
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Critical Mach Numbers of Flow
around Two-Dimensional and
Axisymmetric Bodies
Vladimir Frolov

Abstract

The paper presents the calculated results obtained by the author for critical Mach
numbers of the flow around two-dimensional and axisymmetric bodies. Although the
previously proposed method was applied by the author for two media, air and water,
this chapter is devoted only to air. The main goal of the work is to show the high
accuracy of the method. For this purpose, the work presents numerous comparisons
with the data of other authors. This method showed acceptable accuracy in compar-
ison with the Dorodnitsyn method of integral relations and other methods. In the
method under consideration, the parameters of the compressible flow are calculated
from the parameters of the flow of an incompressible fluid up to the Mach number of
the incoming flow equal to the critical Mach number. This method does not depend
on the means determination parameters of the incompressible flow. The calculation
in software Flow Simulation was shown that the viscosity factor does not affect the
value critical Mach number. It was found that with an increase in the relative thick-
ness of the body, the value of the critical Mach number decreases. It was also found
that the value of the critical Mach number for the two-dimensional case is always less
than for the axisymmetric case for bodies with the same cross-section.

Keywords: compressibility, critical Mach number, air, two-dimensional case,
axisymmetric case

1. Introduction

This chapter provides an overview of the results obtained by the author by an
approximate method for determining the critical Mach numbers for flows in two-
dimensional and axisymmetric cases [1–3].

The high subsonic flow velocities in aerodynamics are a common case since most
modern passenger and cargo planes fly at Mach numbers exceeding the critical
Mach numbers. The compressibility effect increases with an increase in the free-
streamMach number and with an increase in the perturbations created by the flying
body at low Mach numbers. Compressibility problems have been considered by
many scientists by various methods [4–20]. Knowing the free-stream Mach num-
ber, at which the local velocity somewhere on the surface of the body becomes
equal to the local sound velocity, makes it possible to correctly choose the basic
aerodynamic equations for a body moving at high speed. It is well known that when
the local flow velocity becomes equal to the speed of sound, the aerodynamic
equations change their own type from elliptic to hyperbolic. The value of the critical
Mach number is the transition from one type of equation to another.
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2. The approximate method for calculating flow compressibility
characteristics

The equations for the existence of the velocity potential and continuity are
written for two cases: two-dimensional and axisymmetric for compressible irrota-
tional gas flow

∂u

∂r
�

∂v

∂x
¼ 0,

∂ rnρuð Þ

∂x
þ

∂ rnρvð Þ

∂r
¼ 0, (1)

where u, v are components of the velocity along axis x и r accordingly, m/s;, r, x
are coordinates; ρ is local density of gas, kg/m3; parameter n equal

n ¼
0 � 2D body;

1 � axisymmetric body:

�

Here x, r are coordinates in the meridional plane for the axisymmetric case
(n = 1). Let us introduce the special functions proposed by Burago [20]

τ ¼
2

ρ0=ρþ 1
; σ ¼

ρ0=ρ� 1

ρ0=ρþ 1
, (2)

ρ0 is gas density at the stagnation point. Taking into account equation (Eq. (2)),
the equation (Eq. (1)) can be rewritten as

∂

∂r

τu

1� σ

� �

�
∂

∂x

τu

1� σ

� �

¼ 0,
∂

∂x

rnτu

1þ σ

� �

þ
∂

∂r

rnτv

1þ σ

� �

¼ 0, (3)

For barotropic model of compressible air we have

ρ

ρ
∞

¼
p

p
∞

� �1
κ

, (4)

where p is static pressure, Pa; κ is ratio of specific heats (for air κ = 1.4); ∞
subscript indicates flow parameters at infinity. The equation (Eq. (4)) refers to as
Poisson’s adiabatic curve.

According to the accepted model of a barotropic gas, the enthalpy and
pressure function differ only by a constant value h = P(p) + const. The pressure
function is

P pð Þ ¼

ðp

p
∞

dp

ρ
: (5)

If we carry out the integration in formula (Eq. (5)) taking into account formula
(Eq. (4)), then we get (Eq. (6))

h ¼
ρκ�1

κ � 1ð Þρκ�1
∞

M2
∞

, (6)

here M
∞
is Mach number at infinity.

