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Chapter

Magnetic Properties of Heusler 
Alloys and Nanoferrites
Devinder Singh and Kuldeep Chand Verma

Abstract

In this chapter, results of our recent investigations on the structural,  
microstructural and magnetic properties of Cu-based Heusler alloys and MFe2O4 
(M = Mn, Fe, Co, Ni, Cu, Zn) nanostructures will be discussed. The chapter is 
divided into two parts, the first part describes growth and different characteriza-
tions of Heusler alloys while in the second part magnetic properties of nano-fer-
rites are discussed. The Cu50Mn25Al25-xGax (x = 0, 2, 4, 8 and 10 at %) alloys have 
been synthesized in the form of ribbons. The alloys with x ≤ 8 show the forma-
tion of Heusler single phase of the Cu2MnAl structure. Further increase of Ga 
content gives rise to the formation of γ-Cu9Al4 type phase together with Cu2MnAl 
Heusler phase. The alloys are ferromagnetically ordered and the saturation mag-
netization (Ms) decreases slightly with increasing Ga concentration. Annealing 
of the ribbons significantly changes the magnetic properties of Cu50Mn25Al25-xGax 
alloys. The splitting in the zero field cooled (ZFC) and field cooled (FC) mag-
netization curves at low temperature has been observed for alloys. Another 
important class of material is Nanoferrites. The structural and magnetization 
behaviour of spinel MFe2O4 nanoferrites are quite different from that of bulk fer-
rites. X-ray diffraction study revealed spinel structure of MFe2O4 nanoparticles. 
The observed ferromagnetic behaviour of MFe2O4 depends on the nanostructural 
shape as well as ferrite inversion degree. The magnetic interactions in Ce doped 
CoFe2O4 are antiferromagnetic that was confirmed by zero field/field cooling 
measurements at 100 Oe. Log R (Ω) response measurement of MgFe2O4 thin film 
was taken for 10–90% relative humidity (% RH) change at 300 K.

Keywords: Heusler alloy, nanoferrites, magnetization, microstructure, sensor

1. Introduction

Heusler alloys were discovered in 1903 when Heusler reported that the addition 
of sp. elements (Al, In, Sb, Sn or Bi) turn Cu-Mn alloy into a ferromagnetic material 
even though the alloy contains none of the ferromagnetic elements [1, 2]. Heusler 
reported that these alloys have stoichiometric composition X2YZ and exhibit an 
ordered L21 crystal structure with space group Fm3m [3, 4]. Ferrites are ferrimag-
netic compounds of iron oxides Fe2O3 and FeO with general formula: 

+ + + +
− − ∗  

3 2 3 3

1 1 1.67 0.33 4y y y yFe Fe Fe Fe O  (*indicates vacancies), which can be partly changed by 
other transition metal (TM) oxides [5]. The ferrites can be classified according to 
their crystalline structures: hexagonal (MFe12O19), garnet (M3Fe5O12) and spinel 
(MFe2O4), where M = TM = Mn, Fe, Co, Ni, Cu, Zn. Both Heusler alloys and 
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nanoferrites are important magnetic materials owing to their promise to qualify for 
many potential applications.

1.1 Heusler alloys

Heusler alloys have attracted avid attention due to their various properties 
suitable for technological applications such as high-density magnetic recording or 
magneto-optics applications [6–8]. It has been shown that the ordered combina-
tion of two binary B2 compounds XY and YZ leads to the formation of Heusler 
structure. Both these compounds may have CsCl type crystal structure e.g. CoAl 
and CoMn yield Co2MnAl [9]. Thus the possible formation of new Heusler alloys 
will depend upon the ability of compounds to form B2 structure. It has also been 
observed to leave one of the four sublattices unoccupied (C1b structure). The 
L21 compounds are known as full-Heusler alloys while the latter compounds are 
often called half- or semi-Heusler alloys (Figure 1). Most of the Heusler alloys are 
saturate in weak magnetic field and ordered ferromagnetically. There are various 
parameters which are found to be very important in determining the magnetic 
properties [6–9, 11–13]; these include crystal structure, composition and heat treat-
ment. The magnetic shape memory effect as well as other properties arises due to 
magneto-crystalline coupling in Heusler alloys [6–9, 11]. These made Heusler alloys 
to possess very interesting magnetic properties. A series of interesting diverse mag-
netic phenomenon like itinerant and localized magnetism, antiferromagnetism, 
helimagnetism, Pauli paramagnetism or heavy-fermionic behaviour can be studied 
in the same family of Heusler alloys [3, 4, 6, 7]. At low temperatures several Heusler 
alloys, e.g. Ni2MnGa, Co2NbSn etc., undergo a martensitic transition from a highly 
symmetric cubic austenitic to a low symmetry martensitic phase. Unlike atomic 
order–disorder transitions a martensitic transition is caused by non-diffusional 

Figure 1. 
Representation of various structures of semi- and full-Heusler alloys. The lattice is consisted to have four 
interpenetrating f.c.c. lattices in all cases. It should be noted that if all atoms are identical, the lattice would 
simply become b.c.c [10].
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cooperative movement of the atoms in the crystal. Heusler alloys exhibit magnetic 
shape memory effect (MSM), when they are magnetic in the martensitic phase 
[14–16]. This occurs especially in those cases when the Y constituent is Mn, but 
other transition elements are also possible. When these alloys are applied in the 
martensitic state, an external magnetic field can induce large strains.

