytes, Natural Killer Cells, mono-
cytes, macrophages, megakaryocytes, and organs i.e., lymph nodes, spleen, skin,
salivary glands, thyroid, stomach, liver, kidney, urinary bladder, endometrial, and

Figure 3.
The fate of HLA-I molecule after antigen presentation.
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trophoblasts. Their overexpression is reported on activated T cells bone
marrow cells inflamed cells and tissues (e.g. synovial fibroblasts), tumor cells
[21–24].

The HLA-Ib molecules are capable of interacting with cell-surface receptors
present on specific immune-cell subsets, inducing activation or inhibition of signal-
ing cascades within such specific immune cells as NK cells, macrophages, and
dendritic cells [25–27]. Their interaction with different immunomodulatory (acti-
vating and/or inhibiting) cell-surface receptors on NK cells and macrophages sig-
nify their role in innate immunity; these receptors include CD94/NKG2, Ig-like
transcript 2 (ILT2), Ig-like transcript 4 (ILT4), KIR2DL4, and CD160. These inter-
actions are a component of innate immunity [27]; e.g., HLA-Ib is expressed during
pregnancy, playing a major role in tolerance shown towards the fetus and placenta
[28–34]. HLA-Ib molecules also generate a pool of antibodies in vivo, which may
include monospecific or polyreactive (cross-reactive with other HLA-I molecule
[16, 35–39]. Soluble HLA-Ib is also found in the synovial fluid and the circulation of
healthy and in cancer patients [40–42].

4. Human leukocyte antigen-E (HLA-E)

4.1 Unique characteristics of HLA-E

Although several alleles of HLA-E (Table 1) exist, only two are extensively
distributed among different ethnic groups [43]. The alleles differ by a single
amino acid at position 107 [44–46]; Arginine in HLA-ER107 (HLAE*01:01) is
replaced by glycine in HLA-EG107 (HLA-E*03:01) [45]. Such amino acid substitu-
tion influence thermal stability, which results in a more stable expression of cell
surface HLA-E*01:03 compared to HLA-E*01:01 [44], including half-life of the
molecule. HLA-E*01:01 and HLA-E*03:01 bind to different restricted sets of
peptides.

HLA-E present peptides derived from HLA-Ia signal sequences (leader pep-
tides), heat-shock protein (Hsp-60), human cytomegalovirus, Hepatitis C virus,
Human Immunodeficiency Virus, Epstein Barr virus, Influenza virus, Salmonella
enteric and Mycobacterium glycoproteins to T-lymphocytes [46–49]. The binding of
HLA-E to the leader peptides of HLA-Ia stabilizes the HLA-E and enables migration
to the cell surface [49]. When HLA-E does not reach the cell surface of a tumor cell,
the cell is susceptible to lysis by NK cells. The crystallographic analyses of HLA-E
structure reveals the molecular mechanisms underlying this function of HLA-E
[24]. Importantly, tumor-associated HLA-E can be shed into the tumor microenvi-
ronment and circulation as soluble HLA-E (sHLA-E) [23, 50–56].

4.2 HLA-E expression on cancer cells using mAb-based diagnostic assays:
Limitations and reliability

The literature (Table 3) on HLA-E expression on human cancers based on the
commercially available diagnostic anti-HLA-E mAbs tests, reveals that none of the
diagnostic mAbs were tested for their unique or monospecificity for HLA-E. If the
mAb is not specific for the unique epitopes of antigen and if it binds to public
epitopes or epitopes shared by a family of antigens, then data is unjustified to
conclude the expression HLA-E. Principally this criterion is valid for any diagnostic
or therapeutic antibody. We have undertaken efforts to examine, using Luminex
multiplex SAB assay, the specificity of commercial anti-HLA-E mAbs employed in
the 47 clinical studies (Table 3). Summary of the results [16, 21, 35–39, 96–98] is
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NATURE OF
HUMAN CANCER

COMMERCIAL
mAbs

REFERENCES

Melanoma Cervical
Cancer

3D12 Marín R et al. Immunogenetics. 54(11):767–75.2003 [57]

Melanoma MEM-E/02 Derré L et al. J Immunol. 177:3100–7. 2006. [22]

Melanoma and other
cancers

MEM-E/07 Allard M et al. PLoS One 6(6):e21118, 2011 [55]

MEM-E/08

Lip squamousal cell
carcinoma

MEM-E/02 Goncalves et al. Human Immunol. 77(9): 785–790, 2016
[58]

Laryngeal carcinoma MEM-E/02 Silva TG et al. Histol Histopathol. 26:1487–97. 2011 [59]

Vulvar intraepithelial
carcinoma

MEM-E/02 van Esch EM et al. Int J Cancer. 135(4): 830–42, 2014 [60]

Penile Cancer MEM-E/02 Djajadiningrat et al. J Urol. 193(4):1245–51. 2015. [61]

Glioblastomas MEM-E/02 Mittelbronn, M. et al., J. Neuroimmunol. 189: 50–58. 2007
[62]

Glioblastomas MEM-E/02 Kren L et al. J Neuroimmunol. 220:131–5. 2010 [63]

Glioblastomas MEM-E/02 Kren L et al. Neuropathology. 31: 129–34. 2011 [64]

Glioblastomas stem
cells

3D12 Wolpert et al. J Neuroimmunol. 250(1–2):27–34 2012 [65]

Glioblastomas 3D12 Wischhusen J et al. J Neuropathol Exp Neurol. 64:523–8.
2005 [66]

Neuroblastoma 3H2679 Zhen et al. Oncotarget. 7(28): 44340–44349, 2016. [67]

Neuroblastoma 3D12 Morandi et al. J Immunol Res. 2016:7465741, 2016. [53]

Oral Osteosarcoma MEM-E/02 Costa Arantes et al. Oral Surg Oral Med Oral Pathol Oral
Radiol. 123(6):e188-e196. 2017. [68]

Intraoral
mucoepidermoid
carcinoma

MEM-E/02 Mosconi C Arch Oral Biol. 83:55–62, 2017. [69]

Rectal Cancer MEM-E/02 Reimers et al. BMC Cancer BMC Cancer. 14:486.1–12, 2014.
[70]

Colorectal carcinoma MEM-E/08 Levy et al. Int J Oncol. 32(3): 633–41. 2008 [71]

Colorectal carcinoma MEM-E/08 Levy et al. Innate Immun. 15(2):91–100. 2009. [72]

