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Chapter

An Evolutionary Perspective for 
Network Centric Therapy through 
Wearable and Wireless Systems 
for Reflex, Gait, and Movement 
Disorder Assessment with 
Machine Learning
Robert LeMoyne and Timothy Mastroianni

Abstract

Wearable and wireless systems have progressively evolved to achieve the 
capabilities of Network Centric Therapy. Network Centric Therapy comprises 
the application of wearable and wireless inertial sensors for the quantification of 
human movement, such as reflex response, gait, and movement disorders, with 
machine learning classification representing advanced diagnostics. With wireless 
access to a functional Cloud computing environment Network Centric Therapy 
enables subjects to be evaluated at any location of choice with Internet connectiv-
ity and expert medical post-processing resources situated anywhere in the world. 
The evolutionary origins leading to the presence of Network Centric Therapy are 
detailed. With the historical perspective and state of the art presented, future 
concepts are addressed.

Keywords: wearable systems, wireless systems, accelerometers, gyroscopes, 
smartphones, portable media devices, machine learning, reflex, gait,  
movement disorder

1. Introduction

Quantifying human movement characteristics can provide a significant 
foundation for enabling optimized rehabilitation therapy, for which the advent 
of wearable and wireless inertial sensor systems provides considerable oppor-
tunity [1–12]. The quantification of inertial sensor systems have been proposed 
for the measurement and quantification of human movement characteristics 
since approximately the mid-20th century. However, sufficient miniaturization 
and reliability regarding that timeframe had not been achieved for associated 
biomedical applications [11–15]. Motivating research, development, testing, and 
evaluation for the evolution of inertial sensors derived from industries extrinsic 
relative to the biomedical field, such as the automotive industry for regulation of 
airbag deployment [11–13, 15]. Upon the achievement of a sufficient threshold 
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for miniaturization and reliability these inertial sensors have been successfully 
applied to numerous human movement scenarios, such as the quantification 
of reflex, gait, and movement disorder. Furthermore, these inertial sensors 
were noted as functionally wearable with wireless in capability, which ushered 
the presence of wearable and wireless inertial sensor systems for quantifying 
human movement [1–12]. A historical and evolutionary perspective leading to 
the amalgamation of inertial sensors that are functionally wearable with wireless 
connectivity to Cloud computing resources in conjunction with machine learn-
ing classification as an advanced post-processing technique, which is known as 
Network Centric Therapy, for the biomedical domain is presented.

2.  Ordinal methodologies for quantifying reflex response, gait, and 
movement disorder

Prior to the advent of wearable and wireless inertial sensor systems, the diag-
nosis of a subject’s health status was essentially derived from the expert although 
subjective interpretation of a skilled clinician. The clinician is generally tasked with 
the responsibility to interpret the health of the patient and apply the observation to 
an ordinal scale criteria methodology. This ordinal scale process is ubiquitous to the 
clinical domain, and this approach is relevant to the scope of reflex response, gait, 
and movement disorder. However, the ordinal scale strategy encompasses conten-
tion regarding reliability, and there generally does not exist a means for translating 
between various available ordinal scales [1, 3, 11, 12, 16–30].

Further issues with the ordinal scale approach are evident with respect to the 
imperative need for patient-clinician interaction. From a logistical perspective a 
patient is required to travel to a clinical appointment, which in the case of a special-
ized expert may require relatively long-distance travel. Additionally, the clinician is 
only provided with a short duration of time to interpret the patient’s health status, 
which may be in dispute to the true health condition of the patient. The ordinal 
scale approach intuitively only provides limited insight of patient health, for which 
sensor signal data may provide a more revealing historical perspective.

3.  Electro-mechanical systems providing signal data for quantifying 
reflex response, gait, and movement disorder

The acquisition of quantified sensor signal data enables more pertinent clini-
cal acuity regarding the health status with respect to reflex response, gait, and 
movement disorder [1–12]. With respect to the quantification of reflex response 
an assortment of electro-mechanical sensor systems have been proposed. These 
devices generally have consisted of the means for evoking the reflex through a 
provisional reflex hammer and quantifying the correlated reflex response [17, 18, 
31–38]. By temporally synchronizing the input quantification device eliciting the 
reflex and output quantification sensor of the reflex response a functional reflex 
latency can be derived [17, 18, 39, 40].

The quantification of the input that commences the reflex has been demon-
strated through instrumented provisional reflex hammers and motorized devices. 
These devices enable measuring of the intensity of the eliciting impact and the time 
stamp regarding the start of the reflex respective of the neurological pathway. The 
reflex response, such as deriving from the patellar tendon, can be measured through 
electromyograms (EMGs), strain gauges, optical motion cameras, force sensors, 
and wired inertial sensors in addition to the associated time stamp. The temporal 
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differential between the evoking reflex input time stamp and the reflex response 
time stamp can derive a functional latency of the reflex under consideration, such 
as the latency of the patellar tendon reflex [17, 18, 31–44].