Using the equation for enthalpy (Eq. (6)), the Bernoulli equation for a
compressible gas can be written as
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Vj j2

2
þ

ρκ�1

κ � 1ð Þρκ�1
∞

M2
∞

¼
1

2
þ

1

κ � 1ð ÞM2
∞

, (7)

where Vj j is the modulus of the vector of the total local velocity of flow.
Based on formula (Eq. (7)), the following equalities can be written:

ρ

ρ
∞

¼ 1þ
κ � 1

2
M
∞2 1� u2 � v2

� �

	 
 1
κ�1

,
a

a
∞

¼ 1þ
κ � 1

2
M
∞2 1� u2 � v2

� �

	 
1
2

,

(8)

here u ¼ u=U
∞
, v ¼ v=U

∞
are the dimensionless components of the local

velocity, U
∞
is free-stream flow velocity at infinity.

Let us write the well-known isentropic relations for density and sound speed

ρ0

ρ
¼ 1þ

κ � 1

2
M2

	 
 1
κ�1

,
a0
a

¼ 1þ
κ � 1

2
M2

	 
1
2

, (9)

here lower index “0” specifies parameters in stagnation point.
Formulas (9) can be written as

ρ0

ρ
¼ E Mð Þ½ �

1
κ�1,

a0
a

¼ E Mð Þ½ �
1
2, E Mð Þ ¼ 1þ

κ � 1

2
M2: (10)

The speed of sound is defined by formula a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

dp=dρ
p

. The speed of sound in

the case of an isentropic air flow is a ¼
ffiffiffiffiffiffiffiffiffiffi

κp=ρ
p

. Based on the equation of state in the
form (Eq. (4)), we can write

a ¼ a
∞

ρ

ρ
∞

� �κ�1
2

: (11)

Based on the isentropic relationship for density (Eq. (9)), the function σ

(Eq. (2)) can be calculated. Figure 1 shows a graph of the function σ for air versus
Mach number.

Figure 1.
The function σ vs. Mach number.
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In Figure 1 it is seen that the values σ lie in a narrow range [0; 0.22] for air when
changing the Mach number from 0 to 1.0. This narrow range allows us to take
σ ≈ const, and then using formulas (Eq. (2)), we can replace (Eq. (3)) with an
approximate

∂

∂x

rnτu

ρ0 þ ρ

� �

þ
∂

∂r

rnτv

ρ0 þ ρ

� �

¼ 0,
∂

∂r

τu

ρ0 þ ρ

� �

�
∂

∂x

τu

ρ0 þ ρ

� �

¼ 0: (12)

If we introduce new variables uo and vo associated with u and v as follows

u ¼
ρ
∞

ρ

ρþ ρ0ð Þ

ρ
∞
þ ρ0ð Þ

u0 ¼
1þ ρ0

ρ

1þ ρ0
ρ
∞

u0 ¼ ηcu
0; v ¼

ρ
∞

ρ

ρþ ρ0ð Þ

ρ
∞
þ ρ0ð Þ

v0 ¼
1þ ρ0

ρ

1þ ρ0
ρ
∞

v0 ¼ ηcv
0:

(13)

where ηc is introduced

ηc ¼ 1þ
ρ0

ρ

� �

= 1þ
ρ0

ρ
∞

� �

: (14)

The coefficient ηc will be called the coefficient of compressibility. The new
speeds (Eq. (13)) allow equations (Eq. (12)) to be written in the form

∂u0

∂r
�

∂v0

∂x
¼ 0,

∂ rnu0ð Þ

∂x
þ

∂ rnv0ð Þ

∂r
¼ 0: (15)

Equations (Eq. (15)) repeat equations (Eq. (1)) describing potential flow of an
incompressible liquid (ρ ≈ const) with a velocity having components (u0, v0).
Equations (Eq. (15)) allow us to assert that the boundary conditions at infinity for a
compressible gas flow with velocity components (u, v) will be identical to the
corresponding conditions for an incompressible fluid flow with velocity compo-
nents (u0, v0). The boundary conditions on the body surface will also be the same.
Indeed, in a compressible flow on the surface of a body vn = 0. On the body surface
in an incompressible fluid flow, based on (Eq. (13)), we can write

v0n ¼
ρ

ρ
∞

ρ
∞
þ ρ0ð Þ

ρþ ρ0ð Þ
vn ¼ 0: (16)

Thus, the equations (Eq. (13)) determine the approximate relationship between
the components of the velocities in compressible and incompressible flows around
the same body under the same conditions at infinity and on the surface of the body.
So, to determine velocities of compressible gas flow, it is necessary to use the known
isentropic relationships for the local velocity of a flow and density

