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Abstract

Dendritic cells (DC) represent an important link between innate and  
adaptive immunity, which play an important role during the immune response 
against pathogens. There are several populations and subpopulations of DC, but 
mainly two subpopulations are characterized: the classic DC specialized in the 
processing and presentation of the antigen; and the plasmacytoid DC that have a 
high phagocytic activity and capacity for the production of cytokines. This chapter 
aims to present the current aspects related to the most relevant characteristics and 
functions of DC, as well as their role in host defense against infections by viruses, 
parasites, bacteria, and fungi.

Keywords: dendritic cells, pathogen infections, innate immune response, 
inflammation

1. Introduction

DCs represent an important link between innate and adaptive immunity. DCs are 
heterogeneous population of antigen-presenting cells that are crucial to initiate and 
polarize the immune response. Although, all DCs are capable of capturing, process-
ing, and presenting antigens to T cells, DCs subtypes differ in origin, location, 
migration patterns, and specialized immunological roles [1]. All the DCs are con-
tinuously renewed by hematopoietic stem cell progenitor cell located in bone mar-
row, except of Langerhans cells (LCs) that develop from embryonic macrophages in 
the yolk sac and fetal liver, that are recruited in the epidermis during embryonic life. 
The process is not clearly, but hematopoietic stem cell is differentiated into gran-
ulocyte-macrophage progenitors (GMP) and multilymphoid progenitors (MLP), 
that have the potential to differentiate into macrophage-dendritic precursor (MPD) 
or common dendritic cell progenitor (CDP) like progenitor. These progenitors are 
subsequently differentiated into common monocyte progenitor (cMoPs), plasma-
cytoid dendritic cells (pDCs) and human equivalent of pre-DC, those are the most 
important to differentiate all subsets of DCs. cMoPs develop into blood monocytes, 
which differentiate into monocyte-derived DCs (MoDCs) in inflamed tissues, and 
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fully mature pDCs along with unmatured pre-DCs migrate through the blood tissue. 
Immature human pre-DCs differentiate either in the bloodstream or in tissues  
following migration, developing thus in different DCs subsets (Figure 1) [2–4].

2. Dendritic cell subsets

The DCs are present in lymph organs and non-lymphoid organs, also in blood 
stream, afferent lymph, and mucous membranes. There are different ways to clas-
sify DCs, by its linage, as mentioned above there are cMoPs and pDCs. The cMocPs 
express typical myeloid antigens as CD11c, but lack of CD14 or CD16 and may 
be split in CD1c + and CD141+ fractions. While pDCs have expression of CD123, 
CD303 and CD304, with high or low expression of CD123, CD303 or CD304; the 
cluster of differentiation is determined in the differentiation of their precursor. 
These cells cMoPs and pDCs are classified into blood DCs [5, 6].

Inflammatory DCs derived from classical CD14+ blood monocytes, using 
granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 
(IL)-4. Monocytes are highly plastic, and they differentiate into DCs or different 
forms of macrophages (M1/M2). Human inflammatory exudates contain distinct 
inflammatory DC-like and macrophage-like cells and transcriptional profiling 
suggests a common monocyte origin. Key features of these cells are the expression 
of CD1c, CD1a, CD206, FcεR1, Sirpα but lack of CD16 and CD209. Non-classical 
monocytes and antigen 6-Sulpho LacNac DCs are a heterogeneous population 
and CD16+ monocytes possess distinct characteristics including higher major 
histocompatibility complex (MHC) class II and co-stimulatory antigen expression, 
classify as a type of blood DCs [5].

Figure 1. 
Dendritic cell lineage development. The hematopoietic stem cell located in bone morrow is the progenitor of 
all DCs. Here the differentiation in multi-lymphoid progenitor and granulocyte-macrophage can become the 
human equivalent of macrophage-dendritic precursor (MPD) or dendritic cell progenitor (CDP). From this 
cell arise three important progenitor cells (cMoPs), pDCs and pre-DC, these last cells migrate to bloodstream or 
target tissue/organ to maturate and differentiate to become one of the different subsets of DCs. Explanation in 
the text. Figure modified by the authors from reference [3] and authorized to be published by bio-Techne  
(figure created by Muñoz-Carrillo et al., with BioRender.com).
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The functional-anatomical classification of DCs is widely vast, the classification 
of DCs are dependent of anatomical location or function, for example, DCs in heart 
are known as interstitial cells, in ganglia are known as interdigitating cells, but when 
DCs are in the afferent lymph are called veiled cells. Also, the function of these are 
different but sequential [5, 6]. Intestinal DCs are found in small intestine, lamina 
propia and gut associated lymphoid tissue. This DCs express CD103 and Sirpα in 
three different ways, such as CD103 + Sirpα- DCs, The CD103 + Sirpα+ DCs and 
CD103- Sirpα+ DCs. Most of these cells are located deeper into lamina propia, and 
express CD45, human leukocyte antigen-DR isotype (HLA-DR), CD14, CD64  
and high levels of CX3C chemokine receptor 1(CX3CR1), and since these cells 
do not migrate to the lymph nodes, they have been depicted as intestinal mac-
rophages. In the mesenteric lymph node DCs are a mixture of cells found in the 
peripheral blood. Such as peripheral blood, where soluble food bioactives may also 
be directly available for internalization by DCs in the draining lymph nodes via the 
conduit system [7].

LCs and microglia are two specialized self-renewing DCs, found them in 
stratified squamous epithelium and parenchyma of the brain, respectively. The 
LCs differentiate into migratory DCs, whereas microglia are considered as a type 
of specialized macrophage. There are DCs found in tissues and lymph nodes with 
marker CD14+, a subset of CD11c+, found in interstitial DCs; but they are more 
monocyte-like or macrophage-like, that may arise from classical monocytes [5].

2.1 Morphology

Immatures and matures DCs have different morphologic, immatures DCs 
monocyte-derived are spherical, irregular shape, with little cytoplasmatic projec-
tions, also abundant phase-dense granules (birbeck’s granules or bodies) and 
irregular nucleus with small nucleoli. Once the DCs maturates shows stellate 
process, giving veiled appearance, with more extended dendrites projecting in 
many directions from the body cell [6, 8].

2.2 Maturation

The DCs have 3 stages precursor, immature and mature stage, but some authors 
do not count the precursor phase [6, 9]. Precursor phase course with any of the 
principal precursor as cMoPs, pDCs or Human equivalent of pre-DCs. It migrates 
from bone morrow to specific tissue or area, process leaded by chemokine chemo-
receptors such as C-C chemokine receptor type 1 (CCR1), CCR5 and CCR6 and by 
adhesion molecules CD26P ligand. When the cell arrives to the corresponding tissue 
or place, it becomes immature DC. The immature DC express CCR1 and CCR3, 
where its ligand is in endothelium and inflammatory cells, promoting its migra-
tion to different organs and inflammatory tissues. This immature DC is capable of 
capture antigens by different receptors like Fc receptor, integrins, type C lectin and 
scavenger receptors such as lectin-type oxidized LDL receptor 1 (LOX-1) and CD91. 
Immature DC is characterized for various amounts of chemokines, so it can be 
extravasated to inflammatory tissue [6].

Once the DC has captured the antigen, this one is degraded to peptides that 
will get bind to MHC class I or class II. The endogenous antigens are processed 
by MHC class I, while exogenous antigens are processed by MHC class II. The 
lipidic antigens are presented by different molecules CD1(a-d) to T cell receptor 
(TCR) or natural killer T (NKT) cell. The differentiation process of immature 
DC to mature DC needs different signals to complete the process. To the imma-
ture DC gets mature, needs to stimulate T lymphocyte. This is possible when the 
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antigen is presented to T lymphocyte by MHC class I or class II to TCR receptor 
and interaction of costimulatory molecules (CD28, CD40, CD54, CD58, CD80, 
CD83 and CD86) to activate T lymphocyte. Other molecules like adhesion 
(CD58, CD54) danger signal (CD40 ligand, tumor necrosis factor (TNF)-α, IL-1, 
IL-6, Interferon (INF)-α and Toll-like receptors (TLRs) agonist) [6, 8]. When 
the DC becomes mature, decreases the chemokine receptor expression of CCR1 
and CCR5, whereas CCR7 increases. The CCR7 ligand is in ganglia walls and 
ganglionic paracortical zone. There, the mature DC secretes chemokines such as 
thymus and activation-regulated chemokine (TARC), macrophage-derived che-
mokine (MDC) or interferon gamma-induced protein 10 (IP-10), which recruits 
different types of T lymphocytes, monocytes, regulated on activation, normal 
T cell expressed and secreted (RANTES), macrophage inflammatory protein 
(MIP)-1α and MIP-β, to the local microenvironment [6].

2.3 Functions

DCs cells have many functions, but these can be globed within three functions. 
The first one is the main function as antigen presentation and activation of T 
lymphocytes as inducing adaptative immunity, with important release of cyto-
kines for example IL-12 to differentiate T lymphocytes in T helper cell or cytotoxic 
lymphocytes. DCs have a wide range of properties including potent stimulation of 
native CD4+ T cells, cross-presentation to CD8+ T cells and production of pro-
inflammatory cytokines IL-1, IL-6, TNF-α, IL-12 and IL-23 [5, 9, 10]. The second 
function to induce tolerance. There are 2 types of tolerance central and peripheral. 
Central tolerance develops in thymus where a tolerance upon our own antigens 
occurs, and the reactive T lymphocytes to those antigens are destroyed, this also 
happen in bone morrow for B lymphocytes. The peripheral tolerance occurs when 
costimulatory molecules, last step of antigen presentation is not complete, there 
is a failure in activation of T lymphocyte, so the T lymphocyte become tolerogenic 
[6, 9, 10]. The third function to maintain immune memory in tandem with B cells. 
As mentioned before, there are population of DCs in ganglia, in the germinal 
center are found the follicular DCs which seems to be a reservoir of antigen and 
antibody complexes, that last an exceptionally long time up to months or years. 
This allows a constant stimulation of B cells to maintain memory [9].

There are others important functions of DCs, as their role in innate immunity, 
the DCs have pattern recognition receptor (PRR) and pathogen-associated molecular 
pattern (PAMPs) [10]. These receptor patterns activate TLR pathways, type C lectins 
and release pro-inflammatory cytokines to activate innate immunity system [8]. 
Also, DCs have been related to B lymphocytes proliferation and induction of T lym-
phocytes to suppress the immune response by missing of costimulatory molecules 
without IL-12, inducing T lymphocytes to secrete IL-10 and transforming growth 
factor (TGF)-β [6, 9].

3. Role of dendritic cells in viral infection

Since the discovery of DCs [11], the knowledge of the innate and adaptive 
immune response has been increasing significantly. At present, DCs are consid-
ered a key cell in immune response activation with multiple functions including 
the virus recognition, processing of viral antigen and as antigen-presenting cells 
to cells of specific immune response, serving as a bridge between innate and 
adaptive response [12]. DCs are bone marrow-derived cells and they can be found 
in different parts of the organism including mucous membrane, the skin, and 



5

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

lymphoid tissue [13]. Depending on surface markers, DCs can be classified as 
immature or mature myeloid DCs and plasmacytoid DCs [14, 15].

Immature DCs are inactive cell with high capacity to capture viral antigen. They 
are present in virtually all tissue with high probability to capture invading viruses. 
Immature DCs lack the capacity of antigen presentation. On the other hand, mature 
MDC is generated by an immature DC that was activated when recognized and 
processed viral antigen. Mature DCs function as antigen presenting cells (APCs). 
They express MHC-II molecules and different co-stimulators surface molecules 
that give them the antigen presentation capacity. Mature DCs also produce different 
cytokines to initiate antiviral immune response [16].

Likewise, plasmacytoid DCs also sense viral pathogen. They are called plasma-
cytoid DCs by its high resemblance to plasma cells. Although pDC has the ability 
of antigen-presenting, this function is low compared with MDC. However, pDCs 
contribute to both inflammatory process and antiviral state. They are specialized 
DCs that produce proinflammatory cytokines and high levels of IFN type I [17]. 
Both MDC and pDCs are present in lymphatic nodes where they are capable to 
present viral antigen to naïve T cell [18, 19].