Colorectal carcinoma MEM-E/02 Benevolo M, et al. J Transl Med. 9:184. 2011. [73]

Colorectal carcinoma MEM-E/02? Bossard C et al. Int J Cancer. 131 (4): 855–863. 2012. [67]

Colorectal carcinoma MEM-E/02? Zhen et al., Med Oncol. 30(1):482. 2013. [74]

Colorectal carcinoma MEM-E/02 Zeestraten et al. Br J Cancer. 110(2):459–68. 2014. [75]

Colorectal carcinoma MEM-E/02 Guo et al. Cell Immunol. 293(1):10–6, 2015. [76]

Colorectal carcinoma 3H2679 Ozgul Ozdemir et al. Ann Diagn Pathol. 25:60–63, 2016 [77]

Colorectal carcinoma MEM-E/02 Huang et al. Oncol Lett. 13(5):3379–3386, 2017. [78]

Colon carcinoma and
leukemia (K562)

MEM-E/06 Stangl S et al. Cell Stress Chaperones. 13(2):221–30. 2008.
[79]

Colon carcinoma MEM-E/02 Zeestraten EC et al. Br J Cancer. 110(2): 459–68.2014. [75]

Hepatocellular
carcinoma

MEM-E/02 Chen et al. Neoplasma. 58(5):371–376, 2011. [80]

Non-small cell Lung
Carcinoma

MEM-E/02 Talebian-Yazdi et al. Oncotarget. 7(3):3477–3488, 2016.
[81]
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presented in Figure 4 show that the commercial anti-HLA-EmAbs react with HLA-A,
HLA-B and HLA-C in the following order: MEM-06 >MEM-02 >MEM-07 >MEM
>08 >> > 3D12. That the mAbs are recognizing the epitopes shared with several HLA-
Ia (HLA-A, HLA-B, HLA-C) antigens confirms that none of the above mAbs are
specific for HLA-E. Therefore conclusions concerning the expression of HLA-E in
human cancers require further validation with monospecific anti-HLA-E mAbs.

5. Anti-HLA-E mAbs: Characteristics, diagnostic and therapeutic
potentials

5.1 The technology that clarifies monospecificity or polyreactivity of a mAb of
MHC

Luminex multiplex assays are based on xMAP (Multi-Analyte Profiling) tech-
nology that enables simultaneous detection and quantitation of antibodies reacting
to multiple proteins simultaneously, using detection mAbs [16, 17, 21, 35–39, 96–98].
The results are comparable to assays such as ELISA but with greater specificity,
sensitivity and resolution. The technology employs superparamagnetic 6.5-micron
microspheres with a magnetic core and polystyrene surface. The beads are

NATURE OF
HUMAN CANCER

COMMERCIAL
mAbs

REFERENCES

Breast cancer MEM-E/02 de Kruijf EM et al. J Immunol. 185:7452, 2010 [82]

Breast cancer MEM-E/02 da Silva et al. Int J Breast Cancer. 2013:250435. 2013. [83]

Ovarian cancer/
Cervical cancer

MEM-E/02 Gooden M et al.PNAS USA 108:10656, 2011. [84]

Cervical cancer MEM-E/02 Gonçalves MA et al. Eur J Obstet Gynecol Reprod Biol.
141:70–4. 2008. [85]

Cervical cancer MEM-E/02 Spaans VM et al., J Transl Med. 10:184. 2012. [86]

Cervical squamous and
adenocarcinoma

MEM-E/02 Ferns et al. J Immunother Cancer. 4:78, 2016. [87]

Serous Ovarian
Adenocarcinoma

MEM-E/02 Andersson et al. Oncoimmunology, 25;5(1):e1052213, 2015.
[88]

Serous Ovarian
Adenocarcinoma

MEM-E/02 Zheng et al. Cancer Sci. 106(5): 522–528, 2015. [89]

Renal Cell Carcinoma MEM-E/02 Hanak L et al. Med Sci Monit. 15(12):CR638–43.2009. [90]

Renal Cell Carcinoma MEM-E/02 Kren L et al., Diagnostic Pathology, 7:58, 2012 [91]

Thyroid cancer MEM-E/02 Zanetti et al. Int J Immunopathol Pharmacol. 26(4):889–96,
2013. [92]

Hodgkin Lymphoma MEM-E/02 Kren L, et al., Pathology, Research and Practice 208: 45–49,
2012. [93]

Chronic Lymphocytic
Leukemia

3D12 McWilliams et al., Oncoimmunology. 5(10):e1226720,
2016. [94]

Chronic Lymphocytic
Leukemia

3D12 Wagner et al. Cancer, 23(5):814–823, 2017. [52]

Many Cancers 3D12 Sensi M, et al. Int Immunol. 21(3):257–268. 2009. [95]

Table 3.
Expression of HLA-E on human cancer cells (biopsies or cell lines) monitored with commercial mouse anti-
HLA-E mAbs (MEM-E/02, MEM-E/06, MEME/07. MEM-E/08, 3D12, 3H2679).
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internally dyed with precise proportions of red and infrared fluorophores. The
Luminex xMAP detection systems identifies differing proportions of the red and
infrared fluorophores that result in 100 unique spectral signature microspheres. The
antigens are individually attached to polystyrene microspheres by a process of
simple chemical coupling. The conjugation of a mAb to one or more of the antigen-
coated beads allows it to be evaluated for the mono- or polyreactivity of mAb

Figure 4.
HLA-IA-polyreactivity of the commercial anti-HLA-E mAbs indicates that these mAbs cannot be considered
monospecific or specific for HLA-E. The mAbs were tested at a dilution of 1/300. These mAbs were used to
conclude on the expression of HLA-E on human cancers.
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[96–98]. Figure 5 illustrates the SAB Assay used for determining the monospecific-
ity or polyreactivity of mAbs as well as evaluating the strength of the antibodies
measured as mean fluorescent intensity (MFI) at specified dilution. The assay is also
used to measure antibody specificity by peptide inhibition assays, to define the
epitope-specificity of a mAb. Commercial HLA class I or II beadsets are commer-
cially available as LABScreen (One Lambda Inc., now merged with Thermofisher
Inc) and LIFECODES (Immucore Inc)]. The both beadsets together is useful to
distinguish CCs from OCs of HLA-I molecules, using a mAb (HLA-I mAb,
TFL-006) (See Table 7 in [99]).