Vj j

a0
¼

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ�1
2 M2

q ,
ρ0

ρ
∞

¼ 1þ
κ � 1

2
M2
∞

	 
 1
κ�1

, (17)

here M is the local Mach number at an arbitrary point. The left side of the first
formula (Eq. 17) can be written as

Vj j

a0
¼

U
∞
a
∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

a
∞
a0

¼
M
∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ�1
2 M2

∞

q : (18)
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From (Eq. (17)) and (Eq. (18)) it follows

M ¼ M
∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2

1þ κ�1
2 M2

∞
1� u2 � v2
� �

s

: (19)

Equation (Eq. 19) shows that the local Mach number M is determined by the
local dimensionless velocities u and v, which, according equations (Eq. 13) and
(Eq. 10) depends on local Mach number. To account for this, we will use successive
approximations. We will use the velocities calculated for an incompressible flow,
which we will substitute in (Eq. (19)) at the first stage of approximation

u 1ð Þ ¼ u0=U
∞
; v 1ð Þ ¼ v0=U

∞
: (20)

Thus, based on these values, the local Mach number M(1) for the first approxi-
mation is determined. Thereafter, the computed first approximation Mach number
M(1) is used to calculate the second approximation velocity components from

u 2ð Þ, v 2ð Þ from (Eqs. (13) and (14)), and isentropic formula for density (Eq. (10)).
The obtained values of the velocity components make it possible to calculate on the
basis (Eq. (19)), the local Mach number for the second approximation M(2), which,
in turn, is used to calculate the local velocity components at the stage of the third

approximation u 3ð Þ, v 3ð Þ, and so on. The approximation process must be continued

until the following inequality is satisfied η
nð Þ
c � η

n�1ð Þ
c

�

�

�

�

�

�� η
n�1ð Þ
c � η

n�2ð Þ
c

�

�

�

�

�

�≤ ε, where ε

is a given calculation error. Preliminary calculations using the described algorithm
showed that the number of approximation steps increases as M ! 1.0, but usually
the maximum number of approximations does not exceed 30.

From (Eq. (18) and (19)) we can write

M
∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ�1
2 M2

∞

q ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ�1
2 M2

q : (21)

Putting in the formula (Eq. (21))M = 1 andM∞ =M*, we can get the formula for
calculating the critical Mach number

M ∗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

u2 þ v2 þ κ�1
2 u2 þ v2 � 1
� �

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

U
2
þ κ�1

2 U
2
� 1

� �

v

u

u

t
, (22)

where the notation U is introduced for the local total relative velocity. From
(Eq. (22)) it can be seen that the minimal value M* corresponds to the maximal

value U. Therefore, to calculate the critical Mach number for a flow near a body, it
is necessary to determine the maximum local velocity on the body surface. The
dimensionless velocities u and v (Eq. (22)) also should correspond to the critical
free-stream Mach number. For this, it is necessary to apply a method of successive
approximations, similar to that used to calculate the local Mach number (Eq. (19)).

As a first approximation, we will use the velocities u 1ð Þ and v 1ð Þ calculated for an

incompressible flow. The critical Mach number M 1ð Þ
∗

attained in the first
approximation should be considered as the free-stream Mach number for calculat-

ing the local relative velocities for the second approximation u 2ð Þ and v 2ð Þ. The
approximation process must be continued until the calculated critical Mach
number for subsequent approximations changes by a given error ε, i.e., until the
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condition is satisfied M ið Þ
∗
�M i�1ð Þ

∗

�

�

�

�≤ ε. It turns out that the critical Mach

number can be calculated using only the values of the incompressible flow speeds.
It should be noted that the method described above is applicable for compressible
flows for which the inequality M

∞
≤M ∗ is valid. This condition determines the

absence of transonic and supersonic zones in the flow field. To calculate the
critical Mach number M ∗ and the velocity field (u, v) in a compressible flow, it is
sufficient to calculate the velocity field (u0, v0) around the body for an incom-
pressible flow.