3.1 From immature to mature cDCs in viral infection

Immature DCs are considered the sentinels of the immune response. These cells 
are distributed in practically all the body where they have the capacity of interact 
with the invading virus. They carry out the function against viral infection by dif-
ferent mechanisms. They can be infected by viruses or they can respond to mol-
ecules produced and secreted by other virus infected cells. When they are infected, 
DCs can respond in various ways, firstly, DCs have different receptors distributed 
on cell surface, cytoplasm, and specialized endosomes. TLRs and C-type lectins 
receptors (CLRs) are present in cell surface and some TLRs in endosomes, while 
retinoic acid-inducible gene (RIG), melanoma differentiation-associated protein 5 
(MDA5) and nucleotide-binding oligomerization domain 2 (NOD2) are only pres-
ent in cytosol [20–22]. TLRs have N-terminal ectodomains (ECDs) which recognize 
molecules of viruses. This ECDs are constructed by a tandem motif of leucine-rich 
repeats (LRRs) and forms a horseshoe structures [23]. Binding of TLRs with their 
ligand depends on these structures [24]. However, diverse receptors respond to an 
extensive repertoire of viral PAMPs. These viral PAMPs can be glycoproteins pres-
ent on the viral external surface, viral genome, or replication intermediates formed 
during viral replication [25].

Depending on the activated receptor, DCs can produce proinflammatory 
cytokines or IFN. During maturation process DCs interact with the antigen and 
upregulate MHC-II to present antigen to naïve CD4+T cells. In addition, DCs 
produce diverse surface molecules such as CCR7 which is necessary in trafficking 
into lymphatic nodes and CD40, CD80, and CD86 which are co-stimulatory surface 
factors that enable them to activate T naïve cell to initiate the adaptive immune 
responses [26, 27].

3.2 Differential PRR activation on dendritic cells

DCs is the main cell used to establish an effective immune response. At present, 
four subsets with different functions have been identify in human. Each subset of 
DC has different markers and a functional distinction that enable them to participate 
in different states to orchestrate an antiviral immune response. Each type of DC 
expresses different receptors that can be membrane-associated molecules or free in the 
cytoplasm. Activation of these receptors ends in different cytokine-proinflammatory 
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production and interferon. Depending on cytokine produced, naïve CD4+T cells is 
differentiated into T helper effector cell [14].

Myeloid DCs, called classical or conventional DCs (cDCs) detect viral proteins 
through expression of membrane surface receptors such TLR-4 and DC-specific 
intercellular adhesion molecule 3 (ICAM3)-grabbing non-integrin (DC-SIGN) (see 
Figure 2) [28]. DC-SIGN support the initial immune response between T cells and 
DCs, but when DC-SIGN have contact with viral glycoproteins results in activation 
of signal transduction pathways than cause modulation of immune responses [29]. 
The signaling pathway triggered by DC-SIGN recruits Ras and the subsequent 
phosphorylation of the kinase RAF1 which is mediated by p21-activated kinases 
(PAKs) and Src Kinases. The activation of RAF1 induces phosphorylation of nuclear 
factor (NF)-κB increasing the transcriptional activation from IL-18, IL-10 and 
IL-12 promoter [29, 30].

The association of viral proteins through concave surface of TLR4-ECD 
induces two different pathways [31]. Myeloid differentiation primary response 88 
(MyD88)-Dependent Pathway initiates with the recruitment of MyD88 adapter and 
subsequent activation of tumor necrosis factor receptor (TNFR)-associated factor 
6 (TRAF6). Then TRAF6 activates the NF-κB essential modulator (NEMO), which 
is the regulatory subunit IKK complex and activates NF-κB causing its transloca-
tion to the nucleus, where induces gene expression such as IL-6 and IL-12 [21]. 
MyD88-Independent pathway recruits TIR-domain-containing adapter-inducing 
interferon-β (TRIF) [32]. TRIF activates TRAF3 and finally induce interferon 
regulatory transcription factor (IRF-3) activation and the subsequent IFN-β 
expression [21].

In addition to membrane surface receptors cDCs also have endosomal TLRs 
such as TLR-3 and TLR-7/TLR-8 which sense dsRNA and ssRNA respectively. Each 
receptor has a specific signaling pathways [14]. TLR-3 sense viral dsRNA through 
its largely uniform and flat horseshoe structure of TLR-ECD [33]. TLR3 has the 
same MyD88-Independent pathway with the activation of TRAF3 and subsequent 
IFN-β expression [32]. Viral ssRNA are sense by TLR-7 and TLR-8, these recep-
tors activate MyD88 pathway with the recruitment of TRAF6 and TRAF3. Finally, 
activation of IRF-3 and IRF-7 induces IFN-β and IFN-α expression respectively 
(see Figure 2A) [21, 34].

In addition to DC-SIGN and TLRs, the viral genome can be exposed in the 
cytoplasm during the replicative processes or during direct penetration into the 
cell. NOD2 and RNA helicases such melanoma differentiation-associated protein 
5 (MDA5) and RIG-1 detect dsRNA in the cytoplasm [35]. Interferon promoter 

Figure 2. 
Signaling pathway and cytokines production of DCs during viral infection. (A) Myeloid DCs and  
(B) Plasmacytoid DCs. Description in the text (figure created by Muñoz-Carrillo et al., with BioRender.com).
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stimulator-1 (IPS-1) interacts with MDA5, RIG-1 and NOD2 via caspase activation 
and recruitment (CARD) domain. IPS-1 localizes in mitochondria and interacts 
with TRAF3. TRAF family member associated NF-κB activator (TANK) is recruited 
from TAF3 and interacts with TANK Binding Kinase 1 (TBK1) and the kinase IKKε 
[36–38]. Finally, TBK1 and IKKε interact via their C termini with NFκB activating 
kinase (NAK)-associated protein 1 (NAP1) [39]. This signaling pathway activates 
NFκB, IRF-3 and IRF-7 to express IL-12, IFN-β and IFN-α [38, 39].

On the other hand, pDCs not express DC-SIGN but express CD4 that can sense 
glycoproteins of viruses as human immunodeficiency virus (HIV). The viruses can 
enter through direct fusion with the cell membrane or through receptor-mediated 
endocytosis and activates different signaling pathways (see Figure 2B) [40, 41]. 
The endosomal receptors TLR-7 and TLR-9 are selectively express in pDCs and 
sense RNA or DNA respectively. This engage activates downstream signaling 
pathway [42]. TLR-9 and TLR-7 activates IRF-3 and IRF-7 like in cDCs signaling 
with final IFN-β and IFN-α expression respectively [43]. TLR-9 signaling pathways 
include the recruitment of Interleukin-1 receptor-associated kinase 4 (IRAK4) 
through its death domain. Activated IRAK4 interacts with IRAK2. This complex 
associates with TRAF6 to final activation and nucleus translocation of NF-κB and 
leads TNF-α and IL-6 production [17, 44, 45]. pDCs can also be infected by direct 
penetration of virus and the viral genome can be sense by RIG-1, MDA5 and NOD2. 
The signaling in the pDCs is through IPS-1 pathways as the same way that on cDCs 
[20, 22]. This pathway activates NFκB, IRF-3 and IRF-7 to express IL-12, IFN-β and 
IFN-α respectively [38, 39].

Other subsets of DCs are the LCs and Interstitial DCs (IDCs), these kinds of DCs 
are commonly the first DCs that have contact with some virus [46]. LCs are local-
ized in mucosal stratified squamous epithelium and skin epidermis. LCs express 
different CLR: CD207 or Langerin. Moreover, LC has a low expression of TLR4 and 
expression of TLR-3, −7 and − 8 [14, 47]. LCs activated finally express IL-8, IL-6, 
TNF-α [48]. On the other hand, the IDCs are localized in the epidermis and express 
similar receptors that cDCs like DC-SIGN and TLR-3, -4, -7 and -8 and have similar 
signaling pathways [14].

Activation of the antiviral response generated by immune system depends 
largely on the activation of dendritic cells. Each subtype of this family of antigen-
presenting cells have an important role by processing viral antigens that trigger 
different signaling pathways through their distinct receptors. The consequence of 
this signaling pathway results in the expression of various cytokines involved in the 
activation of immune cells. For this reason, a better knowledge about how different 
immune cells subtypes can induce distinct pathways is required for a better vision 
of whole antiviral response.

4. Role of dendritic cells in parasitic infection

In parasitic infections is difficult to generalize about the mechanisms of anti-
parasitic immunity because there is a great variety of different parasites that have 
different morphology and reside in different locations of tissues and hosts during 
their life cycles [49]. For this reason, we will talk about the role of dendritic cells in 
protozoa and helminths infection, two of the main parasites of medical importance 
for human health.

DCs have the capacity to recognize different molecules in the surface of para-
sites and are efficient phagocytes; thus, several intracellular parasites reside inside 
DCs. Once DCs phagocytose intracellular parasites, they can exert their micro-
bicidal capacities, although it has been shown that they are not as efficient in the 
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destruction of microorganisms as other phagocytes such as macrophages and neu-
trophils. Once internalized, DCs process antigens for presentation to T cells [50].

4.1 Parasitic protozoan infections

Protozoan parasites are pathogens that have developed additional and sophis-
ticated strategies to escape the immune attack of the host. This is because their life 
cycles generally involve several stages of specific antigenicity, which facilitates their 
survival and propagation within different cells, tissues, and hosts [51]. Frequently, 
the host is unable to eliminate protozoan infections, which often results in chronic 
disease or irreparable infections, in which the host continues to act as a reservoir of 
parasites, a cause of great concern due to their prevalence, morbidity and mortality 
[52, 53]. This host resistance to protozoa infections depends mainly on the develop-
ment of a T helper type 1 (Th1) response and on the production of IL-12 by APCs 
[54]. Therefore, the classical reaction of the host to infections by protozoan para-
sites is the maturation of different subsets of DC, and in some cases, the activity of 
these cells leads to a response that is effective in controlling the infection [55].

Among the most important protozoan parasites are those that living in human 
blood and tissues, which can cause fatal diseases. The immune response against pro-
tozoan infections involves a strong innate immune response followed by predomi-
nantly a Th1 response. The innate immune system is comprised of several cell types, 
including DCs. Recognition of pathogens by these cell types leads to phagocytosis 
in some cases, and the production of pro-inflammatory cytokines, which assist in 
shaping the subsequent adaptive immune response (see Figure 3) [56].

During the parasitic protozoan infections different PRRs present in DCs 
are involved in the recognition PAMPs of parasites. In trypanosomiasis, the 

Figure 3. 
Role of DCs in protozoan infections. Polarization of Th1 response through interactions between PAMPs and 
PRRs (TLR-2, -4, -9, -11 and -12), which in a signal-dependent manner (involving the activation of MAPKs 
p38/JNK and MyD88) induce the expression of Th1 cytokines such as IL-12, Il-6, IFN-γ and TNF-α. the PRRs 
from protozoa induce the presentation of antigens, the co-stimulation, and the expression of the cytokine IL-12, 
IFN-γ production by DCs during Ag presentation, by signaling pathway STAT-4. Description in the text. 
(figure created by Muñoz-Carrillo et al., with BioRender.com).
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glycoinositolophospholipids (GIPLs) and glucosylphosphatidylinositol (GPI) 
anchors from Trypanosoma cruzi are recognized by TLR-4 and TLR-2, respectively, 
inducing the inflammatory cytokines production [57, 58]. Likewise, the DNA of  
T. cruzi stimulates the production of cytokines in a manner dependent on TLR-9 
and synergizes with the GPI anchor of TLR-2 in the induction of cytokines [59], 
such as IL-12 by activation of the p38 pathway [60].

Toxoplasma gondii is a parasite that can infect any nucleated host cell, but it has a 
preference for cells of the immune system, including DCs [61]. Currently, the par-
ticipation of TLRs in the recognition of T. gondii is not very clear. On the one hand, 
studies have shown that the soluble parasite extract (STAg) of T. gondii induces 
the production of IL-12 through the binding of Toxoplasma profilin (TgPRF) with 
TLR11 in DCs, signaling pathway MyD88 [62–65]. In fact, it has been shown that 
TgPRF is not required for the intracellular growth of T. gondii, but it is indispensable 
for host cell invasion and active egress from cells [65], and it is critical for the IL-12 
production, especially in plasmacytoid DCs [66]. On the other hand, studies show 
that the absence of either TLR-2 or TLR-4 in DCs does not modify the production of 
IL-12 in response to STAg [62]. Other authors have reported the involvement of the 
TLR4-dependent signaling pathway in T. gondii independent of the MyD88 pathway 
[67]. However, reports have shown that mice deficient for TLR-2, TLR-4 or TLR-11 
survive T. gondii infection, suggesting that T. gondii recognition may be associated 
with an additional signaling pathway MyD88-TLR-dependent. This additional 
signaling pathway could be by binding of TgPRF with TLR-12, since it has been 
observed that TLR-12-deficient mice succumb rapidly to T. gondii infection [62, 63, 
66, 68]. On the other hand, T. gondii is capable to activate the JAK/STAT signaling 
pathway to facilitate survival within the host, blocking IFN-γ-mediated-STAT1-
dependent proinflammatory gene expression in APCs. This is through sustained 
STAT-1 phosphorylation and nuclear translocation in bone marrow-derived DCs 
(BMDCs). However, in combination with IFN-γ, T. gondii simultaneously blocks 
IFN-γ-induced STAT-1 transcriptional activity avoiding the DCs activation by 
IFN-γ [69].