In recent years, Ni-Mn-X (X = In, Sn, Sb) Heusler alloys have attracted much 
interest because of their magnetic shape memory effect and magnetic field-induced 
martensitic transformation [17–19]. In recent years, the interest in Heulser com-
pounds has been increased due to the evolving field of spin-electronics [7]. These 
compounds have also been studied as potential spin-injector materials [6, 8, 20]. 
In the alloys X2YZ, a value close to 4μB is usually observed if the magnetic moment 
is carried by Mn atoms. These compounds are considered as ideal model systems 
to study the effects of atomic disorder and changes in the electron concentration 
on the magnetic properties. These compounds have localized magnetic properties 
though they are metals. Extensive magnetic and other measurements have been 
performed on quaternary Heusler alloys in order to understand the role of 3d (X) 
and sp. (Z) atoms on magnetic properties [21]. It has been shown that both the 
magnetic moment formation and the type of the magnetic order get influenced by 
the sp. electron concentration which is very important in establishing the magnetic 
properties. During the past few years, the family of ferromagnetic Heusler alloy 
systems has been extensively studied due to their main advantages in comparison to 
half-metallic systems e.g. structural similarity with the binary semiconductors and 
predicted perfect spin polarization at the Fermi level as well as high Curie tempera-
ture [22, 23]. The effect of alloying addition on the magnetic properties has been 
studied in Heusler alloys [24–30].

1.2 Nanoferrites

A series of spinel-structured ferrites, MFe2O4, where M = TM = Mn, Fe, Co, Ni, 
Cu, Zn were reported for novel data storage, recording devices, microwave technol-
ogy and biomedical applications [31–35]. The spinel structure has general formula 
AB2O4 which had octahedral (B) and tetrahedral (A) sites. The spinel is normal, if 
M2+ occupies only the A sites; the spinel is inverse, if it occupies only the B sites. 
When Mn2+occupies both A and B sites, the MFe2O4 has formed a mixed spinel 
structure while the other metal ferrites have an inverse spinel structure [3]. The 
magnetic spins at B sites align in parallel in direction to the applied magnetic field, 
whereas those present at A sites align antiparallel. Spinel ferrite has general for-
mula: ( )+ + −  

2 3 2

2 4
A B O ; where +2A  and +3

2
B  are the divalent and trivalent cations 

occupying tetrahedral (A) and octahedral [B] sites. Figure 2 shows the inverse 
spinel structure of NiFe2O4 [36]. The inverse spinel has general formula: 
( ) { }+ + + + −

− −  
2 3 2 3 2

1 2
4

x x x xM Fe M Fe O ; the round and square brackets denote (A) and [B] 

sites respectively, whereas x represents inversion degree. Also for normal spinel 
AB2O4, the A2+cations occupies 1/8 of the fcc tetrahedral sites (Td) while the 
B3+occupy 16 of the 32 available octahedral sites (Oh). An inverse spinel structure 
with Ni2+ at octahedral sites (labelled as Ni(Oh)) and Fe3+ equally distributed 
between octahedral (Fe(Oh))and tetrahedral sites (Fe(Td)) of the O2− fcc cell have 
been adopted for NiFe2O4 (Figure 2). The complete structure crystallizes into a 
cubic system 7

hO with space group 227. The oxygen atoms occupy the 32e positions, 
Fe(Td) atoms occupy the 8a ones while the Ni(Oh) and Fe(Oh) atoms are distributed 
on the 16d positions, using Wyckoffnotations [36]. The efficacy of the material 
depends on its microstructural properties that are sensitive to mode of preparation. 
Moreover, CoFe2O4 is the most versatile hard ferrite with mixed cubic spinel 
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structure having Fd3m space group and exhibits high coercivity ~5400 Oe, high 
magneto-crystalline anisotropy and moderate saturation magnetization [37, 38].

Spintronics is concerned with highly spin-polarized materials to enhance tun-
nelling magnetoresistance of magnetic tunnel junctions which are active members 
of magnetic random access memory elements. For the optimal operation of spin-
tronics, the highly spin-polarized materials used for increasing spin-polarization 
of currents injected into semiconductors [38]. There is a way to achieve high 
spin-polarization by employing fully spin-polarized ferromagnetic metals, such as 
half-metals. Another way is to exploit the band structure features of tunnel bar-
rier materials, i.e., MgO, and filtering electronic wave functions. Spinel NiFe2O4, 
CoFe2O4, and MnFe2O4 are also used as such spin filters. Spin-dependent gap should 
result in spin-dependent barrier for tunnelling of electrons through the insulator, 
giving rise to spin filtering. In particular, a spin filtering efficiency of up to 22% is 
reported for NiFe2O4 barrier [39]. The resistive switching performance character-
istics of a Pt/NiFe2O4/Pt structure such as low operating voltage, high device yield, 
long retention time (up to 105s), and good endurance (up to 2.2 × 104 cycles) can 
be used to demonstrate the opportunity of spinel ferrites in non-volatile memory 
devices [33]. Since the resistive switching memory cell has capacitor-like metal/
insulator/metal configuration, which can be switched reversibly between two 
different resistance states, i.e., high-resistance state (HRS) and low-resistance 
state (LRS).