5.2 Development of mAbs against HLA-E

Following guidelines of the National Research Council’s Committee on Methods
of Producing Monoclonal Antibodies [35, 98, 100], 235 anti-HLA-E mAbs were
generated immunizing mice with recombinant HCs of HLA-ER107 (Immune Moni-
toring Lab, Fred Hutchinson Cancer Research Center, University of Washington,
Seattle, WA) (10 mg/ml in MES buffer). In a separate mouse model, HLA-EG107

(heavy-chain only) was used as an immunogen. The β2m-free HC of HLA-E (50 μΜ

in 100 mL of PBS (pH 7.4) mixed with 100 mL of TiterMaxVR Gold adjuvant
(CytRx, San Diego, CA) were injected into the mouse footpad and intraperitoneum.
Three immunizations were given at 12-day intervals. The B cell clones were cul-
tured in RPMI 1640 medium w/L-glutamine and sodium bicarbonate (Sigma-
Aldrich, St. Louis, MO, cat. no. R8758), 15% fetal calf serum, 0.29 mg/ml L-
glutamine, Pen-Strep (Gemini-Bio, MEd Supply Partners, Atlanta, GA, cat. no.
400–110) and 1 mM sodium pyruvate (Sigma, cat. no. S8636). Several clones were
grown using Hybridoma Fusion and Cloning Supplement (HFCS) (Roche Applied
Science, Indianapolis, IN, cat. no. 11363735001). The purified-mAbs from HLA-E
hybridoma culture supernatants and ascites of hybridoma immunized in BALB/c
mice were examined for HLA-I reactivity using Luminex SAB Assay.

5.3 Characterizing the diversity of anti-HLA-E mAbs using single antigen bead
(SAB) assay

The HLA-I reactivity of the mAbs was examined by their dose-dependent binding
to microbeads coated with 31 HLA-A, 50 HLA-B, and 16 HLA-C antigens and with
recombinant single alleles of HLA-E, -F, and -G [35, 98, 100]. The HLA-Ia microbeads
have built-in control beads: positive beads coated with human IgG and negative
beads coated with serum albumin (human or bovine). For HLA-Ib, the control beads

Figure 5.
Luminex single antigen bead assay is used to determine the monospecificity or polyreactivity of the mAbs as well as to
determine the strength of the antibodies measured asmean fluorescent intensity (MFI) at specified dilution. The assay
is also used to measure the antibody strength titrimetrically. Using peptide inhibition assay epitope affinity or
specificity of a mAb can be studied to determine monospecificity or polyreactivity of the mAb. Using a mAb (e.g.,
HLA-I mAb,TFL-006) recognizing the most commonly shared epitope of an HLA-I (or HLA-II) in an open
conformer, the commercial beads can be distinguished as those containing open conformers or closed conformers.
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(both positive and negative) were added separately. PE-conjugated anti-human
IgG-detectionmAbswere used for immunolocalization ofmAb bound toHLA antigens
coated on beads [35–37, 96–100].Table 4 summarizes the diverse types of mAbs
observed after immunizingwith heavy chains of HLA-E. Group 1 consists ofmAbs that
are only bound to HLA-E. Anti-HLA-EmAbs were also characterized for their IgG
subclasses, using monoclonal IgG specific for the Fc portion of the subclasses

Fluorophore intensity was measured in a specialized flow cytometer (Luminex)
together with microbead identifiers, and the fluorescence measurement classified by
the bead identifier. Fluorescent intensity generated by Luminex Multiplex Flow
Cytometry (LABScan 100) was analyzed using the same computer software and pro-
tocols. For each analysis, at least 100 beads were counted. The “trimmed mean” is
obtained by trimming a percentage of the high and low ends of distribution and finding
the mean of the remaining distribution. Trimmed mean fluorescence intensity (MFI)
for the SAB reactions are obtained from output (CSV) file generated by flow analyzer,
and it was adjusted for background signal using the formula (sample #N bead – sample
negative control bead) [35–37, 96–100]. The MFI was compared with the negative
control mean and the standard deviation of MFI recorded. The purpose of MFI is to
define the affinity of mAbs to HLAs and the intensity or strength of the mAbs.

5.4 The diversity anti-HLA-E mAbs

Of the 235 hybidomas generated, mAbs secreted by 214 hybridomas were reac-
tive to HLA-E. These mAbs included both monospecific [35, 98] and polyreactive
(with other HLA-Ia and HLA-Ib molecules) [98, 101]. Table 5, A presents category
1 correspond to monospecific mAbs reacting restrictively to mAbs with HLA-E and
failing to recognize HLA-F, HLA-G, HLA-A, HLA-B, and HLA-C. Category 2 refers
to HLA-Ib specific anti-HLA-E mAbs (Table 5, B). Category 3 presents anti-HLA-E
mAbs reactive with several HLA-Ia molecules (HLA-A, HLA-B, and HLA-C) but
not reactive to HLA-F and HLA-G (Table 5, C). Category 4 presents mAbs recog-
nizing both HLA-Ib and HLA-Ia molecules (Table 5, D).

mAbs formed after immunizing HLA-E

HLA Class Ia HLA Class Ib

HLA-A HLA-B HLA-C HLA-E HLA-F HLA-G

Group 1 (�) (�) (�) (+) (�) (�) 24 TFL-monospecific anti-HLA-E
mAbs

Group 2 (�) (�) (�) (+) (+) (�) TFL-anti-HLA-E/F mAbs

Group 3 (�) (�) (�) (+) (�) (+) TFL-anti-HLA-E/G mAbs

Group 4 (�) (�) (�) (+) (+) (+) TFL-anti-HLA-Ib sepecific mAbs

Group 5 (+) (+) (+) (+) (�) (�) Reactivity of the mAbs 3D12, MEM-
E/02 & MEM-E/07 & TFL series

Group 6 (+) (+) (+) (+) (+) (�) Reactivity of the mAb MEM-E/06
& TFL-series

Group 7 (+) (+) (+) (+) (�) (+) Reactivity of the mAb MEM-E/08
& TFL series

Group 8 (+) (+) (+) (+) (+) (+) Reactivity of the mAb TFL-006,
TFL-007 & other TFL mAbs