It follows from the described method that the critical Mach number for a given
2-D body can be calculated using only the values of the incompressible flow speeds.
The method is applicable for compressible flows for which the free-stream Mach
numbers are less than the critical Mach number. So, to calculate the critical Mach
number, for an incompressible flow, it is sufficient to calculate the velocity field
near the streamlined body, but in practical aerodynamics, the pressure distribution
on the body surface is obtained experimentally more often than the velocity field.
To compare the results of calculations and experimental data, it is convenient to use
the pressure-drop coefficient. This circumstance leads to the necessity of obtaining
a connection between the pressure field in a compressible flow and the pressure
field in an incompressible flow. To establish this connection we write down the
pressure-drop coefficient for an incompressible flow

c0p ¼
p0 � p

∞

0, 5ρV2
∞

¼ 1�
V0

V
∞

� �2

: (23)

Based on formulas (Eq. (13)), the pressure-drop coefficient for an incompress-
ible flow can be represented through the gas flow velocity

c0p ¼ 1�
V

ηcV∞

� �2

: (24)

The pressure-drop coefficient for the compressible gas flow can be written

cp ¼
p� p

∞

0:5ρ
∞
V2
∞

¼ 2
p
∞

ρ
∞
V2
∞

p

p
∞

� 1

� �

(25)

Let us rewrite the last formula in terms of the Mach number of the free-stream
flow. Using the barotropic model of compressed air, we can write the following
equalities

p
∞

ρ
∞
V2
∞

¼
1

κ

a2
∞

V2
∞

¼
1

κM2
∞

,

then we rewrite formula (Eq. (25)) in the form

cp ¼
2

κM2
∞

p

p
∞

� 1

� �

¼
2

κM2
∞

p

p0

p0
p
∞

� 1

� �

: (26)

In formula (Eq. (24)), the ratio of the squares of the velocities can be
represented as the identity

V2

V2
∞

¼
V2

a2
a2

a20

a20
a2
∞

a2
∞

V2
∞

¼
M2

M2
∞

a2

a20

a20
a2
∞

:

6

Aerodynamics



The use of isentropic formula (Eq. (13)) allows us to write the last equation in
the form

V2

V2
∞

¼
M2

M2
∞

�
E M

∞
ð Þ

E Mð Þ
:

Substitution of the found ratio of the squares of the velocities into the formula
(Eq. (24)) for the pressure coefficient of the incompressible flow gives

c0p ¼ 1� η2c
M2

M2
∞

�
E M

∞
ð Þ

E Mð Þ
: (27)

Using isentropic formulas for pressure ratios in the form

p0=p ¼ E Mð Þ½ �
κ

κ�1, p0=p∞ ¼ E M
∞

ð Þ½ �
κ

κ�1,

we write down the pressure-drop coefficient of the compressible gas (Eq. (26))
as follows

cp ¼
2

κM2
∞

E M
∞

ð Þ

E Mð Þ

	 
 κ
κ�1

� 1

( )

: (28)

In order to calculate the pressure coefficient for a compressible gas from the
known value of the incompressible flow coefficient, we introduce auxiliary func-
tions proposed by G. Burago [20].

F Mð Þ ¼ E Mð Þ½ �
κ

κ�1, G Mð Þ ¼
M2

E Mð Þ
� 1þ E Mð Þ½ �

1
κ�1

n o�2
: (29)

Using the new functions, the formulas for the pressure-drop coefficients of an
incompressible flow and a compressible gas can be represented in the form

G Mð Þ �G M
∞

ð Þ 1� c0p

� �

¼ 0, (30)

cp ¼
2

κM2
∞

F M
∞

ð Þ

F Mð Þ
� 1

	 


: (31)

In order to recalculate the values of the pressure-drop coefficient of the incom-
pressible flow to the pressure-drop coefficient of the compressible gas for a given
value of the Mach number of the free-stream flow, it is necessary to solve the tran-
scendental Eq. (30) with respect to the local Mach number, and then use the formulas
(31) and (29) to calculate the pressure-drop coefficient of the compressible gas.

The dependence of the critical Mach number on the pressure-drop coefficient of
the incompressible flow can be obtained. For this, it is necessary to solve Eq. (30)
with respect to the condition M = 1.0, i.e. solve an equation of the form

G 1:0ð Þ �G M ∗ð Þ 1� c0p

� �

¼ 0: (32)

3. Results and discussions

The presented method is approximate; therefore, it is necessary to demonstrate
the consistency of this method with other calculation methods in order to analyze
the accuracy of the calculations.
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The calculation of the dependence of the critical Mach number on the pressure-
drop coefficient of an incompressible flow using Eq. (30) is shown in Figure 2.
Figure 2 also shows the Khristianovich’s curve [13].