Electro-mechanical systems have been applied for the quantified assessment 
of gait, which also pertains to movement disorder conditions. Representative 
electro-mechanical apparatus for quantifying gait consist of EMGs, optical motion 
cameras, force plates, foot switches, electrogoniometers, and metabolic analysis 
devices. These devices are generally reserved for clinical gait laboratories and imply 
supervision from expert clinical resources [11, 12, 45–48].

The acquired sensor signal data can be post-processed and applied to sophisticated 
techniques, such as machine learning, for distinguishing between various states of 
health during gait. Two particular types sensor signal are the force plate and optical 
motion camera [49–54]. The force plate provides kinetic signal data, and the optical 
motion camera provides kinematic signal data. The force plate and optical motion 
camera can be operated in tandem and synchronicity to derive clinically significant 
information about gait, such as ankle torque derived during stance [48].

These electro-mechanical systems enable quantification of human movement 
features, such as reflex response, gait, and movement disorders, through the 
acquired sensor signal data [31–38, 41–54]. Although these electro-mechanical 
systems are clinically standard, they are generally constrained to a clinical 
laboratory. Furthermore, the majority of these devices both require specialized 
resources for their experimental operation, and they are predominantly not 
portable [1–4, 6–12, 47, 48].

By contrast, the functionally wearable with wireless inertial sensor system 
considerably alleviates the constraints of specialized resources through simplified 
means of activating the inertial sensor signal recording. These devices constitute 
portable systems, and they are functionally wearable [1–12]. The origins of the 
advent of Network Centric Therapy commence with the research, development, 
testing, and evaluation for quantifying reflex response and latency, which subse-
quently lead to the extrapolation to the domains of wearable and wireless inertial 
sensors for gait and movement disorder quantification.

4.  Evolutionary pathway for Network Centric Therapy with respect to 
quantification of reflex response and latency

The global evolutionary pathway for Network Centric Therapy derives from the 
Ph.D. Dissertation research conducted by Dr. LeMoyne, which lead to the progres-
sive development of a device known as the Wireless Quantified Reflex Device 
through the incremental develop of four generations. The preliminary success 
involved the quantification of reflex response through locally wireless accelerom-
eters. In order to measure the response of the patellar tendon reflex, the wireless 
accelerometers were mounted proximal to the lateral malleolus, which signified 
their wearable capability [17, 18, 40].

The original wireless accelerometers were provided through internal UCLA 
research, and they were referred to as MedNodes. The MedNodes required special-
ized operation, as they were the scope of graduate-level research at UCLA. These 
wireless accelerometer nodes that were noted as conveniently wearable were applied 
to the first and second generations of the Wireless Quantified Reflex Device, and 
the quantification of the patellar tendon reflex was measured in an accurate and 
reliable manner. The collected signal data of the wireless accelerometer was trans-
mitted to a locally situated computer for post-processing [55, 56]. Central to all 
four generations of the Wireless Quantified Reflex Device was the integration of 
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a quantified potential energy impact pendulum to consistently evoke the patellar 
tendon reflex [17, 18, 39, 40, 55, 56].

The third and fourth generations of the Wireless Quantified Reflex Device 
included a second wireless accelerometer to determine the time of impact for the 
quantified potential energy impact pendulum. The first wireless accelerometer was 
mounted to the ankle to quantify reflex response and time of response. Using the 
temporal offset of the wireless accelerometer mounted on the impact pendulum 
evoking the patellar tendon reflex and the wireless accelerometer mounted about 
the lateral malleolus mounted about the ankle to measure reflex response, a func-
tional patellar tendon reflex latency was derived. The third and fourth generations 
of the Wireless Quantified Reflex Device incorporated the G-link wireless acceler-
ometer developed by Microstrain [17, 18, 39, 40].

The third generation Wireless Quantified Reflex Device utilized streaming 
signal data to the locally situated portable computer for acquisition of the acceler-
ometer signal data and subsequent post-processing. The third generation Wireless 
Quantified Reflex Device was the first evolution to feature the ability to derive func-
tional reflex latency through the tandem wireless accelerometers with one wireless 
accelerometer located on the potential energy impact pendulum that evokes the 
patellar tendon reflex and the other wireless accelerometer mounted proximal to the 
lateral malleolus of the ankle for also acquiring reflex response. The research find-
ings demonstrated that patellar tendon reflex response and associated functional 
latency could be both quantified with considerable accuracy and reliability [39].