Figure 3(a) shows the current–voltage (I-V) characteristics of the Pt/NiFe2O4/Pt 
devices during repetitive switching cycles. Unipolar resistive switching characteristics 
were clearly observed in both the forward- and backward-bias sweeping processes. 
The drastic decrease in the current has been observed on increasing the forward volt-
age to its critical value of 0.6–1.0 V. This indicates the switching of the Pt/NiFe2O4/
Pt device from the LRS to the HRS. The device was switched from HRS to LRS, when 
soft breakdown occurred on increasing the voltage in the range of 1.8–2.2 V. NiFe2O4 
has the inverse spinel structure which has Fe-O bonds that are stronger than Ni-O 
bonds leads to oxygen vacancies formation [40]. Figure 3(b) shows magnetic reduc-
tion effect in changing the valence of Fe3+ and Ni2+ions [41]. The oxygen vacancies 
and the reduction of cations may cause the decrease in magnetization and the increase 

Figure 2. 
Inverse spinel unit cell of NiFe2O4 Oxygen atoms are adjustable to complete the Ni(Oh) and Fe(Oh). Ni atoms 
(blue) Fe (green) and O atoms (red) [36].
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in the electrical conductivity. Due to the annihilation of oxygen vacancies (driven by 
the thermal effect) and the change in the valence of cations (due to redox effect in the 
reset process) has led to rupture of filaments. The process of formation and rupture of 
the conducting filaments in NiFe2O4 films has been described in Figure 3(c) and (d).

2. Structure/microstructure and magnetic properties of Heusler alloys

The Cu50Mn25Al25-xGax (x = 0, 2, 4, 8 and 10) alloys with a thickness of ∼40 to 
50 μm and lengths of ∼1 to 2 cm has been synthesized using melt spinning tech-
nique [24]. The substitution of Ga in place of Al is of special interest as it does not 
significantly change the lattice constant and the valence electron ratio (e/a) of the 
investigated alloy system [42–49]. The effect of heat treatment on the magnetic and 
phase transformation behaviour of Cu50Mn25Al25-xGax ribbons will be discussed. 
The study is focussed on the structural/microstructural changes with substitution 
of Ga and their correlation with magnetic properties of Cu50Mn25Al25-xGax alloys.

2.1 Microstructural and structural features

The effect of Ga substitution on the stability of Heusler phase has been inves-
tigated. The XRD patterns of melt-spun Cu50Mn25Al25-xGax (x = 0, 2, 4, 8 and 10) 
alloys are shown in Figure 4(a). A single Heusler phase of the Cu2MnAl structure 
(space group: Fm3m, a = 5.949 Ǻ) was observed for the alloys with x = 0, 2, 4 and 8, 
while the alloy with x = 10 reveals some diffraction peaks corresponding to γ-Cu9Al4 
type phase (Space group: P43m, a = 8.702 Ǻ). Thus it can be said that the Heusler 
phase was also observed in the Ga substituted alloys and is stable up to x = 8. In 
addition to the formation of Heusler phase, the precipitation of additional crystal-
line phase of γ-Cu9Al4 type has been observed for the alloys with x > 8. For the alloys 
from x = 0 to x = 8, a slight increase in the lattice parameter was observed. This is 

Figure 3. 
(a) I-V characteristics with switching cycles of Pt/NiFe2O4/Pt devices (b) Magnetic hysteresis at 300 K for HRS 
and LRS (c & d) Conducting filaments mechanism in LRS and HRS [33].
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expected due to nearly equal atomic size of Ga and Al. Table 1 shows the variation 
of lattice parameter with Ga content. There is no significant increase in the lattice 
parameter for x = 10 (Table 1). The formation of extra phases for concentrations 
x > 8 may be due to the excess of Ga atoms which no longer replace the correspond-
ing number of Al atoms in the crystal structure. Thus, the lattice constant of the 
Heusler phase remains almost constant. It is therefore can be concluded that the Ga 
atoms can substitute for Al atoms in the structure only within the content range of 
0 ≤ x ≤ 8. Hence, x = 8 is the critical Ga concentration (xc), beyond which the alloys 
are having mixed phases.

The phase transformation behaviour of Cu50Mn25Al25-xGax alloys on heat 
treatment has been investigated. The alloys with x = 0 and x = 8 are annealed at 
903 K for 30 hrs and there XRD patterns are shown in Figure 4(b). The XRD 
pattern for x = 0 shows the presence of Cu2MnAl, β-Mn and γ-Cu9Al4 phases. The 
decomposition reaction of the Cu2MnAl phase during the annealing process leads 
to the appearance of these two phases. Based on the previous studies done on the 
decomposition process of Cu-Mn-Al alloys, it has been shown that the Cu2MnAl 
phase is metastable and can decompose into β-Mn and γ-Cu9Al4 phases at anneal-
ing temperatures from 800 to 900 K [50, 51]. This decomposition then follows the 
reaction (Cu2MnAl → β-Mn + γ-Cu9Al4). However, the x = 8 alloy shows different 
decomposition behaviour. The Cu2MnAl phase decomposes into only γ-Cu9Al4 on 
annealing. There are no traces of β-Mn phase here. In addition to this, Cu2MnAl 
precipitated as a majority phase for the alloy with x = 0 while for the alloy with 
x = 8, γ-Cu9Al4 precipitated as a majority phase.