Comparison of the two calculations shows good agreement. After the publication
of the work of Burago [20] in 1949, a number of approximate methods based on the
Chaplygin gas model were developed. Burago’s method refers to the approximate
mathematical models for accounting for the compressibility of the flow. The effec-
tiveness of approximate mathematical models is always shown by comparison with
experimental or calculated data for various bodies. Calculations carried out according
to the method described above showed that this method is not inferior in accuracy to
more rigorous methods, at the same time the advantage of this method over other
methods of accounting for the flow compressibility in terms of speeds is undeniable.

Here are some comparisons. In Figure 3 shows a comparison of the calculation
by the method described above with the calculated data of L. Sedov [5] and by the
Glauert formulas ([4], p. 311) and Kárman-Tsien ([4], p. 311). Glauert formula is

Cp ¼
C0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
∞

q , (33)

and the Kárman-Tsien formula is

Cp ¼
C0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
∞

q

þ 0, 5 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
∞

q

	 


C0
p

: (34)

In Figure 3, for the pressure coefficient, the experimental data are presented as
points ([4], Figure 121) and a curve that is an approximation of these points ([5],
p.388). Comparison analysis indicates that the calculation by the Glauert formula
(34) is approximate and for the Mach number M

∞
≥0, 4 it can be argued that the

Glauert formula should not be used. The Kárman-Tsien formula (35) gives a better
agreement with the experimental data than the Glauert formula, but for the con-

sidered pressure-drop coefficients (C0
p ¼ �0:6 and C0

p ¼ �0:73) it is inferior in

accuracy to the calculated data of L. Sedov [5] and the data obtained by the author

Figure 2.
Comparison of calculation results for critical Mach number based on Burago and Khristianovich methods.
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of the chapter by the method outlined above [1]. It should be noted that the
calculated data by Burago’s method for all three considered cases are closer to the
experimental data of G. Stack [19] than the results of the calculation by the Sedov’s
method [5].

Accounting for gas compressibility according to the method described above and
the Kárman-Tsien method [see. Formula (35)] is based on recalculating the

pressure-drop coefficients of an incompressible liquid C0
p by the values of the

pressure-drop coefficients of a compressible gas Cp for the given free-stream Mach
numbers and ratio of specific heatsκ. An interesting question is: how much differ
these two methods in a wide range of variation of Mach numbers and pressure
coefficients for an incompressible fluid? Table 1 compares these two methods based
on the data in Figure 3, from which it follows that the maximum discrepancy

increases with decreasing value C0
p and at M

∞
! M ∗ . The maximum relative error

of the two methods in the considered range of variation of Mach numbers and
pressure coefficients reaches 15–16%.

The advantage of the Burago method over the Kárman-Tsien method is demon-
strated in Figure 4, which presents the calculated data and experimental data of
various authors for two bodies: an ellipse (Figure 4a) and a biconvex airfoil
(Figure 4b) with relative thicknesses of 20% and 6% respectively. Figure 4a shows
a comparison of the results of calculating the pressure drop coefficient on the
surface of an ellipse of relative thickness δ = 0.2 in a compressible flow. The
calculations are performed for the critical Mach number M* = 0.7 (Table 2).

The calculated data using the Sells finite difference method (1968) are taken
from [16]. It can be noted that the results of the Burago method and the Kárman-
Tsien (34) are in good agreement to within approximate values x≤0:1. For values
of relative coordinate along the big axis of an ellipse 0:1≤ x≤0:5 the significant
divergence between the results of the Kárman-Tsien formula (34) and Burago’s

Figure 3.
Comparison of different methods account compressibility.
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method is observed. For the values of the relative coordinate along the major axis of
the ellipse 0:1≤ x≤0:5, there is a significant discrepancy between the Kárman-
Tsien results and the Burago method. However, it can be noted that the calculations
of other authors are in good agreement with the calculations by the Kárman-Tsien
formula (34). The calculation according to this method approaches the value of the
pressure coefficient, indicated in Figure 4 as C ∗

p , which corresponds to the critical

Mach number. As can be seen from Figure 4, the values determined in the article
[16] and by the author practically coincide. Figure 4 also shows the distribution of

the pressure-drop coefficient C0
p for an incompressible fluid. Figure 4 shows the

strong influence of the compressibility factor. Of greatest interest to researchers is
the value of the critical Mach number for a cylinder in a transverse flow. In Figure 5
(a, b), the results of calculations of the relative velocity on the surface of the
cylinder, obtained using the proposed approximate technique, are compared with
the calculations of other authors performed by other methods.