The observations of the third generation Wireless Quantified Reflex Device 
established opportunity for improvement, such as increasing the sampling rate for 
the tandem accelerometers. This improvement would implicate better acuity with 
respect to the derived functional latency of the patellar tendon reflex. An artificial 
reflex device was applied as intermediary before the development of the fourth 
generation Wireless Quantified Reflex Device. This intermediary device utilized 
the data logger of the G-link wireless accelerometers, which permitted augmented 
sampling rates, while retaining wireless connectivity to a local portable computer 
for accelerometer signal data downloading and post-processing [57–59].

The fourth generation Wireless Quantified Reflex Device successful applied 
a longitudinal study for multiple subjects. With the wireless accelerometer set to 
data logger configuration with subsequent wireless transmission, the Wireless 
Quantified Reflex Device successfully acquired patellar tendon reflex response 
and functional latency with considerable accuracy, reliability, and reproducibility 
[40]. Subsequent evolutions encompass the application of more robust wearable 
and wireless inertial sensor systems and conjunction with machine learning to 
distinguish a hemiplegic reflex pair regarding affected patellar tendon reflex and 
associated unaffected patellar tendon reflex [60–62].

The next improvement incorporated the use of the portable media device and 
smartphone for the quantification of reflex response as a functional wireless accelerom-
eter platform using the potential energy impact pendulum to evoke the patellar tendon 
reflex [63, 64]. The portable media device was suited for facilities with local wireless 
internet zones [63]. For locations requiring broad telecommunication access, the 
smartphone provides better benefit [64]. Both applications feature a common software 
application that enables a discrete recording of the accelerometer signal for quantifying 
the reflex response, and the signal data can be attached to an email for wireless trans-
mission to the Internet for post-processing anywhere in the world [63, 64].

For example, LeMoyne and Mastroianni conducted an experiment to quantify 
reflex response using a portable media device applying supramaximal stimulation 
of the patellar tendon reflex in Lhasa, Tibet of China. The signal data was wirelessly 
transmitted to the Internet as an email attachment, which served as a provisional 
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Cloud computing resource. The data was later downloaded in Flagstaff, Arizona of 
the United States of America, which is effectively on the other side of the world, for 
post-processing [65].

Further advancements of the concept of quantifying reflex response, such as the 
patellar tendon, pertained to using the accelerometer signal, such as through a por-
table media device, to differentiate between a hemiplegic reflex pair. The hemiplegic 
affected leg’s patellar tendon reflex response is notably more amplified relative 
to the patellar tendon reflex response of the unaffected leg. By consolidating the 
respective accelerometer signals to a feature set for machine learning classification 
using the support vector machine available through the Waikato Environment for 
Knowledge Analysis (WEKA) considerable machine learning classification accuracy 
was attained [60]. This achievement is notable, since subjective clinical observations 
to distinguish between a hemiplegic reflex pair is a matter of contention [21].

The gyroscope was eventually incorporated in the inertial sensor package of por-
table media devices and smartphones. The gyroscope provides a clinical representa-
tion for rotational characteristics of a joint, which represents the response of the 
patellar tendon reflex. Successfully demonstration of the gyroscope to quantify the 
patellar tendon reflex was demonstrated in the context of the Wireless Quantified 
Reflex Device through the potential energy impact pendulum [61, 62, 66–68].

Using both the potential energy impact pendulum and supramaximal stimulation 
to evoke the patellar tendon reflex response multiple machine learning algorithms 
using WEKA have achieved considerable classification accuracy [60–62, 66, 67]. 
Figures 1 and 2 represent the gyroscope signal for the reflex response of the hemiple-
gic affected leg and unaffected leg, respectively. Machine learning algorithms, such 
as the J48 decision tree, provide a visualized basis for the most prevalent numeric 
attributes to establish classification accuracy, such as the time disparity between maxi-
mum and minimum angular rate of rotation for the patellar tendon reflex response, as 
illustrated in Figure 3 [67].

Figure 1. 
The gyroscope signal of the patellar tendon reflex response for the hemiplegic affected leg using the potential 
energy impact pendulum to evoke the reflex [67].
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5.  Lessons learned through the research, test, and evaluation of the 
Wireless Quantified Reflex Device for the broader evolution of 
Network Centric Therapy, such as gait and movement disorder 
quantification

A readily noted capability observed by LeMoyne and Mastroianni was that 
since the wireless accelerometer was functionally wearable for the quantification 
of reflex response through mounting about the lateral malleolus of the patellar 

Figure 2. 
The gyroscope signal of the patellar tendon reflex response for the unaffected leg using the potential energy 
impact pendulum to evoke the reflex [67].