Table 4.
The diverse HLA-E monospecific and polyreactive mAbs generated after immunizing mice with a recombinant
heavy chain of HLA-ER107 & HLA-EG107.
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Nature of mAbs mAb
specificity

number
of mAbs

Examples of
TFL mAbs

Antigen (heavy
chain only)

tested on beads

Subclass HLA-E HLA-F HLA-G HLA-A HLA-B HLA-C

Reactivity in MFI

A Antigen immunized: β2-microglobulin-free heavy chain of HLA-ER107

HLA-E Monospecific mAbs
(Category 1)

HLA-E 16 TFL-145, TFL-
33, TFL, 34,

TFL-73, TFL-74

HLA-ER IgG1 4 K–22 K 0 0 0 0 0

3 TFL-001 HLA-ER IgG2a 0.9 K - 4 K 0 0 0 0 0

TFL-016

TFL-013

Antigen immunized: β2-microglobulin-free heavy chain of HLA-EG107

5 TFL-185 HLA-EG IgG1 19 K 0 0 0 0 0

TFL-184

TFL-186

TFL-226

TFL-254

B Antigen immunized: β2-microglobulin-free heavy chain of HLA-ER107

HLA-IB polyreactive and
HLA-IA and non-reactive
HLA-E mAbs (Category 2)

HLA-Ib
specific
mAbs

1 TFL-050 HLA-ER IgG2b 4 K 3 K 2 K 0 0 0

Antigen immunized: β2-microglobulin-free heavy chain of HLA-EG107

3 TFL-208, TFL-
209, TFL-223,

HLA-EG

HLA-ER
IgG1 21 K 8 K 20 K 0 0 0

4 TFL-164 HLA-EG IgG2b 14 K–15 K 8 K–
9 K

24 K–
25 K

0 0 0

TFL-165

TFL-162

TFL-161

E + G+ 1 TFL-191 HLA-EG NK 1 K 0 1 K 0 0 0

E + F+ 1 TFL-228 HLA-EG IgG1 19 K 1 K 0 0 0 0

11 M
on
osp

ecific
a
n
d
P
olyrea

ctive
M
on
oclon

a
l
A
n
tib

od
ies

a
ga
in
st
H
u
m
a
n
L
eu
kocyte

A
n
tigen

-E
…

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.95235



Nature of mAbs mAb
specificity

number
of mAbs

Examples of
TFL mAbs

Antigen (heavy
chain only)

tested on beads

Subclass HLA-E HLA-F HLA-G HLA-A HLA-B HLA-C

Reactivity in MFI

C Antigen immunized: β2-microglobulin-free heavy chain of HLA-ER107

HLA-IA Polyreactive HLA-E
mAbs (Categroy 3)

E + B + C+ 31 TFL-059 HLA-EG

HLA-ER
IgG1 (n = 12) IgG2A
(n = 9) IgG2b (n = 9)
IgG3 (n = 1)

8 K–20 K 0 0 0 1 K–
17 K

1 K–7 K

TFL-143

TFL-158

TFL-076

TFL-159

E + A + B +
C+

68 TFL-119 HLA-EG

HLA-ER
IgG1 (n = 27) IgG2A
(n = 23) IgG2b
(n = 17) IgG3 (n = 1)

11 k–22 k 0 0 1 K–
4 K

1 K–
24 K

1 K–
13 K

TFL-142

TFL-153

TFL-118

TFL-133

TFL-141

TFL-095

EG + B+ 3 TFL-173 HLA-EG IgG1 12 K 0 0 0 1 K 0

TFL-174

TFL-175

E + B+ 1 TFL-219 HLA-EG/R IgG1 21 0 0 0 2 K 0

EG + A + B +
C+

6 TFL-167 HLA-EG IgG1 15 K-25 0 0 1 K–
9 K

1 K
20 K

1 K–
20 K

TFL-170

TFL-169

TFL-166

12 M
on
oclon

a
l
A
n
tib

od
ies



Nature of mAbs mAb
specificity

number
of mAbs

Examples of
TFL mAbs

Antigen (heavy
chain only)

tested on beads

Subclass HLA-E HLA-F HLA-G HLA-A HLA-B HLA-C

Reactivity in MFI

TFL-168

TFL-205

E + A + B +
C+

35 TFL-243 HLA-EG/R IgG1 (n = 22) IgG2A
(n = 6) IgG2b (n = 6)

IgG3 (n = 1?)

13 K–26 K 0 0 1 K–
9 K

1 K–
24 K

1 K–
20 K

TFL-246

TFL-244

TFL-245

TFL-172

TFL-171

Nature of mAbs Immunogen
used

mAb
specificity

number of
mAbs

Examples of
TFL mAbs

Subclass HLA-E HLA-F HLA-G HLA-A HLA-B HLA-C

Reactivity in MFI

ER107 EG107

D. Category 4. HLA- IA and IB polyreactive anti-HLA-E mAbs. (n = 36)

HLA = IA Polyreactive HLA-IB
mAbs (Category 4)

HLA-EG E+/F+/G+ 4 TFL-232 IgG3 13–22 21 2 to 10 11 to 21 1 to 13 1 to 20 1 to 20

TFL-177 IgG1 (n = 3) 0

TFL-176

TFL-198 0

E+/G+ 16 TFL-236 IgG1 (n = 14) 18–22
(n = 13)

0 0 18–22
(n = 11)

1 to 9 1 to 25 1 to 24

TFL-238

TFL-256 IgG3 22 27 1

TFL-229 IgG2b 30 22 18

E+/F+ 10 TFL-210 IgG1 (n = 10) 18–21 17–
19

5 to 11 0 1 to 15 1 to 20 1 to 22
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Nature of mAbs mAb
specificity

number
of mAbs

Examples of
TFL mAbs

Antigen (heavy
chain only)

tested on beads

Subclass HLA-E HLA-F HLA-G HLA-A HLA-B HLA-C

Reactivity in MFI

TFL-211

TFL-212

TFL-235

HLA-ER E+/F+/G+ 3 TFL-049 IgG2b 15–22 8 To 12 2 to 7 1 to 10 1 to 10 1 to 17

TFL-006 IgG2a (n = 2)

TFL-007

E+/G+ 2 TFL-103 IgG1 (n = 2) 17,18 0 4 1 to 6 1 to 11 1 to 11

TFL-104

E+/F+ 1 TFL-063 IgG2b 22 3 0 2-Jan 1 tp 7 3 to 8

mAbs in Bold are highly polyreactive,

Table 5.
Different categories of mAbs (n = 212) formed after immunizing mice with HLA-E open conformer (β2-microglobulin-free heavy chain) of HLA-ER107 or HLA-EG107.
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5.5 Unique (private) and common (public) epitopes of HLA-E