Figure 4. 
(a) XRD patterns of Cu50Mn25Al25-xGax (x = 0, 2, 4, 8 and 10) melt-spun ribbons (b) XRD patterns of 
Cu50Mn25Al25-xGax ribbons annealed at 903 K for 30 h (Reprinted from reference [24] with kind permission 
from Elsevier, Copyright 2012, Elsevier).

x (at %) As-synthesized ribbons Annealed ribbons

Lattice 

parameter a (Ǻ)

Ms (emu/g) 

at 5 K

Ms (emu/g)  

at 300 K

Ms (emu/g) 

at 5 K

Ms (emu/g)  

at 300 K

0 5.947 95 85 53 45

4 5.960 88 79 — —

8 5.986 83 73 5 3

10 5.981 20 16 — —

Table 1. 
The lattice constants, saturation magnetization (Ms) at 5 K and 300 K for melt-spun and annealed ribbons 
of Cu50Mn25Al25-xGax (x = 0, 4, 8 and 10) alloys (Reprinted from reference [24] with kind permission from 
Elsevier, Copyright 2012, Elsevier).
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Further TEM characterization studies of melt-spun as well as annealed samples 
were carried out. TEM microstructure and its corresponding diffraction pattern 
of Cu50Mn25Al25 and Cu50Mn25Al17Ga8 melt-spun alloys are shown in Figure 5 (on 
the left). The formation of nano-meter sized grains in the range of 100 to 200 nm 
of the alloys with x = 0 and x = 8 have been observed (c.f. Figure 5(a)-(d)). The 
substitution of Ga in Cu50Mn25Al25-xGax alloy system does not results in any signifi-
cant microstructural variation. The confirmation of Cu2MnAl Heusler phase has 
been done based on the analysis of selected area diffraction pattern (SADP) of the 
alloys. The TEM microstructure and diffraction pattern for the annealed ribbon of 
x = 8 are shown in Figure 5 (on the right). The SADP analysis reveals two crystal-
line phases; Cu2MnAl and γ-Cu9Al4. This is consistent with the result obtained by 
XRD analysis which also shows the formation of Cu2MnAl and γ-Cu9Al4 phases. The 
large grains belong to Cu2MnAl phase while the small ones identified as γ-Cu9Al4 
phase. As one might know, Cu2MnAl phase is ferromagnetic while γ-Cu9Al4 phase is 
paramagnetic in nature [50].

2.2 Magnetic properties

The temperatures of 5 K and 300 K were used to measure the magnetization 
curves (M-H curves) of Cu50Mn25Al25-xGax (x = 0, 4, 8 and 10) alloys. Based on the 
results presented in Figure 6(a) and (b), It can be said that the magnetization is 
saturated in a magnetic field of about 1500 to 2500 Oe, indicating that ribbons are 
fairly homogenous ferromagnets [51]. The soft ferromagnetic behaviour (at 5 K and 
300 K) were observed for the Cu50Mn25Al25-xGax (x = 0, 4, 8 and 10) alloys. Table 1 
gives the list of the saturation magnetization (Ms) derived from the M-H curves for 
all the compositions. The Ms for the composition with x = 0 at 5 K is ~95 emu/g and 
at 300 K is ~85 emu/g respectively. These are very close to the reported magnetiza-
tion values for this alloy [52]. It can be seen from Table 1 that Ms decreases with 
increasing Ga content. This decrease is very small from x = 0 (~ 95 emu/g) to x = 8  
(~ 83 emu/g) at 5 K. However, for x > 8, the Ms decreases from ~83 emu/g (for x = 8) 
to ~20 emu/g (for x = 10). The large decrease in the Ms for x = 10 may be explained 
on the basis that the Cu2MnAl Heusler phase which is responsible for the ferromag-
netism is stable only up to x = 8. The decomposition of Heusler phase into γ-Cu9Al4 
type crystalline phase for the alloys with x > 8, is responsible for the significant 
decrease in the Ms for x = 10. The Ms values in the range 95–83 emu/g (at 5 K) has 