Figure 3. 
The J48 decision tree to distinguish between a hemiplegic affected leg and unaffected leg, for which the time 
disparity between maximum and minimum angular rate of rotation for the patellar tendon reflex response 
numeric attribute is illustrated as the most prevalent for establishing classification accuracy [67].
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tendon, likewise the same mounting procedure could be applied for quantifying 
gait patterns [11, 12, 17]. Alternative mounting configurations, such as the lateral 
epicondyle proximal to the knee, were also feasible for assessing gait in a quanti-
fied context [11]. Additionally, the smartphone and portable media device were 
suitable candidates to represent functionally wearable and wireless inertial sensor 
systems (both accelerometers and gyroscopes) for gait quantification and eventu-
ally machine learning classification [3–10]. These concepts were also applied to 
the quantification of movement disorders through the mounting of wearable and 
wireless inertial sensor systems about the dorsum of the hand [1, 2, 5–10].

6.  Evolutionary pathway for Network Centric Therapy with respect to 
quantification of gait

Preliminary attempts to apply functionally wearable wireless accelerometers to 
measure gait characteristics consisted of segmented subsystems and in some cases 
complex mounting techniques exceeding the knowledge of the common user [69–72]. 
The highly miniaturized, portable, and non-intrusive nature of the G-link wireless 
accelerometer developed by Microstrain demonstrate its robust capability for quanti-
fying gait characteristics [11]. Proof of concept from an engineering perspective was 
demonstrated for the identification of quantified disparity of hemiplegic gait and 
Virtual Proprioception to enable real-time rehabilitation of hemiplegic gait [73–76].

Preliminary research, development, testing, and evaluation by LeMoyne et 
al. applied the G-link Microstrain wireless accelerometer to ascertain quantified 
disparity of hemiplegic gait. The wireless accelerometer nodes were effectively 
wearable. They could be mounted about the lateral epicondyle proximal to the 
knee through an elastic band or about the lateral malleolus near the ankle using the 
elastic band of a sock [74, 75].

The wireless accelerometer achieved connectivity to a locally situated personal 
computer, which would then serve as the basis for post-processing. Using the accel-
eration magnitude of the three-dimensional orthogonal acceleration signal, char-
acteristic spikes of the acceleration magnitude signal represented the initiation of 
stance. The time averaged acceleration from stance to stance enabled the quantifica-
tion of gait characteristics [74, 75]. Furthermore, through the ratio of the hemiplegic 
affected leg to the unaffected leg using the time averaged acceleration from stance 
to stance, the quantified disparity of hemiplegic gait could be quantified with the 
potential for deriving therapeutic intervention for rehabilitation [74]. Functionally 
wearable and locally wireless accelerometers have also been applied to successfully 
contrast hemiplegic gait with respect to the frequency domain [73]. Other applica-
tions of wireless accelerometer systems that are functionally wearable have been 
successfully demonstrated for the context of effectively autonomous gait analysis 
based on quantified data derived from the acceleration signal [11, 12, 69–72].

Virtual Proprioception expanded the capabilities of functionally wearable 
wireless accelerometers for real-time modification of hemiplegic gait based on 
accelerometer signal data. The wireless accelerometers were mounted by flexible 
elastic bands proximal to the lateral epicondyle of the knee for both the unaffected 
leg and hemiplegic affected leg. Based on a visual feedback strategy the person with 
hemiplegic gait was able to modify the hemiplegic affected leg to a more representa-
tive acceleration signal representative of the unaffected leg [76].

During 2010 LeMoyne and Mastroianni sought to expand the availability of 
wearable and wireless accelerometer systems for quantifying gait in the context 
of more commercially available systems. The smartphone of that timeframe was 
equipped with an internal accelerometer. Additionally, the smartphone is inherently 
capable of wirelessly accessing the Internet. A software application for recording 
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the accelerometer data for a prescribed duration and sampling rate with wireless 
transfer to the Internet as an email attachment enables the smartphone to function 
as a wearable and wireless inertial sensor system. The email resource represents a 
provisional representation of a Cloud computing resource. These characteristics 
enable the smartphone to quantify gait features in the context of a wearable and 
wireless inertial sensor system [77]. These preliminary capabilities constitute the 
origins of Network Centric Therapy for the domain of gait analysis [3–7, 78].

Preliminary testing and evaluation of the smartphone as a wearable and wire-
less inertial sensor system for gait analysis was conducted in region of Pittsburgh, 
Pennsylvania. The experimental gait analysis accelerometer data was conveyed 
wirelessly to the Internet as an email attachment for subsequent post-processing in 
the general area of Los Angeles, California. The implications were that experimental 
and post-processing locations could be geographically separated anywhere in the 
world with Internet connectivity [77].