Plasmodium falciparum is capable to activate DCs through TLR-2 [58, 70, 71] and 
TLR-9, inducing the production of proinflammatory cytokines [72]. Depending 
on the DCs population that are activated during Plasmodium infection, it will be 
the type of cellular immune response that the host will mount against the infec-
tion. On the one hand, it has been observed that DCs subpopulations such as 
CD8+CD11b−DC (located in the peripheral lymph nodes), mature (CD40+) spleen 
DC and (CD8α+CD11b− and CD8α−CD11b+) DCs [73, 74], are associated to the 
protective effect of CD8+ T-cells, which produce INF-γ and induce parasite death, 
reducing the parasite burden in hepatocytes [75–78]. On the other hand, during 
the acute phase of infection CD8α-CD11b+DC activates CD4+ T-cells, inducing the 
production of IL-12, IL-6, IFN-γ and TNF-α [79–83].

4.2 Parasitic helminth infections

Helminth parasites, like protozoan parasites, have significant differences in 
their biological life cycles, which are reflected in the differences in clinical out-
comes seen among helminth parasites. Pathological consequences of most helminth 
infections have been associated with both with the parasite intensity (or burden) 
and the relative acuteness or chronicity of the infection, because the helminth 
parasites modulate/regulate the host response to themselves (parasite-specific 
immunoregulation) [84].

The immune response against helminths is characterized by the induction of an 
early immune response of type Th1, with subsequent predominance of a Th2 type 
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immune response, resulting in a mixture of both Th1/Th2 responses [85, 86], which 
are dependent on the immune responses mediated by CD4+ T cells [87]. These 
CD4+ T cells can function as APCs and play a key role in establishment the cytokine 
environment, thus directing their differentiation either by suppressing or favoring 
the inflammatory response at the intestinal level, which is crucial for the expulsion 
and elimination of the parasite (see Figure 4) [88].

This implies that the helminths have developed strategies, such as the evasion or 
suppression of the host immune response, which prevent their expulsion and allow 
their long-term survival. It is believed that the modulating effects of the immune 
system arise from the ability of the helminth to regulate the host immune response, 
developing mechanisms for the modulation of DCs as key players in the initiation 
and polarization of adaptive immune responses [89–91].

During the intestinal infection by helminths, the polarization of the cellular 
immune response to a Th1 type immune response depends on the type of signal 
derived from DCs. For example, Trichinella spiralis larvae group (TSL-1) antigens 
induce the DCs maturation [92], leading to the expression of MHC II [93, 94], 
promoting the development of a Th1 type cellular immune response [95]. Several 
studies, both in vitro and in vivo, have shown that during the early stage of intes-
tinal infection by T. spiralis there is a significant increase of Th1 cytokines such as 
IL-12 [96, 97], INF-γ [95–98], IL-1β [97–99] and TNF-α [96, 97, 100]. It is possible 
that this Th1 response is mediated through the TLR-4 activation in DCs by TSL-1, 
through the signaling pathway TLR4/MyD88/NF-κB [101, 102]. Another example is 
double-stranded RNA from schistosome eggs has been implicated in the activation 
of DCs via TLR-3, resulting in a Th1-polarized response [103, 104].

Intestinal DCs are classified according to their unique or combined expression of 
CD11b and CD103, as well as the dependence on either interferon regulatory factor 
4 or 8 (IRF4 or IRF8) for their development and/or survival. The intestinal DCs are 

Figure 4. 
Role of DCs in helminth infections. The immune response against helminths is characterized by the induction of 
an early immune response of type Th1, with subsequent predominance of a Th2 type immune response, resulting 
in a mixture of both Th1/Th2 responses. The polarization of the cellular immune response to a Th1/Th2 type 
immune response depends on the type of signal derived from DCs. Description in the text. (figure created by 
Muñoz-Carrillo et al., with BioRender.com).
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capable of process antigens, migrating to mesenteric lymph nodes upon activation, 
and priming naive T cells. However, IRF8-dependent CD103+ DCs are important 
for the generation of type 1 responses of both helper and cytotoxic T cells, thus 
promoting Trichuris muris and Heligmosomoides polygyrus chronicity. In contrast, 
IRF4-dependent CD11b+ DCs in the induction of Th2 immunity, notably during 
infection with Nippostrongylus brasiliensis, T. muris, and the parasitic trematode 
Schistosoma mansoni [105].

On the other hand, the PRRs from helminths can also activate the DCs for the 
induction of the Th2 response by interacting with the TLR and CLR. This interaction 
may promote Th2 responses by suppressing antigen presentation, co-stimulation 
and/or expression of Th1-promoting cytokines by directly interfering with these 
pathways. DCs that drive Th2 responses typically exhibit specialized markers, such 
as CD301b, PDL2, and CD11b, and several receptors for the Th2-related cytokines 
IL-4R, IL-13R, IL-25R, TSLP-R, and IL-33R. Additionally, the extracellular signal-
regulated kinase (ERK) and signal transducer and activator of transcription 4 
(STAT4) pathway upregulates the costimulatory molecules, CD40, OX40L, and 
Jagged. Activation of the major transcription factors interferon regulatory factor 4 
(IRF4) and KLF4 inhibits IL-12 production and increased IL-10 secretion. These fac-
tors typically act individually or in concert to orchestrate Th2 responses in helminth 
infections [106–108].

In T. spiralis infection, the initial exposure of TSL-1 antigens of T. spiralis 
activated CD4+ T cells, as well as DCs, leading to the secretion of large amounts of 
IL-10. IL-10 suppress cell markers, the proliferation and antigen presentation by 
DCs and inhibition of IL-12 secretion. In addition, TSL-1 increased the both IL-4 
and IL-10 production derived from Th2 cells with a decrease in INF-γ production, 
polarizing the immune response to a strong Th2 cellular immune response, pro-
tective and responsible for the T. spiralis expulsion [109]. In addition, it has been 
shown that phosphatidylserine (PS) lipids derived from schistosomes and ascaris 
worms, which carry TLR2-activating molecules, promote Th2 responses through 
DCs [110]. Further, it was found that antigens of Toxocara canis were recognized by 
DC-SIGN expressed on DCs [111], and the induction of a Th2 response in vivo by 
antigens of the parasitic nematode Brugia malayi, as well as the free-living nema-
tode Caenorhabditis elegans, was found to be dependent on intact glycans [112]. 
These findings together suggest that certain helminth glycans can serve as PAMPs 
that instruct DCs through CLR to boost polarized Th2 responses [113].

5. Role of dendritic cells in bacterial infection

Activated DCs are involved in the response to infections, which induces an 
increase in MHC expression, adhesion, and costimulatory molecules. The recogni-
tion of intracellular pathogens derived from mycobacterial cell wall components 
(lipids/glycolipids) such as phosphatidyl-myo-inositol mannoside, lipo-mannan, 
lipoarabinomannan, mycolic acids, lipopeptides, and phosphoinositol-containing 
lipids is given through the TLR-2, TLR-4, TLR-9, TLR-8 and the TLR1/TLR6 that 
heterodimerize with the TLR-2 [114, 115]. The signaling pathway that occurs in 
almost all TLRs is through MYD88, while for TLR4 the signaling pathway can be 
through MYD88 and TRIF [116, 117]. The activation of these receptors induces 
the activation of mitogen-activated protein kinase (MAPK) and NF-κB producing 
proinflammatory cytokines in DCs (see Figure 5). Other antigens derived from 
Mycobacterium tuberculosis such as lipoamide dehydrogenase C (Rv0462) induce 
the maturation and activation of DCs, increasing the expression of costimulatory 
molecules, MHC II and proinflammatory cytokines such as TNF-α, IL-1β, IL-6, 
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and IL-12, which leads to a Th1 immune response [118, 119]. Another protein that 
induces the maturation of DCs is RV2220 is a glutamine synthetase (GS) type I 
enzyme derived from M. tuberculosis, which induces the upregulation of MHC I 
and MHC II as well as CD80 and CD86, which leads to a Th1 response or Th2 or to 
regulatory T cell, through the secretion of cytokines such as, TNF-α, IL-6, IL-1β, 
IL-12 or IL-10, activating the MAPK and NF-κB pathway [120]. Different proteins 
that derive from M. tuberculosis trigger different responses, as cell wall-associated/
secretory Rv1917c antigen acts as a ligand of TLR-2, which induces the maturation 
of DCs secreting IL-10 and inducing the production of IL-4, IL-5 and IL-10 in 
CD4+ T cell which leads to a Th2 response (see Figure 5) [121].

On the other hand, DCs infection with other bacteria of the type Listeria monocy-
toges, Shigella flexneri, Salmonella typhimurium and Francisella tularensis, can activate 
inflammasome receptors [122]. The inflammasome is a multiprotein complex that 
contains one or more Nod-like receptors (NLRs) and regulates caspase-1 activity 
[123, 124], this complex is formed by at least three elements: (1) an inflammatory 
caspase (caspase-1, caspase- 11); (2) an adapter molecule such as apoptosis-asso-
ciated speck-like protein containing a CARD, caspase recruitment domain (ASC); 
and (3) a sensor protein such as NLR Family Pyrin Domain Containing 1 (NLRP1), 
NLRP3, NLRP12, NAIP1, NAIP2, NAIP5, or absent in melanoma 2 (AIM2) [125]. 
The NLRP1 inflammasome is activated by anthrax lethal toxin, a toxin produced 
by Bacillus anthracis [126]. The toxin is composed of a protective antigen and lethal 
factor, the protective antigen generates pores in the membrane of the host while the 
lethal factor enters the cell and short NLRP1b and leads to inflammasome activation 
[127]. The NLRP3 inflammasome is activated by ligands derived from pathogens 
such as microbial cell wall components, nucleic acids, and pore-forming toxins [128]. 
Activation NLRP3 inflammasome require two signals: the priming which occurs 
when cells are activated by a PRR and activates the NF-kB, that induce the produc-
tion of NLPR3, pro-IL-1β and pro-IL-18 and cytokines proinflammatory drugs such 
as IL-6, IL-8 and TNF-α. Subsequently the second signal carrying the assembly for 
inflammasome activation of caspase-1 occurs, which gives rise to the production of 

Figure 5. 
Role of DCs in bacterial infections. The TLRs are involved in the recognition of mycobacterial antigens. The 
activation of TLR-4 and TLR-2 by these antigens leads to an intracellular signaling pathway, leading to a Th1 
and Th2 response, respectively. NOD-like receptors (NOD 1 and NOD 2) recognize bacterial peptidoglycans 
(DAP and MDP), the downstream signaling activates NF-κB and MAPK generating a Th1 response. 
Description in the text (figure created by Muñoz-Carrillo et al., with BioRender.com).
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IL-1β and IL-18 responsible for maintaining the inflammatory response [129]. The 
NLRC4 inflammasome is activated by the bacterial flagellar protein flagellin, as well 
as the Salmonella type III secretion system, this inflammasome does not interact 
directly with its activator, the NAIPs proteins do (NLR family), which recognize 
the ligands and induce activation of the NLRC4 inflammasome [130, 131]. The 
double chains of microbial DNA present in the cytosol are recognized by the AIM2 
inflammasome, this receptor contributes to host defense when pathogens do not 
have ligands that stimulate PRRs such as flagellin and LPS, such as Brucella spp and 
Francisella spp. This receptor binds to DNA and oligomerizes with ASC to then form 
the caspase-1 activating inflammasome, which leads to the secretion of cytokines 
such as IL-1β and IL-18 [132]. The cytokines that are produced through the inflam-
masome not only contribute to the defense of the host against infections, they also 
induce a Th17 response, this differentiation is driven by IL-1β, and is regulated by the 
factors NF-κB, activator protein 1 (AP-1) or the signaling way of the MAPK [133]. 
After the binding of IL-1β to IL-1R, signaling occurs through MYD88 until activat-
ing NF-κB, which induces the production of proinflammatory cytokines leading to a 
Th17 phenotype, in this differentiation IL-1β synergizes with IL-6 which upregulates 
the master transcription factor of Th17 cells, such as STAT3, IRF4 and RAR-related 
orphan receptor gamma (RORγt) [134]. The Th17 response is a typical response 
that occurs against extracellular bacteria such as Klebsiella pneumoniae, Bordetella 
pertussis, or Streptococcus pneumoniae and is characterized by a vigorous response of 
neutrophils which is coordinated by the Th17 cells, an alteration in IL-17 signaling 
increases the susceptibility to infection of these bacteria [135]. Although the defense 
of the host against extracellular bacteria is considered mainly associated with the 

Figure 6. 
Role of DCs in fungal infection. Antigens derived from fungi such as b-glucan which are recognized by 
Dectin-1, this leads to a downstream signaling pathway activating NF-kB producing IL-6 and IL-23 leading to 
a Th17 phenotype. The union of Dectin-1 whit b-glucan also leads to the activation of ROS, which can NLRP3 
inflammasome assembly activating caspase-1 which cuts the pro-IL-1 and pro-IL-18 generating its active forms, 
which together with IL-23 activates the Th17 phenotype. Description in the text (figure created by Muñoz-
Carrillo et al., with BioRender.com).
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Th17, some authors indicate that effective protection requires the synergism of Th1 
and Th17 cells, as it is for Bordetella perussis that induces the production of IFN-γ in 
the phase maximum infection and decreases its expression as time passes reaching 
basal levels at 14 days post-infection, however the Th17 response is persistent and 
production of IL-17 remains high even when the infection has been eliminated [136].

