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Chapter

Overcoming  
P-Glycoprotein-Mediated 
Doxorubicin Resistance
Suree Jianmongkol

Abstract

Intracellular concentration of doxorubicin in target cancer cells is a major 
determinant of therapeutic success of doxorubicin-based regimens. As known, 
doxorubicin is a substrate of P-glycoprotein (P-gp), the drug efflux transporter 
in the ABC superfamily. High expression level of P-gp in cancer cells can prevent 
intracellular accumulation of doxorubicin up to its effective level, leading to 
doxorubicin resistance and treatment failure. Moreover, these P-gp-overexpressed 
cells display multi-drug resistance (MDR) phenotype. Regarding this, applica-
tion of P-gp modulators (suppressor of P-gp activity and expression) is likely to 
reverse MDR and restore cell sensitivity to doxorubicin treatment. In searching for 
potential chemo-sensitizer against resistant cancer, a number of phytochemicals 
or dietary compounds have been studied extensively for their P-gp modulating 
effects. Furthermore, combination between doxorubicin and P-gp modulators 
(e.g., plant-derived compounds, siRNA) given through specific target delivery 
platforms have been an effective strategic approach for MDR reversal and restore 
doxorubicin effectiveness for cancer treatment.

Keywords: P-glycoprotein, doxorubicin-resistance, P-gp modulators

1. Introduction

Multidrug resistance (MDR) is one of the major factors contributing to a failure 
of doxorubicin for cancer treatment. Typically, the loss of cell sensitivity to chemo-
therapy is not limit to only doxorubicin and anthracycline derivatives. The MDR phe-
nomenon evidently extends across various structurally-unrelated anticancer drugs, 
regardless of their molecular targets [1–3]. Hence, MDR development in cancer 
cells can simultaneously reduce the effectiveness of several cytotoxic drugs, leading 
to chemotherapeutic failure. Consequently, patients need higher doses of the anti-
cancer agents to achieve therapeutic success. Either intrinsic or acquired resistance 
to doxorubicin-based chemotherapy has been attributed to various mechanisms 
including high expression of the drug efflux transporters, alteration of cell cycle 
checkpoints and apoptotic signals, increased drug detoxification and DNA repair 
processes [4–6]. Regarding this, MDR reversal can be one of the strategic approaches 
to enhance the efficacy, without increased adverse events, of doxorubicin.

This chapter focused on the most studied drug efflux transporter P-glycoprotein 
(P-gp) and its role in doxorubicin resistance in chemotherapy. In addition, some stra-
tegic approaches to conquer P-gp-based MDR in cancer treatment were also described.
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2. The drug efflux transporter: P-glycoprotein

Drug transporters can be grouped, according to their transport direction, into 
uptake and efflux pumps. Most of the known efflux transporters particularly 
P-glycoprotein (P-gp or MDR1; encoded by ABCB1), multidrug resistance protein 
1 (MRP1, encoded by ABCC1), multidrug resistance protein 2 (MRP2, encoded 
by ABCC2) and breast cancer resistance protein (BCRP; encoded by ABCG2) are 
members of the adenosine triphosphate (ATP)-binding cassette (ABC) superfam-
ily. The ABC transporters require ATP hydrolysis for their transport activity across 
plasma membrane in the secretive direction. These efflux transporters share similar 
structural assembly across plasma membrane, composing of a membrane-spanning 
α-helix structure as a transmembrane domain (TMD) and a relatively hydrophilic 
ATP-binding site in nucleotide binding domain (NBD). High activity and expres-
sion of these ABC drug efflux pumps is a major contributing factor for development 
of MDR phenomenon in cancer cells [1, 4].

Among the ABC efflux transporters, P-gp is the first and most studied trans-
porter for MDR development in chemotherapy and drug-transporter-related 
interaction issues. This transporter was first identified from its involvement 
with multidrug-resistance in cancer cells. Particularly, overexpression of P-gp 
in cancer cells, either intrinsic or acquired, has been strongly associated with 
MDR occurrence, thereby P-gp becomes a promising target for development of 
chemosensitizers.