The preliminary gait experiment of 2010 implementing the smartphone as a 
wearable and wireless inertial sensor system through the internal accelerometer 
involved mounting the smartphone proximal to the lateral malleolus of the ankle 
joint by an elastic band. Two primary gait characteristics were quantified, such 
as the temporal duration between stance to stance and time averaged acceleration 
from stance to stance. These parameters acquired by the smartphone functioning as 
a wearable and wireless inertial sensor system through the available accelerometer 
demonstrated considerable accuracy and reliability [77].

Additional and similar themed experiments pertained to quantification of 
gait through other mounting applications, which underscores the flexibility of 
the smartphone as a wearable and wireless inertial sensor system. The two other 
mounting positions involved the lateral epicondyle near the knee joint and lumbar-
sacral aspect of the spine through an elastic band. The temporal duration between 
stance to stance cycle displayed considerable accuracy and reliability and success-
fully elucidated predominant frequencies in the context of the frequency domain 
with respect to both mounting strategies [79, 80].

Another device that is similar to the smartphone for applications as a wearable 
and wireless inertial sensor system for the quantification of gait is the portable media 
device. The portable media device can utilize the same software application as rel-
evant to the smartphone. Although the portable media device is generally restricted 
to an area with local internet connectivity, this device has a lighter mass and is more 
affordable for tandem applications involving both legs for gait analysis [3–10, 78].

Preliminary, testing of the portable media device was successfully demonstrated 
with mounting about the lateral malleolus of the leg by an elastic band. The acceler-
ometer of the portable media device successfully quantified gait in an accurate and 
consistent manner. The experimental data was conveyed by wireless transmission 
through the Internet as an email attachment, and the experimental and post-pro-
cessing resources were situated on opposite sides of the continental United States. 
Post-processing emphasized the derivation of step cycle time (stance to stance) and 
time averaged acceleration (stance to stance) [81].

An observation of the portable media device is that it is more affordable than 
the smartphone, such as for the application of two tandem operated portable media 
devices for quantifying the disparity of hemiplegic gait. LeMoyne and Mastroianni 
incorporated two portable media devices in the context of a wearable and wireless 
inertial sensor system, such as an accelerometer, for quantifying hemiplegic gait 
respective of the unaffected leg and the hemiplegic affected leg. The devices were 
mounted about the lateral malleolus of the ankle joint through an elastic band for 
both the unaffected leg and the hemiplegic affected leg. The tandem activated por-
table media devices successfully demonstrated the ability to quantitatively identify 
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stance to stance temporal duration and stance to stance time averaged acceleration 
of the hemiplegic affected leg and unaffected leg with statistical significance. 
Also, the ratio of stance to stance time averaged acceleration less the offset for the 
hemiplegic affected leg and unaffected leg demonstrated quantified disparity [82].

Eventually a strategy for using a singular smartphone to quantify hemiplegic gait 
and its associated disparity was established with the incorporation of a treadmill to 
maintain constant velocity. The smartphone functioning as a wearable and wire-
less accelerometer platform was mounted about the lateral malleolus of the ankle 
by an elastic band. Automated post-processing software emphasized the rhythmic 
characteristics of gait and acquired gait parameters, such as stance to stance tempo-
ral disparity and stance to stance time averaged acceleration. The stance to stance 
temporal disparity did not display statistical significance, because of the treadmill 
velocity constraint. Statistical significance was achieved for stance to stance time 
averaged acceleration with respect to comparing the hemiplegic affected leg to the 
unaffected leg. This experimental configuration enables the evaluation and quanti-
fication of gait in an autonomous environment [83].

Evolutionary trends eventually enabled the smartphone to quantify gait through 
the internal gyroscope, which offers a more clinically representative kinematic signal. 
The strategy of conducting gait analysis constrained to a constant velocity by a tread-
mill was applied. A smartphone functioning as a wearable and wireless gyroscope 
platform quantified hemiplegic gait in terms of both the affected leg and unaffected 
leg with mounting about the lateral malleolus near the ankle joint through an elastic 
band. The gyroscope signal was consolidated to a feature set during the post-process-
ing phase, which consisted of five numeric attributes: maximum, minimum, mean, 
standard deviation, and coefficient of variation. Using the multilayer perceptron 
neural network considerable classification accuracy was attained for distinguishing 
between the hemiplegic affected leg and unaffected leg during gait [84].

Additionally, the smartphone through its internal inertial sensor system has 
been applied to other applications pertaining to the domain of gait analysis and 
associated mobility. Smartphones have been successfully incorporated for augment-
ing the acuity of clinically standard evaluations, such as the Timed Up and Go and 
6-Minute Walk Test [85–87]. An observed utility of the strategy of augmenting 
clinically standard evaluation techniques with functionally wearable and wireless 
inertial sensor systems, such as the smartphone, is the ability to evolve a clinical 
method rather than inventing a new methodology.