Other receptors involved in the response to pathogens are NOD1 and NOD2 
receptors make up the family of NOD-like receptors containing a CARD domain 
(NLRC) [137]. These receptors are highly expressed in DCs and act as intracellular 
PRRs that recognize bacterial peptidoglycans [138–140]. NOD1 mainly recognizes 
γ-D-Glu-meso-diaminopimelic acid (DAP) while NOD2 recognizes muramyl dipep-
tide (MDP) [141]. Once the activation of these receptors occur, the downstream 
signaling activates NFκB through the union of its CARD domain to the protein 
kinase RIP2, which in turn recruits IRAK2, TRAF6, TAK1 binding protein (TAB1) 
and transforming growth factor-β-activated kinase 1 (TAK1) to activate the IKK 
complex, these events result in the degradation of IκBα inhibitor which leads to the 
translocation of NFκB to the nucleus and induce the expression of proinflammatory 
mediators [142]. In addition to the NFκB pathway, the stimulation of NOD1 and 
NOD2 leads to the activation of MAP kinases p38, ERK, and JNK pathway via RIP2. 
This event facilitates the formation of a multiprotein complex called “Nodosome” 
that leads to the production of inflammatory and antimicrobial agents mediated by 
NFκB and MAPK (see Figure 6) [143].

6. Role of dendritic cells in fungal infections

Infections caused by opportunistic fungal pathogens include Aspergillus 
fumigatus, Cryptococcus neoformans and thermal dimorphic fungi (Histoplasma 
capsulatum, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides 
immitis, Penicillium marneffei and Sporothrix schenckii) and Candida albicans, the 
latter being a normal inhabitant of the human intestine, however as a pathogen has 
been associated with various serious diseases ranging from severe mucocutaneous 
allergy to bloodstream infections [144, 145].

DCs are the only ones capable of decoding information related to fungi [146]. 
The activation of the various immunity mechanisms is carried out efficiently by 
the DC that decode the signals sent by the fungi and translate them into an immune 
response of T helper (Th) in vitro and in vivo where the DC recognize each fungal 
morphotype of specific form by means of different recognition receptors which 
triggers the production and co-stimulation of cytokines [144]. For the immunologi-
cal processes to be activated against different classes of fungi, the differentiation of 
the naive CD4 + T cells towards the Th1 or Th17 subtype is essential, which occurs 
by interaction with dendritic cells through different cytokines, these subsets of cells 
Th1 and Th17 play an important role in protection against various fungal diseases 
[147]. To be contained and resistant to fungal infections it is necessary that DC are 
activated since they produce cytokines of the IL-1 family, such as IL-1β and IL-18 
and which activate other innate immune cells, or they modulate the development of 
the acquired immune response. IL-1β plays an important role in the inflammatory 
immune response and polarization of Th17 cells, whereas IL-18 participates in the 
differentiation of Th1 cells, but may also be responsible for the expansion of Th2 
cells in the absence of IL-18 [148] IL-12 and IFN-γ promote Th1 differentiation, 
while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote the differentiation and mainte-
nance of Th17. The release of these cytokines by DCs is in turn regulated by innate 
receptors activated in response to fungal infection [149]. In order for the effective 
response of the host to the fungi to occur, the Th17 cells are indispensable [147].
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Inflammatory DCs generate the responses of Th17 and Th2 antifungal cells in 
vivo by means of signaling pathways in which the TLR adapter MYD88 participates, 
while tolerogenic DCs promote regulatory differentiation programs of Th1 and 
Treg cells through processes in which the signaling adapter TRIF participates. In 
addition, STAT3, which alters the balance between the canonical and non-canonical 
activation of NF-κB and, therefore, the expression of the enzyme indoleamine 
2,3-dioxygenase (IDO), has a key role to DCs plasticity and functional specializa-
tion. The multiple, functionally distinct receptor signaling pathways in DCs affect 
the balance between CD4+ effector T cells and Treg cells and, therefore, are likely to 
be harnessed by fungi to allow them to establish commensalism or infection [146]. 
In contrast some studies have shown that suppressive silencing of cytokine signal-
ing 1 (SOCS1) can induce maturation of DCs and initiate the immune response 
find C. albicans in vitro. In which DC silenced by SOCS1 extend mouse survival and 
significantly decrease the colonization of fungi in the kidneys and the differentia-
tion of CD4+ T cells producing IL-4 (Th2) or CD4+ T cells producing IL-17 (Th17 
cells) are not affected under the same treatment, suggesting that DC silenced by 
SOCS1 significantly affect the CD4+ producer of IFN-γ cells (Th1). However, in the 
later stages of infection, when differentiation of Th1, Th2 and Th17 cells decreases 
in mice treated with DCs silenced with SOCS1, all serum cytokines (IFN-γ, IL-4 
and IL-17) also reduced [150].

It has also been reported that NLRP3 linked with ASC and caspase 1, is trig-
gering inflammation activated by pathogenic fungi such as C. albicans, Aspergillus 
fumigatus and Cryptococcus neoformans. Inflammasome NLRP3 responds to various 
stimuli, such as crystalline and particulate matter, extracellular ATP, pore-forming 
toxins, reactive oxygen species (ROS) (see Figure 6), endosome destabilization and 
cathepsin release, changes in intracellular calcium levels and K+ efflux [148].

Many types of cells, including macrophages and DCs, produce IL-1β induces 
the differentiation of Th17 cells, which are necessary for effective defense of the 
host against C. albicans when producing IL-17 through the stimulation of PRRs like 
Dectin-1 and Dectin 2, and both types of cells are indispensable for host defense 
against C. albicans. Dectin 1 is activated through the binding of the b-glucan of the 
fungal cells, and triggers intracellular signaling recruitment of Syk, activation of 
NF-kB via CARD9, the phosphorylation of IκB is mediated by the IκB kinase (IKK) 
complex, this complex consists of NF-κB essential modulator (NEMO, or IKKγ), 
IKKα, and IKKβ, to release the IκBα from NF-κB (see Figure 6). In the early stages 
of candidiasis, DCs are also essential in the antifungal response, since they are 
responsible for detecting fungal PAMP through their PRR, secreting cytokines and 
chemokines into the environment, retaining fungal particles by phagocytosis and 
presenting antigens to T cells to induce an adaptive immune response [147, 151].

7. Dendritic cells and its potential benefits to combat different diseases

DCs are considered key cells as the first line of defense against viruses and 
to induce adaptive defense. In the innate immune response, they can exert virus 
phagocytosis and produce cytokines to activate NK cells to eliminate virus infected 
cells. In adaptive immune response, DCs induce differentiation of Th1-cells that in 
turn induce activation of antigen specific cytotoxic cells, macrophages, and anti-
body production to participate in viral clearance.

For the elimination of bacteria, a specific immune response is required, for 
intracellular bacteria a Th1 response is required as well as cytotoxic T lymphocytes, 
the latter to produce IFN-γ and can kill the cells that have been infected, in this 
response the Il −12 is important and its production by DCs requires stimuli derived 
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from pathogens as well as from CD4+ T-cells; on the other hand, for extracellular 
bacteria a Th17 response is required, in this response DCs play an important role in 
producing pro-inflammatory cytokines so that a Th17 response can be given, thus 
these cells coordinate the recruitment of neutrophils that phagocytize extracellular 
bacteria and thus eliminate the bacterial infection.

DCs participate in the immune response against different opportunistic fungi, 
the latter are capable of producing different diseases including vulvovaginal can-
didiasis, oral candidiasis or disseminated candidiasis (Candida albicans), invasive 
pulmonary asperilosis (Aspergillus fumigatus), pneumonia (Pneumocystis carinii), 
cryptococcosis (Cryptococcosis neoformans). DCs recognize specific structures of 
fungi such as carbohydrates, proteins, and nucleic acids. This recognition through 
the PPR activates signaling pathways that lead the DCs to a state of maturation and 
secretion of cytokines which play an important role in host defense against fungal 
infections, generating a response either of the Th1 type or Th17.

During parasitic infections, DCs play an important role, since, through them, the 
body can mount a specific immune response, mainly mediated by T lymphocytes. The 
DCs recognize the antigens of the parasites, and in the first instance, they induce a 
Th1-type immune response, characterized mainly by the production of pro-inflam-
matory cytokines and mediators. Nevertheless, parasites have the ability to polarize, 
through the activation of DCs, towards a Th2-type immune response, characterized 
mainly by the production of anti-inflammatory cytokines, eosinophilia and mastocy-
tosis. However, due to the great diversity of parasites that exist, as well as their pheno-
typic variability, which involves different stages of antigenicity, conditioned by the life 
cycle of the parasite itself, these microorganisms have the ability to develop strategies 
that allow them to evade the immune system and facilitate their survival and spread 
in the host. Despite the different immune responses that the host assembles in contact 
with the different diseases caused by these microorganisms, DCs are very important, 
since they represent the junction point between the innate and adaptive immune 
responses, allowing the host to differentiate the type of microorganism by which it has 
been invaded and thus be able to mount a specific immune response.

8. Conclusions

Dendritic cells are a key cell type in the recognition of intracellular and extracel-
lular pathogens through the different receptors that they express. The maturation 
of the DCs is an important event since through this mechanism these cells acquire 
the ability to express MHC as well as costimulatory molecules, thus conditioning 
the presentation of the antigen, producing cytokines and mounting immune in 
order to kill the invading pathogen. The response can be mediated by the PRRs as 
they will recognize different structures of the invading microorganism and execute 
a defensive response with the purpose of eliminating the invading microorganism 
through the production of antimicrobial cytokines and intermediaries, as well as 
activating transcription factors to produce cytokines that have an important role in 
the polarization of the T helper cell during priming by DCs.

Acknowledgements

Thanks to the authors who collaborated in the writing of this chapter: Dr. en 
C. José Luis Muñoz-Carrillo; Dr. en C. Oscar Gutiérrez-Coronado; Dr. en C. Juan 
Francisco Contreras-Cordero; Dra. en C. Paola Trinidad Villalobos-Gutiérrez; Dr. 
Luis Guillermo Ramos-Gracia, and Dra. Jazmín Monserrat Vargas-Barboza; as well 



17

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

Author details

José Luis Muñoz-Carrillo1*, Juan Francisco Contreras-Cordero2,  
Oscar Gutiérrez-Coronado3, Paola Trinidad Villalobos-Gutiérrez3,  
Luis Guillermo Ramos-Gracia4 and Jazmín Monserrat Vargas-Barboza1

1 Laboratory of Basic Sciences, Faculty of Odontology, School of Biomedical 
Sciences of the Cuauhtémoc University Aguascalientes, Aguascalientes, Mexico

2 Laboratory of Immunology and Virology, Faculty of Biological Sciences of the 
Autonomous University of Nuevo Leon, San Nicolás de Los Garza, Nuevo León, 
Mexico

3 Laboratory of Immunology, Department of Earth and Life Sciences, 
University Center of Lagos de Moreno of the University of Guadalajara, 
Lagos de Moreno, Jalisco, Mexico

4 Faculty of Medicine, School of Biomedical Sciences of the Cuauhtémoc University 
Aguascalientes, Aguascalientes, Mexico

*Address all correspondence to: mcbjlmc@gmail.com; 
investigacionodontologia@ucuauhtemoc.edu.mx

as the Universities involved: Cuauhtémoc University Aguascalientes, University of 
Guadalajara, and Autonomous University of Nuevo Leon for financial support for 
chapter publication.