Figure 5. 
(left) TEM microstructures and the corresponding selected area diffraction patterns of the melt-spun alloys 
with x = 0 (a and b) and x = 8 (c and d) showing the formation of Cu2MnAl Heusler phase. (Right) TEM 
microstructures and the corresponding selected area diffraction patterns of the annealed alloy of x = 8 showing 
the existence of (a and b) Cu2MnAl and (c and d) γ-Cu9Al4 phases (Reprinted from reference [24] with kind 
permission from Elsevier, Copyright 2012, Elsevier).
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been observed for the alloys with x = 0, 4 and 8 while the Ms value of 20 emu/g (at 
5 K) has been observed for x = 10. Thus there is very slight variation in the Ms for 
x = 0, 4 and 8. The slight decrease in the Ms for x = 4 and x = 8 as compared to x = 0 
may be due to several reasons. In the present alloy system, Ga is a non-magnetic ele-
ment. The concentration of Al is only varied while the concentration of Cu and Mn 
remains fixed in Cu50Mn25Al25-xGax alloy system. It has been reported that Mn-Mn 
coupling is responsible for the magnetic properties of Cu50Mn25Al25 alloy [52, 53]. 
As discussed earlier, the substitution of Ga may increase the Mn-Mn distance in 
the lattice. This is due to sight increase in the lattice constant (see Table 1). Thus, 
the decrease in the magnetization has been observed due to increase in the lattice 
constant which reduces the ferromagnetic coupling of Cu50Mn25Al25-xGax alloy 
system. Such type of observation has also been reported in other alloy systems [14, 
26, 29, 30]. Also, it is well known that Ga3+ is normally substituted in isovalent state 
vis-a-vis that of Al3+ [54–59]. However, it is worth mentioning here that Ga1+ may 
possess monovalent state. It has been confirmed Al, Ga mainly provide conduction 
electrons for the exchange interaction and the Mn atoms show a localized moment 
in this material [3]. It may be said by considering the varied concentration ratio 
of Al and Ga that the concentration of conduction electron plays a very important 
role in determining the magnetic properties. Thus, the magnetic properties may 
be affected by the presence of mixed valence states of Ga. The concentration of Ga 
and the disordered occupation of Mn atoms may also be important factors which 
affects the magnetic properties. Therefore, the conduction electron concentration 
is believed to be critical in stabilizing the Heusler structure [3]. In the present case, 

Figure 6. 
Magnetization curves at 5 K (a) and 300 K (b) for melt-spun ribbons of Cu50Mn25Al25-xGax (x = 0, 4, 8 and 
10) alloys. Magnetization curves (c) and (d) shows a small increase in M with H for the alloy with x = 10 
(Reprinted from reference [24] with kind permission from Elsevier, Copyright 2012, Elsevier).
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the concentration of Mn is fixed i.e. 25 at. %. Thus, the ferromagnetism behaviour 
of this material may be related to the concentration of Mn, atomic sites and situation 
of conduction electrons provided by Cu, Al and Ga. Further, the M-H curves for the 
melt spun alloy with x = 10 at 5 K and 300 K respectively are shown in Figure 6(c) 
and (d). A close observation of the curves indicates a small increase in M with H 
superimposed on the flat saturated ferromagnetic M-H curve. This may be due to the 
formation of a paramagnetic phase (γ-Cu9Al4) in addition to the majority Cu2MnAl 
ferromagnetic phase in the alloy with x = 10.

The effect of heat treatment on the magnetization has also been studied. On 
annealing, the magnetic properties of the alloy have changed. The hysteresis loops of 
the annealed ribbons (for x = 0 and x = 8) at 5 K and 300 K are shown in Figure 7. The 
Ms of the annealed ribbons are found to be lower than their respective as-synthesized 
ribbons (Table 1). The Ms ~ 53 emu/g has been found for annealed ribbon of x = 0 
from the magnetization curve (M-H) at 5 K, which is lower than that of the value 
found for the as-synthesized ribbons of x = 0 i.e. Ms ~ 95 emu/g. The decomposi-
tion of Cu2MnAl ferromagnetic phase into β-Mn and γ-Cu9Al4 paramagnetic phases 
may decrease the magnetization [50]. However, along with these phases, Cu2MnAl 
Heusler phase is still a majority phase for the alloy with x = 0. The drastic decrease 
in the magnetization value at 5 K from ~83 emu/g to ~5 emu/g has been observed for 
x = 8. This is attributed to the different decomposition behaviour of x = 0 and x = 8 
alloys. The M-H curves of the annealed ribbon for x = 8 (at 5 K and 300 K) are shown 
in Figure 7(c) and (d) (c & d). The increase in M with increase in the applied field is 

Figure 7. 
Magnetization curves at 5 K (a) and 300 K (b) for annealed ribbons of Cu50Mn25Al25-xGax (x = 0 and 8) 
alloys. Magnetization curves (c) and (d) shows an increase in M with H for the alloy with x = 8 (Reprinted 
from reference [24] with kind permission from Elsevier, Copyright 2012, Elsevier).
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clearly evident. This may be due to the precipitation of paramagnetic phase (γ-Cu9Al4 
type) as a majority phase for the alloy with x = 8.

The temperature dependence of magnetization curves (M-T curves) for the 
melt-spun and annealed ribbons under a field of 500 Oe has been investigated. 
Figure 8(a-d) shows the M-T curves of the melt-spun Cu50Mn25Al25-xGax (x = 0, 
4, 8 & 10) alloys. The alloys with x = 4 and 8 have the same type of M-T curves as 
the parent alloy Cu50Mn25Al25 (x = 0) shows the characteristics of a ferromagnet. 
With increase in Ga concentration, the saturation magnetization M(T) decreases. 
At low temperature in the M-T curves for x = 0, 4 and 8, it follows the expression 
M(T) = M(0)(1-ATn) with n = 3/2 [52]. The data for T < 100 K as a function of T3/2 
is shown in Figure 8(a)–(c). The T3/2 dependence of the magnetization at this low 
T range has been shown by the solid line in the inset graph which is a linear fit to the 
data. The magnetization measurements of Cu50Mn25Al25-xGax (x = 0, 4, 8 & 10)  
alloys in the zero field cooled (ZFC) and field cooled (FC) modes are shown in 
Figure 8. The magnetization measurements in ZFC and FC modes can give an 
estimate of magnetic ordering temperature in a system with long range magnetic 
order or blocking/freezing temperature in the case of medium range order [60].