2.1 Overview of P-gp (structure, function, location, expression, and MDR)

P-gp (MW approximately 170 kDa) is a single polypeptide with 1280 amino 
acids arranging in two duplicated units of a 6 α-helix structure hydrophobic TMD 
with linkage to a hydrophilic NBD (Figure 1) [1, 2, 7]. These two TMD with the 
total of 12 helices forms together into one channel as the membrane crossing pas-
sage. A substrate binds to the drug-binding site in the TMD whereas an ATP binds 
to the NBD. After ATP binding, ATP undergoes hydrolysis into ADP for energy to 
activate P-gp action through protein conformational alteration [7, 8]. This trans-
porter, then, is able to move its substrates across lipid bilayer structure of plasma 
membrane to extracellular environment.

2.1.1 P-gp and its normal physiological functions

P-gp is constitutively located in the apical surface of either epithelial or endo-
thelial linings of various normal tissues/organs such as adrenal glands, intestine, 
liver, kidney, pancreas, placenta, capillary vessels in the brain and testes [2, 7–10]. 
Some organs such as prostate, skin, heart and skeletal muscle have low constitu-
tive expression of P-gp. It should be noting that expression level of P-gp varies in 
each organ. For example, the numbers of P-gp in colon and ileum are higher than 
those in jejunum, duodenum and stomach [11, 12]. The tissue distribution of P-gp 
indicates that this transporter normally serves as an intrinsic determinant of oral 
drug bioavailability and drug disposition [13–18]. Intestinal P-gp can influence 
the absorptive amount of its drug substrates, except those in BCS class I (i.e., high 
permeability and high solubility drugs such as verapamil), into the body after orally 
taken [13, 19–21]. The constitutive expression of P-gp at the mucosal surface in 
the lower gastrointestinal (GI) tract (i.e. jejunum, ileum, and colon) may prevent 
an uptake of its substrate, and perhaps also facilitate GI excretion. Moreover, the 
interplay between P-gp and the major phase I drug metabolizing enzymes (e.g. 
cytochrome P450, CYP450) can be anticipated due to their substrate similarity [22]. 
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As such, P-gp and CYP3A4 act in concert to affect metabolic biotransformation of 
their substrates such as paclitaxel in intestine and liver, influencing the oral drug 
bioavailability [22–24]. Localization of P-gp in the blood-organ barriers such as 
brain or testis prevents drug penetration into such organ systems such as brain,  
testes [13, 23, 25, 26]. The presence of P-gp on the brush border of nephron 
proximal tubule and hepatocytes involve with excretion of drugs and endogenous 
substrates into the urine and bile [13, 27]. To this end, P-gp can be considered as the 
protective mechanism against xenobiotics as well as pharmacokinetic influencer 
particularly on absorption, distribution and disposition.

2.1.2 P-gp expression and signaling pathways

Expression of P-gp at plasma membrane involves several cellular processes 
that linking to P-gp mRNA and protein expression. The regulatory mechanisms 
have been largely associated with (1) activation or inactivation of oncogenes (e.g., 
Ras, c-Raf) and transcriptional process, (2) MDR1 translation into P-gp and post 
translational modification, protein trafficking, and (3) P-gp turn over. It has 
been reported that the dysregulated microRNA levels (e.g., miR-21, -27a, -451, 
-130a, -298) could cause MDR development in various cancer cells [28–34]. For 
example, miR-130 was correlated to MDR1/P-gp overexpression, and cisplatin 
resistance in SKOV3/CIS cells [32]. Overexpression of miR-27a and miR-451 was 
linked to increased MDR1 expression and MDR phenotype in resistant cancer cells 
A2780DX5 and KB-V1 [28].

Overexpression of P-gp particularly in MDR phenomenon has been evidently 
connected to up-regulation of MDR1 gene through alteration of various signaling 
pathways and transcription factors. Example of the transcriptional factors involv-
ing in MDR1 transcription are nuclear factor-κB (NF-ᴋB) [35, 36], Y-box binding 

Figure 1. 
The key ABC drug efflux transporters and their selected anticancer drug substrates.
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protein-1 (YB-1) [37, 38], activator protein-1 (AP-1) [39], and hypoxia-inducible 
factor-1 (HIF-1) [38, 40]. The activities of these transcription factors have been 
linked to various signal transduction pathways, particularly the two major cell 
survival signaling cascades i.e. (1) the mitogen-activated protein kinase (MAPK) 
[37, 41], and (2) the phosphatidylinositol 3-kinase (PI3K) pathways [42, 43]. It 
has been shown that hyperactivation of either MAPK/ERK1/2 or PI3K/Akt/NF-ᴋB 
signaling pathways results in overexpression of P-gp in doxorubicin-resistant cells 
such as lung, breast and ovarian cancer cells [44–49]. An up-regulation of P-gp 
expression in vincristine-resistant human gastric cancer cells was associated with 
activation of the p-38/MAPK pathway [50].