Conflict of interest

We have no conflict of interest related to this work.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



18

Cell Interaction - Molecular and Immunological Basis for Disease Management

[1] Muñoz-Carrillo JL, Castro-García FP, 
Gutiérrez-Coronado O, Moreno-
García MA and Contreras-Cordero JF. 
Physiology and pathology of innate 
immune response against pathogens. 
In: Rezaei N, editor. Physiology and 
Pathology of Immunology. London: 
InTechOpen; 99-134, 2017 p. DOI: 
10.5772/intechopen.70556

[2] R&D Systems a bio-techne brand. 
Dendritic cell Lineage Development 
Pathways, Bio-Techne [Internet]. 
2017. Available from: https://www.
rndsystems.com/pathways/dendritic-
cell-lineage-development-pathways.

[3] R&D Systems a bio-techne brand. 
DC: Development Lineage Pathway 
Human, Bio-Techne. [Internet]. 
2017. Available from: https://www.
rndsystems.com/pathways/dendritic-
cell-lineage-development-pathways.

[4] Tamoutounour S, Guilliams M, 
Sanchis FM, Liu H, Terhorst D, Malosse C, 
Pollet E, Ardouin L, Luche H, Sanchez C, 
Dalod M, Malissen B, Henri S. Immunity. 
2013;39:925-938. DOI: 10.1016/j.
immuni.2013.10.004.

[5] Collin M, McGovern N, 
Haniffa M. Human dendritic cell subsets. 
Immunology. 2013;140: 22-30. DOI: 
10.1111/imm.12117.

[6] Vázquez MB, Sureda M, Rebollo J. 
Células dendríticas I: aspectos básicos 
de su biología y funciones. Inmunología. 
2012;31:21-30. DOI: 10.1016/j.
inmuno.2011.10.001

[7] M. Plantinga, C. de Haar, S. Nierkens. 
Dendritic Cells. In: K. Verhoeckx, P. 
Cotter, I. López-Expósito, C. Kleiveland, 
T. Lea, A. Mackie, T. Requena, D. 
Swiatecka, H. Wichers, editors. The 
impact of food bioactives on health: 
in vitro and ex vivo models. Cham. 
Springer: 2015. 181-196 p. DOI: https://
doi.org/10.1007/978-3-319-16104-4

[8] Y. F. Tan, C. F. Leong, S. K. 
Cheong. Observation of dendritic cell 
morphology under light, phase-contrast 
or confocal laser scanning microscopy. 
Malays J Pathol. 2010;32:97-102.

[9] Romero-Palomo F, Sanchez- 
Cordon PJ, Risalde MA, Pedrera M,  
Molina V, Ruiz-Villamor E, Gomez- 
Villamandos JC. Funciones y 
clasificación de las células dendríticas. 
Anales. 2011;24:167-191.

[10] Muñoz-Carrillo JL, 
Castro-García FP, Chávez-Rubalcaba F,  
Martínez-Rodríguez JL, 
Hernández-Ruiz ME. Immune System  
Disorders: Hypersensitivity and 
Auto immunity. In: Seyyed SA, 
editor. Immunoregulatory Aspects of 
Immunotherapy. London: InTechOpen; 
2018. p. 1-30. DOI: 10.5772/
intechopen.75794.

[11] Steinman RM, Cohn ZA. 
Identification of a novel cell type in 
peripheral lymphoid organs of mice. 
I. Morphology, quantitation, tissue 
distribution. J Exp Med. 1973;137:1142-
1146. DOI: 10.1084/jem.137.5.1142

[12] Banchereau J, Steinman RM. 
Dendritic cells and the control of 
immunity. Nature. 1998;392:245-252. 
DOI: 10.1038/32588

[13] Wu L, Liu YJ. Development of 
dendritic-cell lineages. Immunity. 
2007;26:741-750. DOI: 10.1016/j.
immuni.2007.06.006

[14] Lambotin M, Raghuraman S, 
Stoll-Keller F, Baumert TF, Barth H. A 
look behind closed doors: interaction of 
persistent viruses with dendritic cells. 
Nat Rev Microbiol. 2010;8:350-360. 
DOI: 10.1038/nrmicro2332

[15] Liu YJ. Dendritic cell subsets 
and lineages, and their functions in 
innate and adaptive immunity. Cell. 

References



19

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

2001;106:259-262. DOI: 10.1016/
s0092-8674(01)00456-1

[16] Ho LJ, Wang JJ, Shaio MF, Kao CL, 
Chang DM, Han SW, Lai JH. Infection 
of human dendritic cells by dengue 
virus causes cell maturation and 
cytokine production. J Immunol. 
2001;166:1499-1506. DOI: 10.4049/
jimmunol.166.3.1499

[17] Bao M, Liu YJ. Regulation of TLR7/9 
signaling in plasmacytoid dendritic 
cells. Protein Cell. 2013;4:40-52. DOI: 
10.1007/s13238-012-2104-8

[18] Swiecki M, Colonna M. Unraveling 
the functions of plasmacytoid 
dendritic cells during viral infections, 
autoimmunity, and tolerance. 
Immunol Rev. 2010;234:142-162. DOI: 
10.1111/j.0105-2896.2009.00881.x

[19] Cella M, Sallusto F, Lanzavecchia A. 
Origin, maturation and antigen 
presenting function of dendritic cells. 
Curr Opin Immunol. 1997;9:10-16. DOI: 
10.1016/s0952-7915(97)80153-7

[20] Szabo A, Rajnavolgyi E. 
Collaboration of Toll-like and RIG-I-
like receptors in human dendritic cells: 
tRIGgering antiviral innate immune 
responses. Am J Clin Exp Immunol. 
2013;2:195-207. PMID: 24179728

[21] Hemmi H, Akira S. TLR signalling 
and the function of dendritic cells. 
Chem Immunol Allergy. 2005;86:120-
135. DOI: 10.1159/000086657

[22] Baños-Lara MDR, Ghosh A, 
Guerrero-Plata A. Critical role of MDA5 
in the interferon response induced by 
human metapneumovirus infection 
in dendritic cells and in vivo. J Virol. 
2013;87(2):1242-1251. DOI: 10.1128/
JVI.01213-12

[23] Bell JK, Mullen GE,  
Leifer CA, Mazzoni A, Davies DR, 
Segal DM. Leucine-rich repeats and 
pathogen recognition in Toll-like 

receptors. Trends in immunology. 
2003;24:528-533. DOI: 10.1016/
S1471-4906(03)00242-4

[24] Botos I, Segal DM, Davies DR. The 
structural biology of Toll-like receptors. 
Structure. 2011;19:447-459. DOI: 
10.1016/j.str.2011.02.004

[25] Takeuchi O, Akira S. Pattern 
recognition receptors and inflammation. 
Cell. 2010;140:805-820. DOI: 10.1016/j.
cell.2010.01.022

[26] Van Montfoort N, van der Aa E, 
Woltman AM. Understanding MHC 
class I presentation of viral antigens 
by human dendritic cells as a basis for 
rational design of therapeutic vaccines. 
Front Immunol. 2014;5:182. DOI: 
10.3389/fimmu.2014.00182

[27] López-Albaitero A, Mailliard R, 
Hackman T, Andrade Filho PA, Wang X, 
Gooding W, Ferrone S, Kalinski P, 
Ferris RL. Maturation pathways of 
dendritic cells determine TAP1 and 
TAP2 levels and cross-presenting 
function. J Immunother. 2009;32:465-
473. DOI: 10.1097/CJI.0b013e3181a1c24e

[28] Geijtenbeek TB, Torensma R, van 
Vliet SJ, van Duijnhoven GC, Adema GJ, 
van Kooyk Y, Figdor CG. Identification 
of DC-SIGN, a novel dendritic 
cell-specific ICAM-3 receptor that 
supports primary immune responses. 
Cell. 2000;100:575-585. DOI: 10.1016/
s0092-8674(00)80693-5

[29] Gringhuis SI, den Dunnen J, 
Litjens M, van Het Hof B, van Kooyk Y, 
Geijtenbeek TB. C-type lectin DC-SIGN 
modulates Toll-like receptor signaling 
via Raf-1 kinase-dependent acetylation 
of transcription factor NF-kappaB. 
Immunity. 2007;26:605-616. DOI: 
10.1016/j.immuni.2007.03.012

[30] Puig-Kröger A, Serrano-Gómez D, 
Caparrós E, Domínguez-Soto A,  
Relloso M, Colmenares M,  
Martínez-Muñoz L, Longo N, 



Cell Interaction - Molecular and Immunological Basis for Disease Management

20

Sánchez-Sánchez N, Rincon M, Rivas L, 
Sánchez-Mateos P, Fernández-Ruiz E, 
Corbí AL. Regulated expression of 
the pathogen receptor dendritic cell-
specific intercellular adhesion molecule 
3 (ICAM-3)-grabbing nonintegrin 
in THP-1 human leukemic cells, 
monocytes, and macrophages. J Biol 
Chem. 2004;279:25680-25688. DOI: 
10.1074/jbc.M311516200

[31] Kim HM, Park BS, Kim JI, 
Kim SE, Lee J, Oh SC, Enkhbayar P, 
Matsushima N, Lee H, Yoo OJ, Lee JO. 
Crystal structure of the TLR4-MD-2 
complex with bound endotoxin 
antagonist Eritoran. Cell. 2007;130:906-
917. DOI: 10.1016/j.cell.2007.08.002

[32] Yamamoto M, Sato S, Mori K, 
Hoshino K, Takeuchi O, Takeda K, 
Akira S. Cutting edge: a novel Toll/
IL-1 receptor domain-containing 
adapter that preferentially activates 
the IFN-beta promoter in the Toll-
like receptor signaling. J Immunol. 
2002;169:6668-6672. DOI: 10.4049/
jimmunol.169.12.6668

[33] Liu L, Botos I, Wang Y, Leonard JN, 
Shiloach J, Segal DM, Davies DR. 
Structural basis of toll-like receptor 
3 signaling with double-stranded 
RNA. Science. 2008;320:379-381. DOI: 
10.1126/science.1155406

[34] Brown J, Wang H, 
Hajishengallis GN, Martin M. TLR-
signaling networks: an integration of 
adaptor molecules, kinases, and cross-
talk. J Dent Res. 2011;90:417-427. DOI: 
10.1177/0022034510381264

[35] Kato H, Takeuchi O, Sato S, 
Yoneyama M, Yamamoto M, Matsui K, 
Uematsu S, Jung A, Kawai T, Ishii KJ, 
Yamaguchi O, Otsu K, Tsujimura T, 
Koh CS, Reis e Sousa C, Matsuura Y, 
Fujita T, Akira S. Differential roles 
of MDA5 and RIG-I helicases in the 
recognition of RNA viruses. Nature. 
2006;441:101-105. DOI: 10.1038/
nature04734

[36] Hemmi H, Takeuchi O, Sato S,  
Yamamoto M, Kaisho T, Sanjo H, 
Kawai T, Hoshino K, Takeda K, Akira S. 
The roles of two IkappaB kinase-related 
kinases in lipopolysaccharide and 
double stranded RNA signaling 
and viral infection. J Exp Med. 
2004;199:1641-1650. DOI: 10.1084/
jem.20040520

[37] Kawai T, Takahashi K, Sato S, 
Coban C, Kumar H, Kato H, Ishii KJ, 
Takeuchi O, Akira S. IPS-1, an adaptor 
triggering RIG-I- and Mda5-mediated 
type I interferon induction. Nat 
Immunol. 2005;6:981-988. DOI: 
10.1038/ni1243