During this phase of the evolutionary process that lead to the realization of 
Network Centric Therapy a new observation occurred. Smartphones and portable 
media devices can function as representative and effective wearable and wireless 
inertial sensor systems. However, their evolutionary pathway is not consistent with 
the biomedical and healthcare domain. A new perspective for wearable and wireless 
inertial sensor systems was developed, which incorporated inertial sensor nodes 
with local wireless connectivity to a device, such as a smartphone or tablet, with 
considerably expanded wireless access to the Internet. This paradigm shift enabled 
considerable reduction in mass and volumetric profile for the wearable and wire-
less inertial sensor system. This strategy enabled segmented wireless access of the 
inertial signal data for connectivity to a Cloud computing resource [88].

During 2016 LeMoyne et al. utilized a wearable and wireless inertial sensor 
system architecture in the context of Network Centric Therapy for the evaluation 
of gait for subject’s with Friedreich’s ataxia. The system applied local wearable and 
wireless inertial sensor nodes with local wireless connectivity to a tablet with global 
wireless access to a Cloud computing environment. A multilayer perceptron neural 
network achieved considerable classification accuracy to distinguish between a 
person with healthy gait and gait for a person with Friedreich’s ataxia [89].
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The current state of the art for demonstrating the capability of Network Centric 
Therapy involves the recent test and evaluation of the BioStamp nPoint, which 
represents a conformal wearable and wireless inertial sensor system. The BioStamp 
nPoint achieves wireless connectivity for acquiring signal data for quantifying gait 
in a segmented manner through wireless systems, such as a tablet for operation and 
smartphone for Cloud computing access. Figure 4 presents the supporting apparatus 
for the BioStamp nPoint conformal wearable and wireless inertial sensor system [90].

Recently, during 2020 LeMoyne and Mastroianni applied the BioStamp nPoint to 
quantify hemiplegic gait with distinction through machine learning. The BioStamp 
nPoint conformal wearable and wireless inertial sensor system was mounted by 
adhesive medium to both the hemiplegic affected leg and unaffected leg about the 
femur and proximal to the patella as shown in Figure 5. The subject walked on a 
treadmill for the experiment [91].

Figure 4. 
The BioStamp nPoint conformal wearable and wireless inertial sensor system and supporting devices, such as 
docking station, tablet, and smartphone [90].

Figure 5. 
The BioStamp nPoint conformal wearable and wireless inertial sensor system mounted about the femur for the 
quantification of hemiplegic gait [91].
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The gyroscope signal revealed notable disparity respective of the affected leg 
and unaffected leg during gait as presented in Figures 6 and 7 respectively. Post-
processing of the gyroscope signal data consolidated a feature set consisting of five 
numeric attributes based on descriptive statistics, such as maximum, minimum, 
mean, standard deviation, and coefficient of variation. Multiple machine learn-
ing classification algorithms, such as the support vector machine and multilayer 
perceptron neural network, achieved considerable classification accuracy to 
distinguish between the hemiplegic affected leg and unaffected leg [91, 92].

Figure 6. 
The BioStamp nPoint conformal wearable and wireless inertial sensor signal for the hemiplegic affected leg [91].

Figure 7. 
The BioStamp nPoint conformal wearable and wireless inertial sensor signal for the unaffected leg [91].
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7.  Evolutionary pathway for Network Centric Therapy with respect to 
quantification of movement disorders, such as Parkinson’s disease and 
Essential tremor

Functionally wearable accelerometer systems have been demonstrated for the 
quantification of movement disorder and also their response to intervention strategy 
[11, 12, 93–98]. With the evolution of wireless technology other traditional inertial 
signal data transfer strategies have become effectively obsolete [99]. Intuitively, the 
G-link wireless accelerometer was a candidate for testing and evaluating the quanti-
fication of tremor associated with movement disorders [11, 12, 100–103].

Preliminary demonstration of the G-link wireless accelerometer showed the 
ability to quantify simulated Parkinson’s disease hand tremor by mounting the 
device to the dorsum of the hand [100, 101]. Eventually simulated Parkinson’s 
disease tremor was contrasted to a static condition. Post-processing of the signal 
data involved the time averaged acceleration, for which statistical significance was 
achieved [100]. A similar wireless inertial sensor system configuration was success-
fully demonstrated for the quantification of Parkinson’s disease hand tremor within 
this timeframe [104].