The splitting in the ZFC and FC magnetization curves has been observed for the 
alloys with x = 0, 4, 8 and 10 (Figure 8). The alloys with x = 0, 4, 8 and 10 shows the 
splitting at ~145 K, ~125 K, ~25 K and ~ 225 K respectively. The splitting temperature 
found to be decreases from x = 0 to x = 8 and then increases for x = 10. The reason for 
this may be attributed to the fact that the alloys up to x = 8 exhibit single phase while 
the alloy with x = 10 is biphasic in nature. Thus, the synthesis acquired anisotropy 

Figure 8. 
Temperature dependence of magnetization for melt-spun ribbons of Cu50Mn25Al25-xGax alloys with x = 0 (a), 
x = 4 (b), x = 8 (c) and x = 10 (d) in a field of 500 Oe in the ZFC and FC modes. The data for T < 100 K as 
a function of T3/2 is shown in the inset graphs of (a), (b) and (c) (Reprinted from reference [24] with kind 
permission from Elsevier, Copyright 2012, Elsevier).
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of the Cu50Mn25Al25-xGax (x = 0–10) melt spun alloys causes the splitting in the ZFC 
and FC curves. The synthesis of ribbons using the melt spinning process involves the 
sudden cooling of molten alloy when it falls on to the rotating Cu-wheel. The sudden 
and fast cooling of the molten alloy arises from the very high speed (~ 4000 rpm) 
of the rotating wheel. It is well known that the side of the ribbon which is in direct 
contact with the wheel has higher cooling rate than the one which is not in contact 
[61]. Thus, the variation in cooling rate along the thickness of the ribbon result 
in some microstructural changes between contact side (CS) and non-contact side 
(NCS) [61]. This has led to synthesis acquired anisotropy in the ribbons.

3. Structure/microstructure and magnetic properties of nanoferrites

3.1 XRD and AFM analysis of NiFe2O4, CoFe2O4 and MnFe2O4 thin films

The nanoferrites of NiFe2O4, CoFe2O4 and MnFe2O4 thin films were prepared by 
a MOD method [62]. Figure 9(a) shows the XRD pattern of NiFe2O4, CoFe2O4 and 
MnFe2O4 thin films. The ferrite peaks at 2θ = 30.481, 34.991, 37.481, 42.581, 48.021, 
51.231 and 55.85o respectively attributed to (220), (311), (222), (400), (331), (422) 
and (511) reflections of spinel structure. A small amount of α-Fe2O3 phase had also 
been formed as an impurity phase. The lattice constants are calculated from the 
XRD data i.e. a(Å) ~8.161, 8.312 and 8.425, respectively for NiFe2O4, CoFe2O4 and 
MnFe2O4. These calculated values of lattice constants are closer to bulk NiFe2O4 

Figure 9. 
(a) XRD pattern of NiFe2O4, CoFe2O4 and MnFe2O4 thin films. AFM images (b) NiFe2O4 (c) CoFe2O4  
(d) MnFe2O4 thin films (Reprinted from reference [62] with kind permission from Elsevier, Copyright 2011, 
Elsevier).
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(8.17 Å), CoFe2O4 (8.32 Å) and MnFe2O4 (8.43 Å) [63, 64]. Figure 9(b)-(d) shows the 
AFM images respectively of NiFe2O4, CoFe2O4 and MnFe2O4 thin films. It exhibited 
homogeneous micro-structures with uniform size distribution of nano-grains. The 
thin film surfaces are smooth and crack-free. The grains exhibit a round shape with a 
small grain boundary region. The average size of grains AFM is 46, 61 and 75 nm and 
surface roughness is 2.5, 4 and 2 nm respectively for NiFe2O4, CoFe2O4 and MnFe2O4. 
The smaller nano-grains formation may attribute better stoichiometric ratio and low 
processing temperature of crystallization. Also the addition of PEG encapsulates the 
ferrites constituents into smaller groups during the heating process [65].

3.2 Magnetism of ferrite MFe2O4 nanoparticles

3.2.1  Ferromagnetism of MFe2O4 [M = Mn, Co, Ni, Zn] with BaTiO3 
nanocomposite

The magnetic nanoparticles of multiferroic MFe2O4/BaTiO3 [M = Mn (MnFO/
BTO), Co (CFO/BTO), Ni (NFO/BTO) and Zn (ZFO/BTO)] thin films were fabri-
cated by a MOD method [66]. The addition of ferrite MFe2O4 in perovskite BaTiO3 
results in to lattice strain due to tetragonal distortion, expansion/contraction of 
MFO/BTO unit cell and lattice mismatch. The tetragonal BTO, spinel MFO phases 
and lattice strain effects are confirmed by XRD analysis. The average grain size for 
MnFO/BTO, CFO/BTO, NFO/BTO and ZFO/BTO is calculated from AFM images 
and is found to be 25, 102, 24 and 133 nm, respectively.