[38] Saha SK, Pietras EM, He JQ, Kang JR, 
Liu SY, Oganesyan G, Shahangian A, 
Zarnegar B, Shiba TL, Wang Y, Cheng G. 
Regulation of antiviral responses by a 
direct and specific interaction between 
TRAF3 and Cardif. EMBO J. 
2006;25:3257-3263. DOI: 10.1038/
sj.emboj.7601220

[39] Clark K, Takeuchi O, Akira S, 
Cohen P. The TRAF-associated protein 
TANK facilitates cross-talk within the 
IkappaB kinase family during Toll-like 
receptor signaling. Proc Natl Acad Sci 
U S A. 2011;108:17093-17098. DOI: 
10.1073/pnas.1114194108

[40] O'Brien M, Manches O, 
Bhardwaj N. Plasmacytoid dendritic 
cells in HIV infection. Adv Exp 
Med Biol. 2013;762:71-107. DOI: 
10.1007/978-1-4614-4433-6_3

[41] Beignon AS, McKenna K, 
Skoberne M, Manches O, DaSilva I, 
Kavanagh DG, Larsson M, Gorelick RJ, 
Lifson JD, Bhardwaj N. Endocytosis 
of HIV-1 activates plasmacytoid 
dendritic cells via Toll-like receptor-
viral RNA interactions. J Clin Invest. 
2005;115:3265-75. DOI: 10.1172/
JCI26032

[42] Kadowaki N, Ho S, Antonenko S, 
Malefyt RW, Kastelein RA, Bazan F, 
Liu YJ. Subsets of human dendritic 



21

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

cell precursors express different 
toll-like receptors and respond to 
different microbial antigens. J Exp 
Med. 2001;194:863-869. DOI: 10.1084/
jem.194.6.863

[43] Asselin-Paturel C, Trinchieri G.  
Production of type I interferons: 
plasmacytoid dendritic cells and 
beyond. J Exp Med. 2005;202:461-465. 
DOI: 10.1084/jem.20051395

[44] Li S, Strelow A, Fontana EJ, 
Wesche H. IRAK-4: a novel member of 
the IRAK family with the properties of 
an IRAK-kinase. Proc Natl Acad Sci U 
S A. 2002;99:5567-5572. DOI: 10.1073/
pnas.082100399

[45] Lin SC, Lo YC, Wu H. Helical 
assembly in the MyD88-IRAK4-IRAK2 
complex in TLR/IL-1R signalling. 
Nature. 2010;465:885-890. DOI: 
10.1038/nature09121

[46] Peressin M, Holl V, Schmidt S,  
Decoville T, Mirisky D, Lederle A,  
Delaporte M, Xu K, Aubertin AM,  
Moog C. HIV-1 replication in 
Langerhans and interstitial dendritic 
cells is inhibited by neutralizing and 
Fc-mediated inhibitory antibodies. J 
Virol. 2011;85:1077-1085. DOI: 10.1128/
JVI.01619-10

[47] Cunningham AL, Carbone F,  
Geijtenbeek TB. Langerhans cells 
and viral immunity. Eur J Immunol. 
2008;38:2377-2385. DOI: 10.1002/
eji.200838521

[48] Flacher V, Bouschbacher M, 
Verronèse E, Massacrier C, Sisirak V, 
Berthier-Vergnes O, de Saint-Vis B,  
Caux C, Dezutter-Dambuyant C, 
Lebecque S, Valladeau J. Human 
Langerhans cells express a specific TLR 
profile and differentially respond to 
viruses and Gram-positive bacteria. J 
Immunol. 2006;177:7959-7967. DOI: 
10.4049/jimmunol.177.11.7959

[49] Murray PR, Rosenthal KS, 
Pfaller MA. Medical Microbiology 

E-Book. 9th ed. Philadelphia, PA: 
Elsevier Health Sciences; 2015. 89 p.

[50] Gutiérrez-Kobeh L, Rodríguez- 
González J, Argueta-Donohué J,  
Vázquez-López R, Wilkins- 
Rodríguez AA. Role of Dendritic 
Cells in Parasitic Infections. In: 
Chapoval SP, editor. Dendritic Cells. 
London: InTechOpen. 2018. p. 47-77. 
DOI: 10.5772/intechopen.79491

[51] Muñoz-Carrillo JL,  
Contreras-Cordero JF, 
Gutiérrez-Coronado O, Villalobos-
Gutiérrez P T, Ramos-Gracia LG, 
Hernández-Reyes VE. Cytokine 
profiling plays a crucial role in 
activating immune system to clear 
infectious pathogens. In: Tyagi RK, 
Bisen PS, editors. Immune Response 
Activation and Immunomodulation. 
London: InTechOpen. 2018. p. 1-30. 
DOI: 10.5772/intechopen.80843

[52] Schnittger L, Florin-Christensen M. 
Introduction into parasitic protozoa. 
In: Florin-Christensen M, Schnittger L, 
editors. Parasitic Protozoa of Farm 
Animals and Pets. Switzerland:  
Springer International 
Publishing. 2018. p. 1-1. DOI: 
10.1007/978-3-319-70132-5_1

[53] Hotez PJ. Human Parasitology and 
Parasitic Diseases: Heading Towards 
2050. Adv Parasitol. 2018;100:29-38. 
DOI: 10.1016/bs.apar.2018.03.002

[54] Sibley LD. Invasion and intracellular 
survival by protozoan parasites. 
Immunol Rev. 2011;240:72-91. DOI: 
10.1111/j.1600-065X.2010.00990.x

[55] Motran CC, Ambrosio LF, Volpini X, 
Celias DP, Cervi L. Dendritic cells 
and parasites: from recognition 
and activation to immune response 
instruction. Semin Immunopathol. 
2017;39:199-213. DOI: 10.1007/
s00281-016-0588-7

[56] Ghosh D, Stumhofer JS. Do you see 
what I see: Recognition of protozoan 



Cell Interaction - Molecular and Immunological Basis for Disease Management

22

parasites by Toll-like receptors. Curr 
Immunol Rev. 2013;9:129-140. DOI: 10.2
174/1573395509666131203225929

[57] Oliveira AC, Peixoto JR, de 
Arruda LB, Campos MA, Gazzinelli RT, 
Golenbock DT, Akira S, Previato JO, 
Mendonça-Previato L, Nobrega A, 
Bellio M. Expression of functional 
TLR4 confers proinflammatory 
responsiveness to Trypanosoma cruzi 
glycoinositolphospholipids and higher 
resistance to infection with T. cruzi. J 
Immunol. 2004;173:5688-5696. DOI: 
10.4049/jimmunol.173.9.5688

[58] Campos MA, Almeida IC,  
Takeuchi O, Akira S, Valente EP,  
Procópio DO, Travassos LR, 
Smith JA, Golenbock DT, Gazzinelli RT. 
Activation of Toll-like receptor-2 by 
glycosylphosphatidylinositol anchors 
from a protozoan parasite. J Immunol. 
2001;167:416-423. DOI: 10.4049/
jimmunol.167.1.416

[59] Bafica A, Santiago HC, 
Goldszmid R, Ropert C, Gazzinelli RT, 
Sher A. Cutting edge: TLR9 and TLR2 
signaling together account for MyD88-
dependent control of parasitemia in 
Trypanosoma cruzi infection. J Immunol. 
2006;177(6):3515-3519. DOI: 10.4049/
jimmunol.177.6.3515

[60] Terrazas CA, Huitron E, Vazquez A, 
Juarez I, Camacho GM, Calleja EA, 
Rodriguez-Sosa M. MIF synergizes with 
Trypanosoma cruzi antigens to promote 
efficient dendritic cell maturation 
and IL-12 production via p38 MAPK. 
Int J Biol Sci. 2011;7:1298-1310. DOI: 
10.7150/ijbs.7.1298

[61] Sanecka A, Frickel EM. Use and 
abuse of dendritic cells by Toxoplasma 
gondii. Virulence. 2012;3:678-689. DOI: 
10.4161/viru.22833

[62] Scanga CA, Aliberti J, Jankovic D, 
Tilloy F, Bennouna S, Denkers EY, 
Medzhitov R, Sher A. Cutting edge: 
MyD88 is required for resistance 
to Toxoplasma gondii infection and 

regulates parasite-induced IL-12 
production by dendritic cells. J 
Immunol. 2002;168:5997-6001. DOI: 
10.4049/jimmunol.168.12.5997

[63] Yarovinsky F, Zhang D,  
Andersen JF, Bannenberg GL, 
Serhan CN, Hayden MS, Hieny S, 
Sutterwala FS, Flavell RA, Ghosh S, 
Sher A. TLR11 activation of dendritic 
cells by a protozoan profilin-like 
protein. Science. 2005;308:1626-9. DOI: 
10.1126/science.1109893

[64] Aliberti J, Jankovic D, Sher A. 
Turning it on and off: regulation of 
dendritic cell function in 
Toxoplasma gondii infection. 
Immunol Rev. 2004;201:26-34. DOI: 
10.1111/j.0105-2896.2004.00179.x

[65] Plattner F, Yarovinsky F, 
Romero S, Didry D, Carlier MF, Sher A, 
Soldati-Favre D. Toxoplasma profilin 
is essential for host cell invasion and 
TLR11-dependent induction of an 
interleukin-12 response. Cell Host 
Microbe. 2008;3:77-87. DOI: 10.1016/j.
chom.2008.01.001

[66] Koblansky AA, Jankovic D, 
Oh H, Hieny S, Sungnak W, Mathur R, 
Hayden MS, Akira S, Sher A, Ghosh S. 
Recognition of profilin by Toll-like 
receptor 12 is critical for host resistance 
to Toxoplasma gondii. Immunity. 
2013;38:119-130. DOI: 10.1016/j.
immuni.2012.09.016

[67] Aosai F, Rodriguez 
Pena MS, Mun HS, Fang H, 
Mitsunaga T, Norose K, Kang HK, 
Bae YS, Yano A. Toxoplasma gondii-
derived heat shock protein 70 stimulates 
maturation of murine bone marrow-
derived dendritic cells via Toll-like 
receptor 4. Cell Stress Chaperones. 
2006;11:13-22. DOI: 10.1379/csc-138r.1

[68] Debierre-Grockiego F, Campos MA,  
Azzouz N, Schmidt J, Bieker U, 
Resende MG, Mansur DS, Weingart R, 
Schmidt RR, Golenbock DT,  



23

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

Gazzinelli RT, Schwarz RT.  
Activation of TLR2 and TLR4 by 
glycosylphosphatidylinositols derived 
from Toxoplasma gondii. J Immunol. 
2007;179:1129-1137. DOI: 10.4049/
jimmunol.179.2.1129

[69] Schneider AG, Abi Abdallah DS, 
Butcher BA, Denkers EY. Toxoplasma 
gondii triggers phosphorylation and 
nuclear translocation of dendritic cell 
STAT1 while simultaneously blocking 
IFNγ-induced STAT1 transcriptional 
activity. PLoS One. 2013;8:e60215. DOI: 
10.1371/journal.pone.0060215

[70] Naik RS, Branch OH, Woods AS,  
Vijaykumar M, Perkins DJ, Nahlen BL,  
Lal AA, Cotter RJ, Costello CE, 
Ockenhouse CF, Davidson EA, 
 Gowda DC. Glycosylphosphati-
dylinositol anchors of Plasmodium 
falciparum: molecular characterization 
and naturally elicited antibody 
response that may provide immunity 
to malaria pathogenesis. J Exp Med. 
2000;192:1563-1576. DOI: 10.1084/
jem.192.11.1563

[71] Kumar S, Gowda NM, 
Wu X, Gowda RN, Gowda DC. CD36 
modulates proinflammatory cytokine 
responses to Plasmodium falciparum 
glycosylphosphatidylinositols and 
merozoites by dendritic cells. Parasite 
Immunol. 2012;34:372-382. DOI: 
10.1111/j.1365-3024.2012.01367.x

[72] Wu X, Gowda NM, Kumar S, 
Gowda DC. Protein-DNA complex is the 
exclusive malaria parasite component 
that activates dendritic cells and triggers 
innate immune responses. J Immunol. 
2010;184:4338-4348. DOI: 10.4049/
jimmunol.0903824

[73] Behboudi S, Moore A, Hill AV. 
Splenic dendritic cell subsets prime and 
boost CD8 T cells and are involved in 
the generation of effector CD8 T cells. 
Cell Immunol. 2004;228:15-19. DOI: 
10.1016/j.cellimm.2004.03.010