LeMoyne and Mastroianni during 2010 extended the capability of wearable and 
wireless inertial sensor systems for quantifying Parkinson disease hand tremor 
through the application of a smartphone. A software application enabled the 
smartphone to quantify hand tremor for a prescribed temporal duration through 
the smartphone’s internal accelerometer. The accelerometer signal data was con-
veyed by wireless connectivity to the Internet as an email attachment. Statistical 
significance was achieved with respect to the subject with Parkinson’s disease hand 
tremor and subject without Parkinson disease. Notably, the experiment occurred 
in metropolitan Pittsburgh, Pennsylvania and the post-processing was conducted 
in the general area of Los Angeles, California [105]. The research team observed 
that experimental and post-processing resources could be geographically separated 
anywhere in the world with Internet access [1, 2, 5–10, 105, 106]. This observation 
constitutes the origins of Network Centric Therapy with regards to movement 
disorders [1, 2, 5–7, 106].

Using the smartphone as an inertial sensor platform with wearable properties 
the recorded signal data can represent instrumental feedback with respect to the 
efficacy of therapy response. For example, with machine learning classification 
the smartphone functioning as a wearable and wireless inertial sensor platform 
can distinguish between deep brain stimulation set to ‘On’ and ‘Off ’ status. A 
person with Essential tremor performed a reach and grasp task with a smartphone 
mounted to the dorsum of the hand by a latex glove. Post-processing consolidated 
the inertial signal data to a feature set amenable for machine learning classification, 
and considerable classification accuracy was achieved through the application of a 
support vector machine to differentiate between deep brain stimulation set to ‘On’ 
and ‘Off ’ status [107]. In conjunction with the preliminary success of the research 
with respect to Essential tremor and deep brain stimulation set to ‘On’ and ‘Off ’ 
status the multilayer perceptron neural network also attained considerable machine 
learning classification accuracy for differentiating these deep brain stimulation 
settings [108].

Another extrapolation of this research perspective involved considering six 
machine learning algorithms: multilayer perceptron neural network, support vector 
machine, K-nearest neighbors, logistic regression, J48 decision tree, and random 
forest. The reach and grasp task was applied for a subject with Essential tremor 
treated by deep brain stimulation with respect to ‘On’ and ‘Off ’ status. Three feature 
set scenarios were addressed to determine the most appropriate machine learning 
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algorithms: accelerometer and gyroscope signal recordings, accelerometer signal 
recordings, and gyroscope signal recordings. The multilayer perceptron neural 
network, support vector machine, K-nearest neighbors, and logistic regression 
achieved the highest classification accuracy in consideration of these three feature 
set scenarios [109].

The accelerometer and gyroscope intrinsic to the smartphone was also 
applied for the evaluation of deep brain stimulation efficacy for the treatment of 
Parkinson’s disease. Deep brain stimulation was set to ‘On’ and ‘Off ’ status with 
the hand tremor response measured by a smartphone mounted to the dorsum of 
the hand through a latex glove. Multiple machine learning algorithms were evalu-
ated: multilayer perceptron neural network, support vector machine, K-nearest 
neighbors, logistic regression, J48 decision tree, and random forest. The feature set 
consisted of descriptive statistics for both the accelerometer and gyroscope signal 
data. Two performance parameters were considered, such as classification accu-
racy and time to develop the machine learning model. The support vector machine 
and logistic regression best satisfied these two performance parameters [110]. 
The multilayer perceptron neural network achieved considerable classification 
accuracy to distinguish between the deep brain stimulation set to ‘On’ and ‘Off ’ 
status for Parkinson’s disease hand tremor, but the time to develop the model was 
considerably protracted [110, 111].

Network Centric Therapy was further realized for the domain of movement dis-
orders through the BioStamp nPoint. The BioStamp nPoint is a conformal wearable 
and wireless inertial sensor system with segmented operation and wireless trans-
mission of signal data to a secure Cloud computing environment with wireless con-
nectivity to a smartphone and tablet. The conformal sensors also have a mass less 
than ten grams and a profile on the order of a bandage. Additionally, the BioStamp 
nPoint is certified as an FDA 510(k) medical device for the acquisition of medical 
grade data [5, 90]. These attributes of the BioStamp nPoint ideally accommodate 
the quantification of movement disorder tremor response, such as for Parkinson’s 
disease, based on deep brain stimulation intervention through mounting about the 
dorsum of the hand using an adhesive medium as illustrated in Figure 8 [112].

Multiple sets of deep brain stimulation parameter configurations have been 
evaluated for the treatment of Parkinson’s disease using the BioStamp nPoint to 
quantify the response and machine learning to distinguish the respective parameter 
configurations [112–115]. The BioStamp nPoint was mounted to the dorsum of 

Figure 8. 
The BioStamp nPoint conformal wearable and wireless inertial sensor system mounted about the dorsum of 
the hand for quantifying movement disorder tremor response, such as for Parkinson’s disease, as a result of deep 
brain stimulation intervention [112].
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the hand through an adhesive medium. The deep brain stimulation amplitude was 
evaluated at multiple settings, such as ‘Off ’ status as a baseline, amplitude set to 
1.0 mA, 2.5 mA, and 4.0 mA. The acceleration signal derived from the BioStamp 
nPoint conformal wearable and wireless inertial sensor system was post-processed 
to present the acceleration magnitude as illustrated in Figures 9–12 [112].