The international immunogenetics project (http://www.ebi.ac.uk; or http://www.
ebi.ac.uk/ipd/imgt/hla/intro.html) updates HLA genes and sequence alleles yearly.
We have compared the entire amino acid sequences of HLA-E (Figure 6) with 511
alleles of HLA-A, 846 alleles of HLA-B, 275 alleles of HLA-C, 2 alleles of HLA-F, and 2
alleles of HLA-G sequences(see Table 1). Amino acid sequences unique to HLA-E
(private epitopes) and common amino acid sequences (public epitopes) can be iden-
tified by comparing the amino acid sequences of HLA-E with thousands of HLA-Ia
and Ib antigens (Table 6). Anti-HLA-E mAbs could bind to HLA-E restricted
(monospecific) or HLA-I amino acid sequences. Several HLA-E sequences are shared
with HLA-A loci or HLA-C loci or specific alleles such as A*3306 or B*8201. Table 7
shows HLA-E restricted amino acid sequences found in α1 and α2 helices, which were
used for peptide inhibition assays. Figure 7A illustrates locations of private and
public epitopes. Figure 7B shows allele-specific amino acid sequences in α1 & α2
helical groove and Figure 7C shows shared peptide amino acid sequences.

Peptide inhibition analyses were performed to confirm the monospecificity of
HLA-E mAbs. Various concentrations of HLA-E-restricted peptides (serially diluted
from the initial concentration of 100 μL to 100 μL) were added to the mAbs (7 μL).
The mAbs were further diluted with 14 μL PBS-BSA (pH 7.0; final dilution 1/1200),

Figure 6.
Amino acid sequence of HLA-ER107. Two sets of serial numbers provide one to include leader sequence and another
after deleting leader sequence. Sequences in the boxes refer to either specific (private) or shared (public) epitopes.
The box with bold letters was used to test for peptide inhibition in our experiments using TFL-monospecific mAbs.
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and then exposed to 2 mL of beads. The two different HLA-E-restricted peptides,
RSARDTA and SEQKSNDASE were synthesized and purified by GenScript Corpora-
tion (Piscataway, NJ). The assay was performed in triplicate. Dosimetric peptide
inhibition analysis was performed for mAb TFL-033. Before dosimetric peptide inhi-
bition, the mAb TFL-033 was dosimetrically titrated to assess their strength (MFI),
and protein-G purified culture supernatants and ascites compared. Then, concen-
trated Protein-G purified from ascites is titrated and the protein content is measured.
Titrimetric inhibition was done with ascites protein-G concentrate. A summary of the
peptide inhibition experiments is presented in Figure 8. Results confirm that TFL-
003 binding to HLA-E can be inhibited dosimetrically using two HLA-E-restricted
epitopes. The level of inhibition differed between the two epitopes.

5.6 Diagnostic potential of HLA-E monospecific mAbs

Immunolocalization of HLA-E on human melanoma cancer tissues was
performed using culture supernatants (s) or ascites (a) of TFL monospecific mAbs
(TFL-033, TFL-034, TFL-074, and TFL-216), and staining is compared with com-
mercial anti-HLA-E mAb (MEM-E/02) [35, 98]. Titration of Protein-G purified
culture supernatants and ascites concentrates of different anti-HLA-E monospecific
mAbs are shown in Table 8. As revealed in Figure 4, the MEM-02 cross-reacts with
several HLA class Ia alleles. Although it stains melanoma tissues, due to the paucity of
HLA-E specificity, specific localization of HLA-E was confirmed with monospecific
anti-HLA-E mAbs (Figure 9A). Similarly, immune-localization of HLA-E on human

Comparison of the amino acid sequences of HLA-E with other HLA-I antigens

HLA alleles

HLA-E peptide
sequences

Number of amino
acids

Classical
HLA-Ia

Non-
classical
HLA-Ib

Specificity

A B Cw F G

47PRAPWMEQE55 9 1 0 0 0 0 A*3306 restricted

59EYWDRETR65 8 5 0 0 0 0 A-restricted

65RSARDTA71 6 0 0 0 0 0 E-monospecific

90AGSHTLQW97 8 1 10 48 0 0 Multispecific

108RFLRGYE123 7 24 0 0 0 0 A-restricted

115QFAYDGKDY123 9 1 104 75 0 0 Multispecific

117AYDGKDY123 7 491 831 271 21 30 Highly
Multispecific

126LNEDLRSWTA135 10 239 219 261 21 30 Multispecific

137DTAAQI142 6 0 824 248 0 30 Multispecific

137DTAAQIS143 7 0 52 4 0 30 Multispecific

143SEQKSNDASE152 10 0 0 0 0 0 E-monospecific

157RAYLED162 6 0 1 0 0 0 B*8201-restricted

163TCVEWL168 6 282 206 200 0 30 Multispecific

182EPPKTHVT190 8 0 0 19 0 0 C-restricted

Table 6.
Identifying HLA-E specific epitope or amino acid sequences: Peptide sequences specific and shared between
HLA-E and HLA class Ia alleles: Monospecific (HLA-E restricted) versus polyreactive epitopes.
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Peptide [# 1] specific for HLA-E Peptide [# 2] specific for HLA-E