[74] Murray SA, Mohar I, Miller JL,  
Brempelis KJ, Vaughan AM, 
Kappe SH, Crispe IN. CD40 is required 
for protective immunity against liver 
stage Plasmodium infection. J Immunol. 
2015;194:2268-2279. DOI: 10.4049/
jimmunol.1401724

[75] Bruña-Romero O, Rodriguez A. 
Dendritic cells can initiate protective 
immune responses against malaria. 
Infect Immun. 2001;69:5173-5176. DOI: 
10.1128/IAI.69.8.5173-5176.2001

[76] Vichchathorn P, Jenwithisuk R, 
Leelaudomlipi S, Tungpradabkul S, 
Hongeng S, Cui L, Sattabongkot J, 
Udomsangpetch R. Induction of specific 
immune responses against the 
Plasmodium vivax liver-stage via in vitro 
activation by dendritic cells. Parasitol 
Int. 2006;55:187-193. DOI: 10.1016/j.
parint.2006.04.001

[77] Jung S, Unutmaz D, Wong P, 
Sano G, De los Santos K, Sparwasser T, 
Wu S, Vuthoori S, Ko K, Zavala F, 
Pamer EG, Littman DR, Lang RA. In 
vivo depletion of CD11c+ dendritic cells 
abrogates priming of CD8+ T cells by 
exogenous cell-associated antigens. 
Immunity. 2002;17:211-220. DOI: 
10.1016/s1074-7613(02)00365-5

[78] Radtke AJ, Kastenmüller W, 
Espinosa DA, Gerner MY, Tse SW, 
Sinnis P, Germain RN, Zavala FP, 
Cockburn IA. Lymph-node resident 
CD8α+ dendritic cells capture antigens 
from migratory malaria sporozoites and 
induce CD8+ T cell responses. PLoS 
Pathog. 2015;11:e1004637. DOI: 10.1371/
journal.ppat.1004637

[79] Perry JA, Rush A, Wilson RJ, 
Olver CS, Avery AC. Dendritic cells 
from malaria-infected mice are 
fully functional APC. J Immunol. 
2004;172:475-482. DOI: 10.4049/
jimmunol.172.1.475

[80] Luyendyk J, Olivas OR, Ginger LA, 
Avery AC. Antigen-presenting cell 
function during Plasmodium 



Cell Interaction - Molecular and Immunological Basis for Disease Management

24

yoelii infection. Infect Immun. 
2002;70:2941-2949. DOI: 10.1128/
iai.70.6.2941-2949.2002

[81] Seixas E, Cross C, Quin S,  
Langhorne J. Direct activation 
of dendritic cells by the malaria 
parasite, Plasmodium chabaudi 
chabaudi. Eur J Immunol. 
2001;31:2970-2978. DOI: 10.1002/1521-
4141(2001010)31:10<2970:: 
aid-immu2970>3.0.co;2-s

[82] Leisewitz AL, Rockett KA,  
Gumede B, Jones M, Urban B,  
Kwiatkowski DP. Response of the 
splenic dendritic cell population to 
malaria infection. Infect Immun. 
2004;72:4233-4239. DOI: 10.1128/
IAI.72.7.4233-4239.2004

[83] Amorim KN, Chagas DC, 
Sulczewski FB, Boscardin SB. Dendritic 
Cells and Their Multiple Roles 
during Malaria Infection. J Immunol 
Res. 2016;2016:2926436. DOI: 
10.1155/2016/2926436

[84] Gazzinelli-Guimaraes PH, 
Nutman TB. Helminth parasites 
and immune regulation. F1000Res. 
2018;7:F1000 Faculty Rev-1685. DOI: 
10.12688/f1000research.15596.1

[85] Ilic N, Gruden-Movsesijan A, 
Sofronic-Milosavljevic L. Trichinella 
spiralis: shaping the immune response. 
Immunol Res. 2012;52:111-119. DOI: 
10.1007/s12026-012-8287-5

[86] Ashour DS. Trichinella spiralis 
immunomodulation: an interactive 
multifactorial process. Expert Rev 
Clin Immunol. 2013;9:669-675. DOI: 
10.1586/1744666X.2013.811187.

[87] Bruschi F, Chiumiento L. 
Immunomodulation in trichinellosis: 
does Trichinella really escape the host 
immune system? Endocr Metab Immune 
Disord Drug Targets. 2012;12:4-15. DOI: 
10.2174/187153012799279081

[88] Cieza RJ, Cao AT, Cong Y, 
Torres AG. Immunomodulation for 
gastrointestinal infections. Expert Rev 
Anti Infect Ther. 2012;10:391-400. DOI: 
10.1586/eri.11.176

[89] Maizels RM, McSorley HJ. 
Regulation of the host immune system 
by helminth parasites. J Allergy Clin 
Immunol. 2016;138:666-675. DOI: 
10.1016/j.jaci.2016.07.007

[90] Perrigoue JG, Marshall FA, 
Artis D. On the hunt for helminths: 
innate immune cells in the recognition 
and response to helminth parasites. Cell 
Microbiol. 2008;10:1757-1764. DOI: 
10.1111/j.1462-5822.2008.01174.x

[91] Carvalho L, Sun J, Kane C, 
Marshall F, Krawczyk C, Pearce EJ. 
Review series on helminths, immune 
modulation and the hygiene hypothesis: 
mechanisms underlying helminth 
modulation of dendritic cell function. 
Immunology. 2009;126:28-34. DOI: 
10.1111/j.1365-2567.2008.03008.x

[92] Muñoz-Carrillo JL, 
Maldonado-Tapia C, López-Luna A, 
Muñoz-Escobedo JJ, Flores-De La 
Torre JA, Moreno-García A. Current 
Aspects in Trichinellosis. In: G. A. 
Bastidas Pacheco, editor. Parasites 
and Parasitic Diseases. London: 
InTechOpen. 2018. p. 1-23. DOI: 
10.5772/intechopen.80372

[93] Ilic N, Worthington JJ, 
Gruden-Movsesijan A, Travis MA, 
Sofronic-Milosavljevic L, Grencis RK. 
Trichinella spiralis antigens prime 
mixed Th1/Th2 response but do 
not induce de novo generation of 
Foxp3+ T cells in vitro. Parasite 
Immunol. 2011;33:572-582. DOI: 
10.1111/j.1365-3024.2011.01322.x

[94] Yu YR, Deng MJ, Lu WW, Jia MZ, 
Wu W, Qi YF. Systemic cytokine profiles 
and splenic toll-like receptor expression 
during Trichinella spiralis infection. 
Exp Parasitol. 2013;134:92-101. DOI: 
10.1016/j.exppara.2013.02.014



25

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

[95] Gruden-Movsesijan A, 
Ilic N, Colic M, Majstorovic I, Vasilev S, 
Radovic I, Sofronic-Milosavljevic Lj. The 
impact of Trichinella spiralis excretory-
secretory products on dendritic cells. 
Comp Immunol Microbiol Infect 
Dis. 2011;34:429-439. DOI: 10.1016/j.
cimid.2011.08.004

[96] Gentilini MV, Nuñez GG, 
Roux ME, Venturiello SM. Trichinella 
spiralis infection rapidly induces lung 
inflammatory response: the lung as 
the site of helminthocytotoxic activity. 
Immunobiology. 2011;216:1054-63. DOI: 
10.1016/j.imbio.2011.02.002

[97] Muñoz-Carrillo JL, Contreras- 
Cordero JF, Muñoz-López JL,  
Maldonado-Tapia CH, Muñoz- 
Escobedo JJ, Moreno-García MA. 
Resiniferatoxin modulates the Th1 
immune response and protects the host 
during intestinal nematode infection. 
Parasite Immunol. 2017;39. DOI: 
10.1111/pim.12448

[98] Ilic N, Colic M, Gruden-movsesijan 
A, Majstorovic I, Vasilev S, Sofronic-
Milosavljevic Lj. Characterization of rat 
bone marrow dendritic cells initially 
primed by Trichinella spiralis antigens. 
Parasite Immunol. 2008;30:491-495. 
DOI: 10.1111/j.1365-3024.2008.01049.x

[99] Ming L, Peng RY, Zhang L,  
Zhang CL, Lv P, Wang ZQ, Cui J, Ren HJ. 
Invasion by Trichinella spiralis infective 
larvae affects the levels of inflammatory 
cytokines in intestinal epithelial cells in 
vitro. Exp Parasitol. 2016;170:220-226. 
DOI: 10.1016/j.exppara.2016.10.003

[100] Muñoz-Carrillo JL, Muñoz- 
Escobedo JJ, Maldonado-Tapia CH, 
Chávez-Ruvalcaba F,  
Moreno-García MA. Resiniferatoxin 
lowers TNF-α, NO and PGE2 in the 
intestinal phase and the parasite burden 
in the muscular phase of Trichinella 
spiralis infection. Parasite Immunol. 
2017;39: e12393. DOI: 10.1111/pim

[101] Langelaar M, Aranzamendi C, 
Franssen F, Van Der Giessen J, Rutten V, 
van der Ley P, Pinelli E. Suppression of 
dendritic cell maturation by Trichinella 
spiralis excretory/secretory products. 
Parasite Immunol. 2009;31:641-645. 
DOI: 10.1111/j.1365-3024.2009.01136.x

[102] Han C, Xu J, Liu CH, Li X, Zhai P, 
Hashan A, Song M. Modulation of 
TLR2 and TLR4 in Macrophages 
Following Trichinella Spiralis Infection. 
Helminthologia. 2018;55:195-203. DOI: 
10.2478/helm-2018-0015

[103] Vanhoutte F, Breuilh L,  
Fontaine J, Zouain CS, Mallevaey T,  
Vasseur V, Capron M, Goriely S, 
Faveeuw C, Ryffel B, Trottein F. Toll-like 
receptor (TLR)2 and TLR3 sensing is 
required for dendritic cell activation, 
but dispensable to control Schistosoma 
mansoni infection and pathology. 
Microbes Infect. 2007;9:1606-1613. DOI: 
10.1016/j.micinf.2007.09.013

[104] Aksoy E, Zouain CS, Vanhoutte F, 
Fontaine J, Pavelka N, Thieblemont N, 
Willems F, Ricciardi-Castagnoli P, 
Goldman M, Capron M, Ryffel B, 
Trottein F. Double-stranded RNAs 
from the helminth parasite Schistosoma 
activate TLR3 in dendritic cells. J Biol 
Chem. 2005;280:277-283. DOI: 10.1074/
jbc.M411223200

[105] Sorobetea D, Svensson-Frej M, 
Grencis R. Immunity to gastrointestinal 
nematode infections. Mucosal Immunol. 
2018;11:304-315. DOI: 10.1038/
mi.2017.113

[106] Maizels RM, McSorley HJ. 
Regulation of the host immune system 
by helminth parasites. J Allergy Clin 
Immunol. 2016;138:666-675. DOI: 
10.1016/j.jaci.2016.07.007

[107] Tussiwand R, Everts B, 
Grajales-Reyes GE, Kretzer NM, Iwata A, 
Bagaitkar J, Wu X, Wong R, Anderson DA, 
Murphy TL, Pearce EJ, Murphy KM. 
Klf4 expression in conventional 
dendritic cells is required for T helper 2 



Cell Interaction - Molecular and Immunological Basis for Disease Management

26

cell responses. Immunity. 2015;42:916-
928. DOI: 10.1016/j.immuni.2015.04.017

[108] Babu S, Nutman TB, Immune 
responses to helminth infection. in: 
Robert R. Rich, Thomas A. Fleisher, 
William T. Shearer, Harry W. Schroeder, 
Anthony J. Frew, Cornelia M. Weyand, 
editors. Clinical Immunology. Fifth 
Edition. 2019. p. 437-447, 2019. DOI: 
10.1016/B978-0-7020-6896-6.00031-4

[109] Muñoz-Carrillo JL, Muñoz- 
López JL, Muñoz-Escobedo JJ, 
Maldonado-Tapia C,  
Gutiérrez-Coronado O, 
Contreras-Cordero JF,  
Moreno-García MA. Therapeutic 
Effects of Resiniferatoxin Related with 
Immunological Responses for Intestinal 
Inflammation in Trichinellosis. Korean J 
Parasitol. 2017;55:587-599. DOI: 10.3347/
kjp.2017.55.6.587