Figure 9. 
Acceleration magnitude derived from the BioStamp nPoint conformal wearable and wireless inertial sensor 
system for hand tremor from a subject with Parkinson’s disease with deep brain stimulation set to ‘Off ’  
status [112].

Figure 10. 
Acceleration magnitude derived from the BioStamp nPoint conformal wearable and wireless inertial sensor 
system for hand tremor from a subject with Parkinson’s disease with deep brain stimulation set to amplitude 
equal to 1.0 mA [112].
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The acceleration magnitude signal data was consolidated to a feature set though 
Python. The feature set was composed of numeric attributes, such as maximum, 
minimum, mean, standard deviation, and coefficient of variation. Machine learn-
ing algorithms, such as J48 decision tree, K-nearest neighbors, support vector 
machine, logistic regression, and random forest were contrasted in terms of their 

Figure 11. 
Acceleration magnitude derived from the BioStamp nPoint conformal wearable and wireless inertial sensor 
system for hand tremor from a subject with Parkinson’s disease with deep brain stimulation set to amplitude 
equal to 2.5 mA [112].

Figure 12. 
Acceleration magnitude derived from the BioStamp nPoint conformal wearable and wireless inertial sensor 
system for hand tremor from a subject with Parkinson’s disease with deep brain stimulation set to amplitude 
equal to 4.0 mA [112].
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classification accuracy and time to develop the machine learning model. Based on 
these criteria the K-nearest neighbors machine learning algorithm displayed the 
optimal satisfaction of classification accuracy in conjunction with time to develop 
the machine learning model and the support vector machine achieved the optimal 
classification accuracy [112]. The multilayer perceptron neural network also dem-
onstrated considerable classification accuracy [113].

Deep learning was then applied to distinguish between deep brain stimulation 
parameter configuration settings for the treatment of Parkinson’s disease, such as 
‘Off ’ status as a baseline, amplitude set to 1.0 mA, amplitude set to 1.75 mA, ampli-
tude set to 2.5 mA, amplitude set to 3.25 mA, and amplitude set to 4.0 mA. The 
BioStamp nPoint conformal wearable and wireless inertial sensor system provided 
the accelerometer signal data. The post-processing was facilitated by Google Colab 
and TensorFlow to implement a convolutional neural network. The convolutional 
neural network achieved considerable classification accuracy to distinguish 
between all six of these parameter configurations [116, 117].

8.  Future perspectives for Network Centric Therapy for reflex, gait, and 
movement disorder assessment with machine learning

Network Centric Therapy is anticipated to have a transformative influence on 
the healthcare and biomedical industry. Conformal wearable and wireless inertial 
sensor systems are envisioned to enable historical and distinctly quantified data for 
subjects undergoing rehabilitation and subjects with neurodegenerative movement 
disorders, such as Parkinson’s disease and Essential tremor. Data science meth-
odologies can be incorporated to optimize the respective therapy strategy. With 
the amalgamation of machine learning and eventually deep learning conformal 
wearable and wireless inertial sensor systems are predicted to considerably advance 
augmented clinical situational awareness for diagnostic and prognostic capabili-
ties. In particular, with the Cloud computing accessibility intrinsic to Network 
Centric Therapy, the most talented clinical resources from anywhere in the world 
can provide optimal patient specific rehabilitation and therapy to subjects from the 
convenience of a homebound setting. Additionally, the inherent aspects of Network 
Centric Therapy, such as conformal wearable and wireless inertial sensor systems, 
machine learning, and Cloud computing access, imply a plausible pathway to the 
closed-loop optimization of deep brain stimulation parameter configurations.

9. Conclusion

The evolutionary perspective for the advent of Network Centric Therapy for the 
domains of assessing reflex, gait, and movement disorders have been thoroughly 
discussed. Inherent aspects pertaining to Network Centric Therapy involve wearable 
and wireless inertial sensor systems, machine learning, and Cloud computing access 
for the acquired inertial sensor signal data. The implications are that expert clini-
cians can access a patient’s health status based on the wearable and wireless inertial 
sensor system signal data from anywhere in the world. These achievements consti-
tute a significant evolution relative to traditional ordinal scale methodologies and 
electro-mechanical signal data obtained by clinical laboratory resources. Conformal 
wearable and wireless inertial sensor systems have further evolved the capabilities 
of Network Centric Therapy. In the future Network Centric Therapy is envisioned 
to augment clinical diagnostic and prognostic acuity, optimize rehabilitation, and 
enable closed-loop optimization of deep brain stimulation parameter configurations.
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