HLA Class Ib α1 α1 α1 α1 α1 α1 HLA Class Ib α2 α2 α2 α2 α2 α2 α2 α2 α2

65 66 67 68 69 70 143 144 145 146 147 148 149 150 151

E*01010101 R S A R D T E*01010101 S E Q K S N D A S

G*01010101 R N T K A H G*01010101 S K R K C E A A N

F*01010101 G Y A K A N F*01010101 T Q R F Y E A E E

A*110101 R N V K A Q A*110101 T K R K W E A A H

B *1401 Q I C K T N B *1401 T Q R K W E A A R

B *350101 Q I F K T N B *350101 T Q R K W E A A R

B *40060101 Q I S K T N B *40060101 T Q R K W E A A R

B *530101 Q I F K T N B *530101 T Q R K W E A A R

B *5801 R N M K A S B *5801 T Q R K W E A A R

CW*050101 Q K Y K R Q CW*050101 T Q R K W E A A R

CW*080101 Q K Y K R Q CW*080101 T Q R K W E A A R

CW*1802 Q K Y K R Q CW*1802 T Q R K W E A A R

Qa-1(murine eq:HLA-E) W K A R D M Qa-1(murine eq:HLA-E) S K H K S E A V D

Table 7.
Identifying HLA-E specific epitope or amino acid sequences: Comparing the two HLA-E restricted sequences with other HLA-I amino acid sequences at the same position.
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gastric diffused carcinoma paraffin tissue sections was observed after staining with
the diluted ascites of monospecific mAb TFL-033a and MEM-E/02. The reliability of
HLA-E tissue localization with monospecific immunostaining of human gastric ade-
nocarcinoma (A, B) with TFL-033 and MEM-E/02 with that obtained for gastric
diffuse carcinoma (C, D) control, stained without primary mAbs. MEM-E/02 failed
to stain any cells while TFL-033a showed intense and widely distributed staining
indicating the overexpression of intact HLA-E (Figure 9C). Immunostaining was
performed on human breast ductal adenocarcinoma with TFL monospecific-mAbs
and results obtained using monospecific anti-HLA-E mAb TFL-216, generated by
immunizing HLA-EG, is presented in Figure 9D.

Detailed immunodiagnostic analyses were performed using a tissue microarray
(TMA) of normal gastric mucosal and primary gastric cancer tissues [98]. Three
tissue microarrays (TMAs; US Biomax, Rockville, MD) were carefully selected. The
tissue sections of all TMA were 1.5 mm in diameter and 5 μm thick. In TMA of
normal gastric mucosa and of primary gastric cancer, which contained 30 adeno-
carcinomas, 40 diffuse carcinomas and ten normal gastric mucosae were
immunostained. TMA array included: well-differentiated, moderately differenti-
ated, poorly differentiated, and undifferentiated cancer. In addition, TMA also

Figure 7.
Diagrammatic illustration of the structure of HLA-E, closed (intact trimer) and open conformers and specific
(private) and shared (public) epitopes. (A) Illustrates the locations of allele-specific sequence (private epitope)
and shared peptide (public epitopes) sequence. HLA-E with β2-microglobulin (in blue) showing (B) the allele-
specific amino acid sequences (private epitopes) in α1 & α2 helical groove and (C) shared peptide amino acid
sequences (public epitopes).
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included Stages I to IV of metastatic gastric cancer with 5 peritoneal, 3 liver, 27
lymph node metastases. TMA was immunostained with TFL-033 mAbs (culture
supernatants and ascites), controls were stained without primary mAbs [98]. The
diagnostic potential of HLA-E-monospecific mAb TFL-033 for different kinds and
stages of gastric cancer is illustrated in Figure 4a in International Journal of Cancer
[98]. The observations confirm that specific identification and localization of MHC
antigens, stringently require monospecific mAbs. The conclusion is highly reliable
compared to the use of polyreactive commercial mAbs (MEM-E/02) [36, 98],
presented in Figure 4. Importantly, characterizations of monospecificity should
include (1) multiantigen coated solid matrix assays, e.g., Luminex multiplex SAB
assay; (2) titrimetric inhibition with the private epitope of the antigen. Only such
monospecific mAbs are reliable for diagnosis and therapeutic purposes.

5.7 Differences in the immunoregulatory potentials of HLA-E monospecific
versus polyreactive mAbs

5.7.1 Potential of polyclonal anti-HLA-E mAbs in immune regulation

Immunoregulatory properties of both monospecific (TFL-033) and polyreactive
(TFL-006 & TFL-007) anti-HLA-E mAbs were examined for their ability to sup-
press or activate CD3/CD4+, CD3/CD8+ T cells, T-regs, and CD3+/CD19/20+ B cells.
The results show that the polyreactive anti-HLA-E mAbs (TFL-006/TFL-007) are
immunosuppressive comparable to IVIg, used in immunotherapy of several diseases
[16, 17]. Indeed the anti-HLA antibody profile of IVIg from different sources showed

Figure 8.
Dosimetric inhibition of purified culture supernatants of TFL-033 with two HLA-E-restricted peptides,
65RSARDTA71 and 143SEQKSNDASE152, at concentrations ranging from 4.4 to 0.27 mg/well. Although both
peptides showed inhibition, the α2 helical peptide SEQKSNDASE showed better dosimetric inhibition than the
other peptide. Peptide concentration and peptide content (μG/well) in parenthesis are shown. Pair-sample or
equal-variant t-tests were carried out in this investigation using a graphic website (www.originlab.com).
(Source: U. S. Patent No 10,656,158 B2 (U.S. patent application No. 13/507,537) issued on May 19, 2020,
to Dr. Mepur H. Ravindranath) see also Int J cancer. 2014;134(7):1558–70. DOI: 10.1002/ijc.28484.
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both HLA-Ia and HLA-Ib reactivities [16, 17]. IVIg preparations were reported to
suppress CD4+ T cells [102–113], CD20+ B cells [108–113] and expand CD4 + CD25+
T-regs [114, 115]. The polyreactive anti-HLA-E mAbs performed the major immuno-
regulatory functions better than IVIg [101, 116–118]. These functions are (1) sup-
pression of CD19+ B lymphocyte blastogenesis, proliferation, and suppression of
production of anti-HLA-I and anti-HLA-II IgG Abs, (2) suppression of blastogenesis
and proliferation of CD4+ as well as CD8+ T lymphocytes, and (3) expansion of CD4
+. CD25+ and FoxP3+ T-regs. The monospecific mAbs, when used as controls failed
to perform these functions. Peptide inhibition analyses revealed that mAbs TFL-006
and TFL-007 bind to shared amino acid sequences of HLA-I molecules
(117AYDGKDYLT125, 126LNEDLRSWTAV136, and 137DTAAQI142) (Figure 7C). Possi-
bly such binding affinity of polyreactive but not monospecific mAbs contributes to
the unique immunoregulatory functions mimicking IVIg [101, 118].

5.7.2 Therapeutic potential of anti-HLA-E monospecific mAbs

In contrast to polyreactive anti-HLA-E mAb, monospecific mAbs (TFL-033)
recognized HLA-E- specific amino acid sequences (65RSARDT70

and154AESADNSKQES144) on the α1 and α2 helices (Figure 7B).