Integral relationship method [17], method of Legendre transformations [10],
method approximation of adiabat [7], Rayleigh-Janzen method (Simisaki [17]; Shih-I

C0
p

Mach number M
∞

Cp Kárman-Tsien Cp Burago δ %

�0.1 0.3 �0.1051 �0.1048 0.29

0.6 �0.1266 �0.1269 0.24

M* = 0.886 �0.2289 �0.2165 6

�0.5 0.3 �0.5305 �0.5315 0.18

0.6 �0.6667 �0.7042 5.0

M* = 0.679 �0.7489 �0.8696 14

�1.0 0.3 �1.0742 �1.0796 0.5

0.4 �1.1432 �1.1659 2.0

M* = 0.558 �1.3427 �1.5874 15

�1.5 0.3 �1.6315 �1.6474 1.0

0.4 �1.7566 �1.8320 4

M* = 0.486 �1.9245 �2.2790 16

�2.0 0.3 �2.2029 �2.2389 1.6

0.4 �2.4009 �2.6067 8

M* = 0.437 �2.5034 �2.9683 16

�2.5 0.3 �2.7890 �2.8618 2.5

M* = 0.400 �3.0782 �3.6432 16

�3.0 0.3 �3.3904 �3.5221 3.7

M* = 0.371 �3.6515 �4.3127 15

�3.5 0.3 �4.0076 �4.2352 5

M* = 0.348 �4.2265 �4.9949 15

�4.0 0.3 �4.6414 �5.0245 8

M* = 0.329 �4.8020 �5.6830 15

�4.5 0.3 �5.2922 �5.9404 11

M* = 0.312 �5.3714 �6.3339 15

Table 1.
Comparison Burago’s and Kárman-Tsien methods.
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Pai [6]) are compared in Figure 5. The results of Simisaki’s calculations were taken
from [17]. The calculations were carried out for the Mach number almost equal to the
critical Mach number M∞ ≈ 0.372 (Table 2). It can be noted that in Figure 5, the
author’s calculation is in good agreement with the data of other authors for velocities
on the cylinder surface, taking into account the compressibility factor.

Let us consider the numerical values of the critical Mach numbers M* for a flow
around a circular cylinder obtained by different authors. Table 1 shows a compar-
ison of the results of calculating the critical Mach numbers by different methods.
The value δ denotes the relative error of comparing the values of the critical Mach
numbers calculated by different methods and by this method.

M* Method and authors of calculation results δ %

0.415 C. Jacob’s calculation [7] 10

0.409 Poggi method. Calculations by S. Kaplan [12] 9

0.404 I. Imei’s calculation 8

0.400 Rayleigh-Janzen method. T. Simisaki’s calculations 7

0.399 The method of integral relations by A.A. Dorodnitsyn.

calculations by P.I. Chushkin

7

0.39853¤0.00002 The multi-layer method of integrated relations by A.A.

Dorodnitsyn. calculations by R. Melnik and D. C. Ives

7

0.3983¤0.0002 The Rayleigh-Janzen method. Hoffman’s calculations 7

0.396 The method of approximation of adiabat. Approximation A4.

G. A. Dombrovsky

6

0.390 The method of approximation of adiabat. A3 approximation. G.

A. Dombrovsky

5

0.390 The method of integral relations by A.A. Dorodnitsyn.

Calculations by M. Holt and B. Messon

5

0.390 Calculations by I. Imei. Z. Hashimoto 5

0.37170¤0.00001 author’s calculation —

Table 2.
Comparison of the calculated values for the critical Mach number on the surface of the cylinder.

Figure 4.
Comparison of the calculated values of the pressure drop coefficient on the surface of the ellipse (relative
thickness 20%) (a); for a biconvex airfoil (relative thickness 6%) (b).
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If we exclude from the comparison the early work of Kaplan [12] in which the
adiabatic exponent for air was taken equal κ = 1.408 which affected the value of the
calculated critical Mach number and the work of Jacob (see [7]) then based on the
data in Table 1 it can be argued that the accuracy of calculating the critical Mach
number on the surface of the circular cylinder by the Burago’s method in compari-
son with other methods on average approximately corresponds to a relative error of
5%. From Table 1 it can be seen that the critical Mach number on the surface of the
circular cylinder calculated by Burago’s method is the smallest of the data presented
in the Table 1. This does not mean that this value is the most inaccurate compared

Figure 5.
The velocity on the cylinder surface vs. Mach number.