[110] Van Riet E, Everts B, Retra K,  
Phylipsen M, van Hellemond JJ,  
Tielens AG, van der Kleij D,  
Hartgers FC, Yazdanbakhsh M. 
Combined TLR2 and TLR4 ligation in 
the context of bacterial or helminth 
extracts in human monocyte derived 
dendritic cells: molecular correlates for 
Th1/Th2 polarization. BMC Immunol. 
2009;10:9. DOI: 10.1186/1471-2172-10-9

[111] Schabussova I, Amer H, van Die I, 
Kosma P, Maizels RM. O-methylated 
glycans from Toxocara are specific 
targets for antibody binding in human 
and animal infections. Int J Parasitol. 
2007;37:97-109. DOI: 10.1016/j.
ijpara.2006.09.006

[112] Tawill S, Le Goff L, Ali F, 
Blaxter M, Allen JE. Both free-living 
and parasitic nematodes induce a 
characteristic Th2 response that is 
dependent on the presence of intact 
glycans. Infect Immun. 2004;72:398-
407. DOI: 10.1128/iai.72.1.398-407.2004

[113] Everts B, Smits HH, Hokke CH, 
Yazdanbakhsh M. Helminths and 

dendritic cells: sensing and regulating 
via pattern recognition receptors, Th2 
and Treg responses. Eur J Immunol. 
2010;40:1525-1537. DOI: 10.1002/
eji.200940109

[114] Ryffel B, Fremond C,  
Jacobs M, Parida S, Botha T,  
Schnyder B, Quesniaux V. Innate 
immunity to mycobacterial infection in 
mice: critical role for toll-like receptors. 
Tuberculosis (Edinb). 2005;85:395-405. 
DOI: 10.1016/j.tube.2005.08.021

[115] Faridgohar M, Nikoueinejad H. 
New findings of Toll-like receptors 
involved in Mycobacterium tuberculosis 
infection. Pathog Glob Health. 
2017;111:256-264. DOI: 
10.1080/20477724.2017.1351080

[116] Takeda K, Akira S. TLR signaling 
pathways. Semin Immunol. 2004;16:3-9. 
DOI: 10.1016/j.smim.2003.10.003

[117] Jiménez-Dalmaroni MJ, 
Gerswhin ME, Adamopoulos IE. The 
critical role of toll-like receptors--From 
microbial recognition to autoimmunity: 
A comprehensive review. Autoimmun 
Rev. 2016;15:1-8. DOI: 10.1016/j.
autrev.2015.08.009

[118] Heo DR, Shin SJ, Kim WS, 
Noh KT, Park JW, Son KH, Park WS, 
Lee MG, Kim D, Shin YK, Jung ID, 
Park YM. Mycobacterium tuberculosis 
lpdC, Rv0462, induces dendritic cell 
maturation and Th1 polarization. 
Biochem Biophys Res Commun. 
2011;411:642-647. DOI: 10.1016/j.
bbrc.2011.07.013

[119] Basu J, Shin DM, Jo EK. 
Mycobacterial signaling through 
toll-like receptors. Front Cell Infect 
Microbiol. 2012;2:145. DOI: 10.3389/
fcimb.2012.00145

[120] Choi S, Choi HG, Lee J, Shin KW, 
Kim HJ. Mycobacterium tuberculosis 
protein Rv2220 induces maturation 
and activation of dendritic cells. 



27

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

Cell Immunol. 2018;328:70-78. DOI: 
10.1016/j.cellimm.2018.03.012

[121] Bansal K, Sinha AY, 
Ghorpade DS, Togarsimalemath SK, 
Patil SA, Kaveri SV, Balaji KN, Bayry J. 
Src homology 3-interacting domain of 
Rv1917c of Mycobacterium tuberculosis 
induces selective maturation of human 
dendritic cells by regulating PI3K-
MAPK-NF-kappaB signaling and drives 
Th2 immune responses. J Biol Chem. 
2010;285:36511-36522. DOI: 10.1074/jbc.
M110.158055

[122] Costa Franco MMS, Marim FM, 
Alves-Silva J, Cerqueira D, Rungue M, 
Tavares IP, Oliveira SC. AIM2 senses 
Brucella abortus DNA in dendritic cells 
to induce IL-1β secretion, pyroptosis 
and resistance to bacterial infection in 
mice. Microbes Infect. 2019;21:85-93. 
DOI: 10.1016/j.micinf.2018.09.001

[123] Awad F, Assrawi E, Louvrier C, 
Jumeau C, Georgin-Lavialle S, Grateau G, 
Amselem S, Giurgea I, Karabina SA. 
Inflammasome biology, molecular 
pathology and therapeutic implications. 
Pharmacol Ther. 2018;187:133-149. DOI: 
10.1016/j.pharmthera.2018.02.011

[124] Guo H, Callaway JB, Ting JP. 
Inflammasomes: mechanism of action, 
role in disease, and therapeutics. Nat 
Med. 2015;21:677-687. DOI: 10.1038/
nm.3893

[125] Gong T, Jiang W, Zhou R. Control 
of Inflammasome Activation by 
Phosphorylation. Trends Biochem 
Sci. 2018;43:685-699. DOI: 10.1016/j.
tibs.2018.06.008

[126] Chavarría-Smith J, Vance RE. The 
NLRP1 inflammasomes. Immunol Rev. 
2015;265:22-34. DOI: 10.1111/imr.12283

[127] Sharma D, Kanneganti TD. The cell 
biology of inflammasomes: Mechanisms 
of inflammasome activation and 
regulation. J Cell Biol. 2016;213:617-629. 
DOI: 10.1083/jcb.201602089

[128] Man SM, Kanneganti TD. 
Regulation of inflammasome activation. 
Immunol Rev. 2015;265:6-21. DOI: 
10.1111/imr.12296

[129] He Y, Hara H, Núñez G. 
Mechanism and Regulation of NLRP3 
Inflammasome Activation. Trends 
Biochem Sci. 2016;41:1012-1021. DOI: 
10.1016/j.tibs.2016.09.002

[130] Miao EA, Mao DP, Yudkovsky N, 
Bonneau R, Lorang CG, Warren SE, 
Leaf IA, Aderem A. Innate immune 
detection of the type III secretion 
apparatus through the NLRC4 
inflammasome. Proc Natl Acad Sci U S 
A. 2010;107:3076-3080. DOI: 10.1073/
pnas.0913087107

[131] Duncan JA, Canna SW. The 
NLRC4 Inflammasome. Immunol 
Rev. 2018;281:115-123. DOI: 10.1111/
imr.12607

[132] Marim FM, Franco MMC,  
Gomes MTR, Miraglia MC,  
Giambartolomei GH, Oliveira SC.  
The role of NLRP3 and AIM2 in 
inflammasome activation during 
Brucella abortus infection. Semin 
Immunopathol. 2017;39:215-223. DOI: 
10.1007/s00281-016-0581-1

[133] Deng J, Yu XQ, Wang PH. 
Inflammasome activation and Th17 
responses. Mol Immunol. 2019;107:142-
164. DOI: 10.1016/j.molimm.2018.12.024

[134] Basu R, Whitley SK, Bhaumik S, 
Zindl CL, Schoeb TR, Benveniste EN, 
Pear WS, Hatton RD, Weaver CT. IL-1 
signaling modulates activation of STAT 
transcription factors to antagonize 
retinoic acid signaling and control 
the TH17 cell-iTreg cell balance. Nat 
Immunol. 2015;16:286-295. DOI: 
10.1038/ni.3099

[135] Peck A, Mellins ED. Precarious 
balance: Th17 cells in host defense. 
Infect Immun. 2010;78:32-38. DOI: 
10.1128/IAI.00929-09



Cell Interaction - Molecular and Immunological Basis for Disease Management

28

[136] Andreasen C, Powell DA,  
Carbonetti NH. Pertussis toxin 
stimulates IL-17 production in response 
to Bordetella pertussis infection in mice. 
PLoS One. 2009;4:e7079. DOI: 10.1371/
journal.pone.0007079

[137] Elinav E, Strowig T, Henao- 
Mejia J, Flavell RA. Regulation of the 
antimicrobial response by NLR proteins. 
Immunity. 2011;34:665-679. DOI: 
10.1016/j.immuni.2011.05.007

[138] Bertrand MJ, Doiron K, Labbé K, 
Korneluk RG, Barker PA, Saleh M. 
Cellular inhibitors of apoptosis cIAP1 
and cIAP2 are required for innate 
immunity signaling by the pattern 
recognition receptors NOD1 and NOD2. 
Immunity. 2009;30:789-801. DOI: 
10.1016/j.immuni.2009.04.011

[139] Chamaillard M, Hashimoto M,  
Horie Y, Masumoto J, Qiu S, 
Saab L, Ogura Y, Kawasaki A, Fukase K, 
Kusumoto S, Valvano MA, Foster SJ, 
Mak TW, Nuñez G, Inohara N. An 
essential role for NOD1 in host 
recognition of bacterial peptidoglycan 
containing diaminopimelic acid. Nat 
Immunol. 2003;4:702-707. DOI: 10.1038/
ni945

[140] Stafford CA, Lawlor KE,  
Heim VJ, Bankovacki A, 
Bernardini JP, Silke J, Nachbur U. IAPs 
Regulate Distinct Innate Immune 
Pathways to Co-ordinate the Response 
to Bacterial Peptidoglycans. Cell Rep. 
2018;22:1496-1508. DOI: 10.1016/j.
celrep.2018.01.024

[141] Velloso FJ, Trombetta-Lima M, 
Anschau V, Sogayar MC, Correa RG. 
NOD-like receptors: major players 
(and targets) in the interface between 
innate immunity and cancer. Biosci Rep. 
2019;39:BSR20181709. DOI: 10.1042/
BSR20181709

[142] Kanneganti TD, Lamkanfi M,  
Núñez G. Intracellular NOD-like 

receptors in host defense and disease. 
Immunity. 2007;27:549-559. DOI: 
10.1016/j.immuni.2007.10.002

[143] Park JH, Kim YG, McDonald C,  
Kanneganti TD, Hasegawa M, 
Body-Malapel M, Inohara N, Núñez G. 
RICK/RIP2 mediates innate immune 
responses induced through Nod1 
and Nod2 but not TLRs. J Immunol. 
2007;178:2380-2386. DOI: 10.4049/
jimmunol.178.4.2380

[144] Bozza S, Montagnoli C, 
Gaziano R, Rossi G, Nkwanyuo G, 
Bellocchio S, Romani L. Dendritic cell-
based vaccination against opportunistic 
fungi. Vaccine. 2004;22:857-864. DOI: 
10.1016/j.vaccine.2003.11.031

[145] Romani L. Immunity to fungal 
infections. Nat Rev Immunol. 
2011;11:275-288. DOI: 10.1038/nri2939

[146] Romani L. Immunity to fungal 
infections. Nat Rev Immunol. 2004;4:1-
23. DOI: 10.1038/nri1255

[147] Muranski P, Restifo NP. Essentials 
of Th17 cell commitment and plasticity. 
Blood. 2013;121:2402-2414. DOI: 
10.1182/blood-2012-09-378653

[148] de Castro LF, Longhi LNA, 
Paião MR, Justo-Júnior ADS, de 
Jesus MB, Blotta MHSL, Mamoni RL. 
NLRP3 inflammasome is involved 
in the recognition of Paracoccidioides 
brasiliensis by human dendritic cells 
and in the induction of Th17 cells. J 
Infect. 2018;77:137-144. DOI: 10.1016/j.
jinf.2018.03.004

[149] Espinosa V, Rivera A. Cytokines 
and the regulation of fungus-specific 
CD4 T cell differentiation. Cytokine. 
2012;58:100-106. DOI: 10.1016/j.
cyto.2011.11.005

[150] Shi D, Li D, Wang Q, Kong X, 
Mei H, Shen Y, Liu W. Silencing SOCS1 
in dendritic cells promote survival 
of mice with systemic Candida 



29

Role of Dendritic Cells in Pathogen Infections: A Current Perspective
DOI: http://dx.doi.org/10.5772/intechopen.95551

albicans infection via inducing 
Th1-cell differentiation. Immunol 
Lett. 2018;197:53-62. DOI: 10.1016/j.
imlet.2018.03.009

[151] Hasebe A, Saeki A, Yoshida Y, 
Shibata KI. Differences in interleukin-1β 
release-inducing activity of Candida 
albicans toward dendritic cells 
and macrophages. Arch Oral Biol. 
2018;93:115-125. DOI: 10.1016/j.
archoralbio.2018.06.004