5.7.2.1 Monospecific mAbs promote the proliferation of CD8+ T lymphocytes

To testwhethermonospecific anti-HLA-EmAbs suppress proliferation of theCD3+,
CD4+, or CD8+ T cells, human T lymphocytes (both CD4+ and CD8+) isolated from
whole blood of a normal male donor with Ficol Hypaque (31) were treated either with
phytohaemagglutinin (PHA, EY Laboratories, SanMateo, CA) at a final concentration
of 2.25mL/mL or not exposed to PHA (31). ThemAbs (monospecific mAbs TFL-033,
TFL-034, TFL-073, TFL-074, and TFL-216, polyreactive mAb TFL007, and negative
control antibodies) were separately added to cells in culture within 2 hours after adding

Sample Dilution TFL-033 TFL-034 TFL-073 TFL-074

Culture Supernatant Neat 11273 11601 7781 8493

Protein-G purified Culture supernatant (1:10) 4424 2730 1974 2507

Protein-G purified Culture supernatant
Concentrate

(1:10) 11953 10364 7708 8467

(1:20) 9423 8146 6861 7500

(1:40) 8167 6347 5324 5883

(1:80) 6203 4622 3792 4176

(1:160) 4139 1379 2683 2438

(1:320) 2862 626 1454 943

(1:640) 1434 198 590 474

(1:1280) 694 98 275 220

Protein-G purified Ascites Concentrate
(Eluate # 2)

(1:50) 17898

(1:100) 16246

(1:200) 14004

(1:400) 12520

Table 8.
Titration of protein-G purified culture supernatant and ascites concentrates of different HLA-E monospecific
mAbs. These concentrates were used for immunolocalization, peptide inhibition studies as well as for their
effects on T-lymphoblasts.
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Figure 9.
Immunolocalization of HLA-E in cancer tissues with culture supernatants (s) or ascites (A) of TFL
monospecific mAbs compared with staining by MEM-E/02, an HLA-E mAb that shows cross-reactivity to HLA
class Ia alleles. (A) Human melanoma paraffin tissue sections stained with the culture supernatants of TFL
monospecific MAbs and MEM-E/02. (B) Human gastric cancer (diffused carcinoma) paraffin tissue sections
stained with the diluted ascites of monospecific MAb TFL-033a and MEM-E/02. (C). Immunostaining of
human gastric adenocarcinoma (A, B) and gastric diffuse carcinoma (C, D) control, stained without primary
mAbs. Note the differences in staining between the two antibodies; MEM-E/02 failed to stain any cells while
TFL-033a showed intense and widely distributed staining indicative of overexpression of intact HLA-E. (D)
Human breast ductal adenocarcinoma stained with monospecific anti-HLA-E mAb TFL-216 generated by
immunizing HLA-EG. (source: U. S. Patent No 10,656,158 B2 (U.S. patent application No. 13/507,537)
issued on May 19, 2020, to Dr. Mepur H. Ravindranath) see also Int J cancer. 2014;134(7):1558–70. DOI:
10.1002/ijc.28484.
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Presence or absence of
CD4/CD8

CD3+ NAÏVE T-CELLS CD3+ LYMPHOBLASTS

No PHA With PHA No PHA With PHA

CD4+/
CD8-

CD4-/
CD8+

CD4+/
CD8-

CD4-/
CD8+

CD4+/
CD8-

CD4-/
CD8+

CD4+/
CD8+

CD4-/
CD8-

CD4+/
CD8-

CD4-/

CD8+

CD4+/
CD8+

CD4-/
CD8-

No mAb [n = 5]

Mean 3063 547 1249 475 197 65 141 52 867 325 128 289

SD 149 86 99 37 33 14 35 15 115 126 43 84

2-tail p [<] <0.0001 0.001 0 NS 0

mAb TFL-033 (IgG1) [n = 3]

[1/30]

Mean 3185 755 1170 536 223 163 153 99 1129 505 152 412

SD 180 146 58 12 40 27 80 13 86 23 16 20

2-tail p [<] NS NS NS 0.009 NS 0.015 NS 0.005 0.010 0.016 NS 0.014

[1/150]

Mean 3238 681 1149 508 252 120 205 68 1266 572 157 412

SD 14 64 21 22 30 17 13 9 80 31 14 16

2-tail p [<] NS NS NS NS 0.047 0.001 0.020 NS 0.001 0.003 NS 0.001

mAb TFL-007 (Polyreactivec anti-HLA-E, IgG2a) [n = 3]

[1/10]

Mean 2876 451 1183 444 164 63 145 52 676 317 100 222

SD 136 72 19 26 33 2 3 17 79 25 4 29

2-tail p [<] NS NS NS NS NS NS NS NS 0.027 NS NS NS

[1/50]
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Presence or absence of
CD4/CD8

CD3+ NAÏVE T-CELLS CD3+ LYMPHOBLASTS

No PHA With PHA No PHA With PHA

CD4+/
CD8-

CD4-/
CD8+

CD4+/
CD8-

CD4-/
CD8+

CD4+/
CD8-

CD4-/
CD8+

CD4+/
CD8+

CD4-/
CD8-

CD4+/
CD8-

CD4-/

CD8+

CD4+/
CD8+

CD4-/
CD8-

Mean 3,088 667 1,075 491 230 107 193 80 892 443 122 339

SD 65 16 55 48 23 7 17 4 26 18 8 21

2-tail p [<] NS 0.018 0.013 NS NS NS 0.019 0.006 NS NS NS NS

Table 9.
TFL-033 promotes T-lymphoblast proliferation of CD8+ naïve T cells and T-Lymphoblasts in the absence or the presence of PHA. The proliferation of CD4+ T lymphoblasts occurs only after
PHA activation.

23 M
on
osp

ecific
a
n
d
P
olyrea

ctive
M
on
oclon

a
l
A
n
tib

od
ies

a
ga
in
st
H
u
m
a
n
L
eu
kocyte

A
n
tigen

-E
…

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.95235



PHA (final 200mL) (31). Detailed experimental protocol is described elsewhere (31).
The effects of mAbs (monospecific mAb TFL-033 and polyreactive mAb TFL-007) on
untreated (no PHA) and PHA-treated T lymphocytes in these categories of T cells:
CD4+/CD8-, CD4-/CD8 +, CD4 + /CD8 +, and CD4-/CD8- are presented inTable 9.
There was a significant increase in numbers of CD4-/CD8+ T lymphoblasts among the
PHA-treated T lymphoblasts under the influence of TFL-033 s at 1:30 and 1:150).
Numbers of PHA-untreated T lymphoblasts increased for almost all mAbs, TFL-033 s
at 1/30 and 1/150, TFL-034 s at 1/10 and 1/50, TFL-073 s at 1/50, TFL-074 s at 1/10 [35].
An increase in PHA-untreated T lymphoblasts clarifies the functional potential of
HLA-EmonospecificmAbs in augmentingCD4�/ CD8+T lymphoblasts. A significant
increase in numbers of PHA-treated CD3+/CD4-/CD8+ lymphoblasts suggests that
monospecific monoclonal mAbs, particularly TFL-003 confers the potential to aug-
ment cytotoxic T cells. Results prompt investigating humanized version TFL-003 on
proliferation cytotoxic T-cells.