The ferromagnetic behaviour (magnetization versus applied magnetizing field 
(M-Hdc)) of MFO/ BTO thin films at room temperature is shown in Figure 10(a). 
The values of remanent magnetization, Mr = 0.03, 3.75, 6.76 and 1.49 k J T−1 m−3 
with coercivity, Hc = 0.013 × 105, 0.079 × 105, 0.167 × 105 and 0.135 × 105Am−1 and 
saturation magnetization, Ms = 1.29, 20.25, 27.64 and 6.77 kJ T−1 m−3, respectively, 
measured for MnFO/ BTO, CFO/ BTO, NFO/ BTO and ZFO/ BTO. The magne-
tization values observed for MFO/BTO nanocomposite shown abrupt reduction 
than single phase MnFe2O4 (5.40 kJ T−1 m−3), ZnFe2O4 (230 kJ T−1 m−3), NiFe2O4 
(50.60 kJ T−1 m−3) and CoFe2O4 (33.50 kJ T−1 m−3) [62, 67]. Due to non-magnetic 

Figure 10. 
(a) Room temperature M-Hdc hysteresis of MFe2O4/BaTiO3 thin films (b & c) M-H hysteresis of Ce doped 
CoFe2O4 nanoparticles at room temperature. Inset shows SQUID measurement for ZFC/FC experiment 
(Reprinted from reference [66] with kind permission from Elsevier, Copyright 2017, Elsevier).
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BTO phase of nano-composite, the saturation magnetization of ferrite reduces. 
Since mixed perovskite BTO acts as a non-magnetic defect, which hinders the 
growth of the magnetic domains of spinel MFO and their movement under an 
external magnetic field [68]. Thus the non-magnetic elements weaken the A-B 
super exchange interaction which results in the increase of distance between the 
magnetic moments in A and B sites in the spinel structure [69]. The weaker A-B 
super exchange interaction of MFO by non-magnetic BTO phase is more affected by 
the thermal motion, resulting in the decrease of TC. Wang et al. [70] suggested that 
the decrease in the magnetization causes the relaxation process to increase, which 
might be related with oxygen vacancies redistribution. Bateer et al. [71] suggested 
that the decrease in particle size and the presence of a magnetic dead oranti-ferro-
magnetic layer on the surface results into reduction in saturation magnetization in 
ferrite nanoparticles.

Moreover the origin of observed ferromagnetic behavior (Figure 10) of 
MFO ferrites nanocomposite must be related with two different mechanisms: 
ferrimagnetic coupling of Fe ionsat A-B sites in (M1-xFex)[MxFe2-x]O4 and the 
surface spin canting [72]. The structure of the ferrite becomes mixed spinel from 
its normal configuration when consider the cation inversion in which the shift-
ing of M ions from A to B site and that of Fe ions from B to A-site changes the 
magnetic behavior of the nanocomposite [73]. The magnetic moments of Fe ions 
(at B-site) cancel out due to negative interaction among them and M ions have 
nothing to contribute. The Fe ions present at A-site are responsible for magneti-
zation enhancement and contribute to net magnetic moment. Vamvakidis et al. 
[74] suggested that within the spinel structure, the reduction in inversion degree 
(~0.22) of MnFe2O4 (due to the partial oxidation of Mn2+ to Mn3+ ions) results 
into weaker super exchange interactions between tetrahedral and octahedral sites. 
It contributes to weak ferrimagnetism in MnFe2O4. Bullita et al. [75] reported that 
the cation distribution of ZnFe2O4 at the nanoscale level is contributed by partial 
inverted spinel structure which results in the increase of magnetization. Peddis 
et al. [76] shows the typical ferrimagnetic structure of inverse CoFe2O4 nano-
particles with an inversion degree of 0.74. These results in the better correlation 
between spin canting and cationic distribution to get competitively higher value 
of saturation magnetization. However, Carta et al. [77] reported the degree of 
inversion 0.20 for MnFe2O4 nanoparticles, 0.68 for CoFe2O4 nanoparticles and 
1.00 for NiFe2O4 nanoparticles.

3.2.2 Ferromagnetic ordering in Ce doped CoFe2O4 nanoparticles

It is reported that the core/shell nanoparticles of CoFe2-xCexO4 [x = 0.05 
(CFCeO05), 0.1 (CFCeO10)] were prepared by a chemical combustion method 
[37]. XRD pattern results into spinel structure with cubic space group. From TEM 
images, the average particles size, D = 8 and 10 nm, respectively, for CFCeO05 and 
CFCeO10 sample. Figure 10(b) and (c) shows the M-H hysteresis with Ms = 42.54 
and 10.41 emug−1 and Mr = 26.68 and 1.57, emug−1 with Hc = 1526 and 140 Oe, 
respectively, observed for CFCeO05 and CFCeO10. These values of magnetiza-
tion are larger than nanostructured pure CoFe2O4 but smaller than bulk value (73 
emug−1 at room temperature). This is due to higher surface energy and surface ten-
sion in the nanoparticles which changes cationic preferences of ferrite. It leads to an 
increase in degree of anti-site defects to cause more surface spin canted or disorder.