Figure 6.
Critical Mach number vs. relative thickness of the biconvex airfoil.
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to other methods. Holt and Messon [17] point out that “symmetric flows (in which a
shock does not occur) were calculated only up to the Mach number of the free-
stream flow M∞=0.37”. This circumstance indirectly confirms that the exact value
of the critical Mach number is closer to that determined by the Burago method than
by other methods.

An important question is the question: how does the viscosity of the medium
affect the value of the critical Mach number? Figure 6 shows a comparison of the
calculated data for the flow around the biconvex airfoil using the ideal gas and
viscous models. Figure 6 also shows the experimental results that can be observed
also in Figure 4(b).

Calculations for viscous gas are performed in a computational package Flow
Simulation (SolidWorks). The calculations in the Flow Simulation software are
based on solving the Navier–Stokes equations. The calculation domain and the grid
used in the calculations Flow Simulation are shown in Figure 7(a) and (b). The
flow velocity was calculated at a distance equal to the thickness of the boundary

Figure 7.
The calculation domain and grid used in package flow simulation.
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layer. In the calculations, the free-stream velocity varied, and as soon as the local
flow velocity at the boundary of the layer boundary became equal to the sound
velocity, the critical Mach number was calculated.

Based on Figure 6, it can be concluded that viscosity has practically no effect on
the value of the critical Mach number.

Another two-dimensional body, the flow around which is well studied is an
ellipse. Figure 8 shows the calculated results for the critical Mach number
depending on the degree of compression (relative thickness, p = a/b) of the ellipse.
Figure 8 also shows the value of the critical Mach number for a two-dimensional
body formed by two contacting cylinders. Calculations of the critical Mach number
for such a 2-D body were first performed by the author [1].

We have looked at comparing calculations for two-dimensional bodies. The high
accuracy of the calculation of the critical Mach numbers by the Burago method is
shown.

Let us now consider the applicability of the Burago method for axisymmetric
flows. It is also of interest to compare the critical Mach numbers for two-dimensional
and axisymmetric flows. Ellipses and ellipsoids of revolution (spheroids) with various
factor of compression δ are chosen. For calculations the well-known potential models
for ellipses and spheroids [21] were used. It is obvious that the maximal error will
correspond to flow around thick bodies (δ! 1.0) and for the caseM∞ =M*. In
Table 3 and in Figure 9(a) results of calculation of critical Mach number for ellipses
and spheroids with an offered method and with Dorodnitsyn method of integral
relations executed by Chushkin [14, 15] are compared.

Table 3 and Figure 9(a) shows a comparison of the results of calculating the
critical Mach numbers by two different methods. Table 3 and Figure 9(a) shows a
good agreement. It is necessary to notice that calculations in a range of
0:4≤ δ≤0:8ð Þ were executed by Chushkin only for the second approximation and
each subsequent approximation resulted in reduction the value of critical Mach
number. Therefore, some additional error can be explained by this fact. It can be
noted that the relative difference in values of the critical Mach numbers increases
with increasing δ for both ellipses and spheroids.

However, the maximum relative difference in values of the critical Mach num-
bers for the elliptic cylinder does not exceed 7% and for the sphere 8%. Figure 9(b)
shows a comparison of the ratio of the maximum velocity at the surface of an

Figure 8.
Critical Mach number vs. relative thickness of the ellipse.
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elliptical contour to the velocity at infinity as a function of the Mach number
(symmetric flow). Figure 9(b) uses the relative ellipse thickness δ = 0.1. Here,
along with the calculations by the proposed method, the results of calculations
obtained by the theory of small perturbations and by the Hantz and Wendt second
approximation (see the Book [7]), as well as the results of calculations obtained by
the Dombrovsky method [7] are shown. It can be noted that the results of calcula-
tions using the proposed method practically coincided with the results of
Dombrovsky. The critical Mach number equal to M* ≈ 0.807 (Figure 9(b)) was
obtained by the Dombrovsky method of approximation of the adiabat. This is in
very good agreement with Lighthill’s data (see Book [7]) and Dombrovsky’s
result [7] M* ≈ 0.81 and Chushkin’s result M* ≈ 0.803 (Table 2). Kaplan’s result
[12] M* ≈ 0.857 should be considered less accurate, but the relative error does not
exceed 7%.