5.7.2.2 HLA-E expressed on cancer cells can directly bind to CD8+ T cells and NK cells
and suppress their tumor-killing activity

Cancer cells lose their cell surface HLA-Ia alleles (HLA-A, HLA-B, and HLA-C)
and upregulate the surface expression of HLA-Ib molecules (HLAE, HLA-F, and
HLA-G) [57, 82, 119–128]. The upregulation of HLA-E gene expression is correlated
with immunolocalization and overexpression of cell surface HLA-E [71, 91,
128–132]. HLA-E gene expression in some cancers [e.g., melanoma] is ranked 19th
among overexpressed genes [133]. HLA-E overexpression and loss of HLA-Ia in

Figure 10.
Binding of HLA-E to the inhibitory receptors CD94 and NKG2A on both CD8+ CTLs and NKT cells. The
structural configuration of the binding of HLA-E and the inhibitory receptors, leading to the arrest of the anti-
tumor activity function of CD8+ and NKT cells. The interaction between HLA-E and the inhibitory receptors
involves the binding of amino acids located on the α1 and α2 helices of HLA-E to specific amino acids on CD94
and NKG2A. The amino acid sequences on HLA-E recognized by the inhibitory receptors are unique and
specific for HLA-E and they are also recognized by HLA-E monospecific mAbs. The binding involves H-bonding
(H), van der Waal forces (vf), and salt linkages (salt) of the amino acids of HLA-E a1 and a2 helices and
CD94 and NKG2A inhibitory receptors. (Modified from Ravindranath et al. Monoclon Antib
Immunodiagn Immunother. 2015,34(3):135–53).
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cancer cells are correlated with disease progression and poor prognosis [60, 82,
130, 134]. Disease progression is attributed to the suppression of the tumor-killing
activity of CD8+ cytotoxic T lymphocytes (CTLs) and NKT cells.

Cell surface and soluble HLA-E are capable of binding to the inhibitory receptors
CD94 and NKG2A on both CTLs (CD3+/CD8+), NK cells (CD2+, CD7+, CD11b+,
CD11c+, CD90+, perforin+, & granzyme A+) and NKT cells (plus CD8+) [25, 27,
135, 136]. These cells are capable of destroying tumor cells. These cells interact with
MHC-I ligands (HLA-E) on tumor cells through inhibitory receptors. The binding
of above mentioned immune cells to HLA-E overexpressed on tumor cells cell
surface may explain why the cancer patients failed to respond to NK cell therapies.

Interaction between HLA-E and inhibitory receptors involves the binding of
HLA-E specific amino acids located on α1 and α2 helices (Table 7) to specific amino
acids on CD94 and NKG2A (Figure 10) [22, 27, 135, 136]. This specific interaction is
attributed to the loss of anti-tumor activity of CD8+ CTLs as well as that of NK or
NKT cells [22, 27, 135, 136]. We have used the synthetic peptides of these sequences
to ascertain the specific binding affinity of anti-HLA-E mAbs (Figure 8). The
ability of monospecific anti-HLA-E mAbs to bind at the site of epitopes of CD94
and NKG2A on HLA-E favor the use of the monospecific anti-HLA-E mAbs to mask
binding sites of inhibitory receptors on HLA-E. Such blocking of HLA-E may help
restore the antitumor efficacy of NK cells and CD8+ T cells that were lost due to the
interaction of inhibitory receptors and HLA-E. Possibly humanized monospecific
anti-HLA-E may be potentially considered for anti-cancer NK therapy.

6. Conclusion

The anti-HLA-E mAbs TFL- 033, TFL-034, TFL-073, and TFL-074 due to their
monospecificity are advantageous than the commercial anti-HLA-E mAbs for specific
identification and localization of HLA-E on the surface of human cells, particularly in
different cancer types. Our observations stress the need for characterization of
monospecificity and epitope specificity of any mAb, after analyzing binding affinity
on a multiplex solid matrix assays coated with the desired antigen (in question) and
the closely related antigens and inhibition of the binding affinity using peptides
sequences specific for the antigen in question. This is an important criterion to be
followed for all clinical diagnostic and therapeutic antibodies. If specific epitopes are
exposed to antigen located on the cell surface, it would be a more valuable diagnostic
tool, than those binding to specific but cryptic epitopes.

The HLA-E monospecific antibodies (e.g., TFL-033) are capable of augmenting
proliferation of non-activated CD8+ T cells and activated CD8+ T-lymphoblasts.
TFL-033 binds to a unique epitope of HLA-E, a region that is involved in binding to
inhibitory receptors (CD94 and NKG2A) present on CD3+/CD8+ T cells (Cytotoxic T
cells) and CD3-/CD8+ NKT cells and NK cells. The binding of HLA-E to inhibitory
receptors results in the suppression of anti-tumor cytotoxic functions of these
immune cells. Since TFL-033 can also upregulate anti-tumor cytotoxic T cell lymphoblasts
and also capable of blocking the interaction between cancer-associated HLA-E and inhib-
itory receptors CD94/NKG2A, the mAb can be considered as a double-edged sword to
eliminate cancer cells. Therefore, TFL-033 could be a valuable therapeutic agent for
passive immunotherapy of human cancer, provided the mAb is humanized.

In contrast to monospecific mAbs, HLA-I polyreactive anti-HLA-E monoclonal
Abs (TFL-006 and TFL-007) mimic not only HLA-I reactivity of IVIg but also
performs several critical immunoregulatory functions of IVIg, better than IVIg per
se. These functions include suppression of blastogenesis and proliferation of CD4+
T cells and CD8+ T cells, effective inhibition of production of anti-HLA-I and
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HLA-II Abs. HLA-I polyreactive anti-HLA-E monoclonal Abs (TFL-006 and TFL-
007) are capable of upregulating T-regs. T-regs acting alone is capable of
suppressing CD4+ T cells, CD8+ T cells, and antibody.
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