Recently, Georgiadou et al. [78] suggested modification in cation occupancy in 
nanostructured CFO due to its inverse spinel structure. The theoretical expression 
for the net moment of MCe is given (Ce3+ ions occupy only the B sites for their large 
ionic size): ( ) µ= − = × − + + × −  5 1 3.8 5Ce B A CeM M M x x ; where MA and MB are the 



Magnetic Skyrmions

14

wof Fe3+cation is fixed to 5μB (spin only) and for octahedrally coordinated Co2+ 
cations is fixed to 3.8 which correspond to the Msat at 0 K of bulk CFO (95 emug−1) 
[79]. The net magnetic moments μCe cation is zero for the diamagnetic Ce4+ ions and 
non-zero for the paramagnetic Ce3+ ones. By replacing Fe3+ by Ce3+cation, the Ms is 
expected to vary as μCe by the sequential filling of electrons in the 4f shell. Unlikely, 
a clear deviation between the theoretically predicted magnetization by above 
equation and the experimental one (Figure 10(b) and (c)) is observed. This is 
ascribed into two reasons. One is the decrease in strong negative Fe3+-Fe3+ interac-
tion that resulted from the doping of Ce because the spinel ferrimagnetic CFO is 
largely governed by the negative Fe3+-Fe3+ interaction (the spin coupling of the 3d 
electrons). The Ce3+-Fe3+ interaction (4f-3d coupling) as well as the Ce3+-Ce3+ one 
(indirect 4f-5d-4f coupling) exist this is very weak [80]. The other is the rearrange-
ment of the Co2+ ion in the A and B sites resulted from the doping with RE Ce3+ ions. 
The migration of Co2+ ion into tetrahedral sublattice decreases the concentration of 
Fe3+ ion in A site, leading to enhance Ms. Also, the value of Hc is reduces with Ce3+ 
ion concentration in CFCeO10 and shows weak ferromagnetism. This is responsible 
due to variation in core/ shell formation and description of CFO lattice by vibra-
tional modes [37]. The core/shell (CeO/CFO) system result into an increase in 
effective magnetic anisotropy caused by surface and interface exchange coupling 
effects. The huge difference in the coercivity value among CFCeO samples may 
ascribe to surface pinning that arises due to missing coordination of oxygen atoms 
and the shape effect of the spinel ferrite.

The origin of observed room temperature ferromagnetism of CFCeO samples 
is evaluated by the temperature dependent magnetization [M(T)] with field 
cooling (FC) and zero field cooling (ZFC) measurement (Figure 10(b’) and 
(c’) inset). The applied magnetic field is 100 Oe. These M-T measurements show 
that ZFC-FC curves of the CFCeO05 sample did not coincide with each other or 
slightly coincide around 300 K. It indicates that the nanoparticles are still mag-
netically blocked at around room temperature. However, CFCeO10 nanoparticles 
show blocking temperature of antiferromagnetism, spin glass etc. at about 91 K. 
This type of the magnetic response is due to different nano-core/ shell formation 
in CFCeO samples. The core/shell nanoparticles provides spin-phonon coupling 
in which a core of aligned spins is surrounded by a magnetically disordered 
shell [81].

3.2.3 Humidity response from MgFe2O4 thin films

Figure 11 shows the humidity response of MgFe2O4 thin films (measured in 
the range 10–90% RH at 25°C). The base resistance of thin film annealed at 400°C 
increased from 59 GΩ to 30 TΩ annealed at 800°C. There are many factors on which 
the resistance of ferrites depends such as porosity, vacancies and electron hop-
ping between Fe2+ and Fe3+. In the present study it may be due to higher annealing 
temperature that increases the average pore size distribution which further creates 
more obstruction for the charge carrier’s movement. It can be seen from Figure 11 
that with higher annealing temperature, the response of Log R (Ohm) approaches 
towards linearity with rising humidity 10–90% RH (relative humidity). Log R 
variation of the film annealed at 400°C was almost constant (up to 50% RH), after 
that the linear decrease was observed at high humidity value. This may be due to the 
presence of less pores available for adsorption and thus a very few water molecules 
are only able to chemisorbed in such pores. The slope of log R (with increasing 
humidity) increases for the film annealed at 600°C and it became almost linear for 
the film annealed at 800°C for the entire range of humidity which may be due to the 
increase of intra and inter pores.
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4. Conclusion

In this chapter the recent progress in the development of Heusler alloys and 
nanoferrites are discussed. Formation of Heusler single phase of the Cu2MnAl 
structure has been found only for the Cu50Mn25Al25-xGax alloys with x ≤ 8. The size 
of the grains for the Heusler phase alloy is in the range 100–200 nm. Long term 
annealing of the alloys leads to the formation of β-Mn and γ-Cu9Al4 type phases. 
The saturation magnetization (Ms) decreases with increasing Ga concentration. 
The decomposition of the Cu2MnAl Heusler phase into β-Mn and γ-Cu9Al4 phases 
during annealing leads to the decrease in the magnitude of Ms.

The XRD pattern confirms the cubic phase of spinel ferrites in nanoferrites. The 
average grain’s size for these ferrites is found to be less than 100 nm. Thus it can be 
said that the nanostructural formation of ferrite grains depends on the selection of 
chemical route and annealing temperature and the magnetic properties of nanofer-
rites are different from the bulk ferrites. The core/shell nanocomposites formation 
of Ce substituted CoFe2O4 hinders the superparamagnetism formed due to small 
magnetic nanoparticles results into long-range antiferromagnetic interactions. 
MgFe2O4 thin film annealed at 800°C has a linear log R (Ohm) response towards the 
entire humidity range 10–90% RH.
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