Also, it follows from Figure 9(a) that critical Mach number for the two-
dimensional case is always less than for axisymmetric case for bodies with the same
cross-section.

δ Ellipses Ellipsoids

C0
p min

Chushkin

[14]M*

Calculation

M*

Relative

difference %
C0

p min
Chushkin

[14] M*

Calculation

M*

Relative

difference %

0.05 �0.103 0.869 0.884 1.8 �0.014 0.984 0.980 0.4

0.10 �0.210 0.803 0.807 0.5 �0.042 0.957 0.945 1.3

0.15 �0.323 0.752 0.748 0.5 �0.080 0.929 0.905 2.6

0.20 �0.440 0.709 0.700 1.3 �0.122 0.899 0.868 4.0

0.40 �0.960 0.588 0.566 3.7 �0.337 0.783 0.742 5

0.60 �1.560 0.506 0.480 5 �0.602 0.692 0.648 6

0.80 �2.240 0.447 0.418 6 �0.908 0.620 0.576 7

1.00 �3.000 0.399 0.372 7 �1.250 0.563 0.519 8

Table 3.
Critical Mach number at a flow around ellipses and spheroids.

Figure 9.
(a) Critical Mach number vs. relative thickness of an ellipse and ellipsoid; (b) relative maximal velocity of the
flow around ellipse vs. Mach number.
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The effect of compressibility is shown in Figure 10, which shows the ratio of the

relative maximum velocities Umax ¼ Umax=U∞
� �

for compressible and incompress-
ible flows on the surface of 2D ellipses and 3D spheroids.

It follows from Figure 10 that the effect of compressibility for two-dimensional
ellipses at the same Mach number is greater than for 3D-spheroids. Figure 11 shows
the results of calculating the pressure-drop coefficient for compressible and incom-
pressible flows on the surfaces of two- and three-dimensional bodies.

As seen in Figure 11, the compressibility effect has a stronger effect on 2D
bodies than on axisymmetric bodies.

4. Conclusions

This paper presents the results of calculating the critical Mach numbers of the
flow around two-dimensional and axisymmetric bodies. A sufficiently high accu-
racy of calculating the critical Mach numbers for engineering calculations using the

Figure 10.
Maximal velocities on surface of the ellipse and spheroid vs. Mach number.

Figure 11.
Influence of Mach number of compressible flow on pressure-drop coefficient on the surface of the an ellipse and
spheroid.
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proposed method is shown. The method allows one to determine the parameters of
a compressible flow from the values of the flow of an incompressible fluid up to a
speed corresponding to the critical Mach number. This method does not depend on
the means determination parameters of the incompressible flow. The calculation in
software Flow Simulation was shown that the viscosity factor does not affect the
value critical Mach number. It was found that with an increase in the relative
thickness of the body, the value of the critical Mach number decreases. It was also
found that the value of the critical Mach number for the two-dimensional case is
always less than for the axisymmetric case for bodies with the same cross-section.
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Acronyms and abbreviations

AMM Applied Mechanics and Materials
NACA National Advisory Committee for Aeronautics
TsAGI Central Aerohydrodynamic Institute
TM Technical Memorandum
TR Technical Report
HSH High Speed Hydrodynamics

Appendices and nomenclature

u, v velocity components along axis x и r;
ρ local density of gas;
τ, σ special functions (Eq. (2));
p the static pressure;
∞ subscript indicates flow parameters at infinity;
0 lower index, specifies parameters of the flow in the stag-

nation point or upper index and specifies parameters of
the flow of the incompressible liquid;

κ the ratio of specific heats;
P(p) the pressure function;
h the enthalpy;
V the vector of full local velocity of flow;
M∞ the Mach number at infinity;
M the local Mach number;
u ¼ u=U

∞
, v ¼ v=U

∞
dimensionless velocities;

E(M) the function (Eq. (11));
a the sound speed;
ηc the compressibility factor of the flow (Eq. (15));
ε given accuracy of calculation;

U local total relative velocity (Eq. (23));

c0p the pressure-drop coefficient for an incompressible flow
(Eq. (28));

G(M), F(M) the functions (Eq. (30)).
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