After activation and translocation into nucleus, transcription factors such as 
NF-kB and YB-1 (Y-box binding protein) bind to MDR1 promoter region, leading 
to initiation of MDR1 transcription. Increase in YB-1 nuclear activity is related to 
P-gp-mediated development of MDR in several cancers including breast cancer, lung 
cancer, ovarian cancer, colorectal cancer, prostate cancer and osteosarcoma [38]. In 
response to cell stress such as hyperthermia, viral infection and chemical assault, the 
survival Akt and MAPKs signaling would be activated, and subsequently increase 
YB-1 expression and translocation into nucleus for its MDR1-transcription activ-
ity [51]. Doxorubicin is a known P-gp inducer in various cancer cells. Doxorubicin 
up-regulates MDR1 gene expression via the MAPK/ERK1/2 signaling that linked 
to activation of YB-1 in B-cell lymphoma [37]. Moreover, upregulation of P-gp has 
been reported after prolonged exposure to various functional unrelated compounds, 
leading to the loss of drug efficacy and safety [52]. Examples of the known P-gp 
inducers include anticancer (e.g., cisplatin, doxorubicin, etoposide vinblastine), 
antidepressants (e.g., trazodone, St. John’s Wort), anticonvulsants (e.g., carbamaze-
pine, phenytoin), anti-HIV (e.g., saquinavir, indinarvir, tenofovir), immunosup-
pressants (e.g., cyclosporine, tacrolimus), steroids (e.g., dexamethasone) [52–54]. 
It is worth noting that certain CYP450 inducers such as rifampin and St. John’s Wort 
are able to up-regulate P-gp expression, possible sharing through the PXR regula-
tion [55, 56]. Prolonged exposure to rifampin and St. John’s Wort in human led to 
increased intestinal P-gp level, and increased digoxin absorption [57, 58]. Since, 
P-gp-mediated MDR in cancer is largely due to up-regulation of P-gp expression, 
better understanding of the signaling proteins and transcription factors will provide 
a promising targets in overcoming MDR for anticancer chemotherapy.

2.1.3 P-gp and multi-drug resistance in cancer

Overexpression of P-gp has been strongly correlated with chemo-resistance and 
cancer relapses in several cancer patients such as breast cancer, adult acute myeloid 
leukemia, pheochromocytoma patients, leading to poor prognosis from therapeutic 
failure in patients receiving chemotherapy [1, 59–62]. Accordingly, P-gp is intrinsi-
cally expressed in various cancer types, particularly those derived from tissues with 
high basal MDR1 expression levels such as colon, kidney and liver tissues. Being a 
transmembrane efflux pump, P-gp serves as a cellular defense mechanism against 
drug assault by limiting intracellular drug accumulation up to toxic threshold level. 
Regarding this, the susceptibility of cancer to anticancer drugs being P-gp substrate 
varies, depending on intrinsic expressed P-gp levels. Certain types of cancers may 
be classified as poor responder showing their unresponsiveness to chemotherapy 
regimens containing P-gp substrates. For example, prostate cancer appears to 
be better responder to chemotherapy, as compared to colorectal or renal cancers 
[63, 64]. Moreover, some cancers such as leukemia, lymphoma and breast cancer 
having low levels of intrinsic P-gp expression, and thus initially respond well to 
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chemotherapy. Later, after repeated treatment, the expression level of P-gp mark-
edly increases, and those cancers display multi-drug resistance (MDR) phenotype 
[1, 65, 66]. This acquired MDR phenomenon can be viewed as cellular adaptive 
survival response to cytotoxic challenge.

2.2 Substrates and modulators

Examples of substrates and modulators of P-gp are listed in Table 1.

2.2.1 Substrates

Human ABC efflux transporters demonstrate their broad substrate specificity 
toward structurally diverse lipophilic compounds. Most of their substrates are weakly 
amphipathic and hydrophobic planar structure with aromatic ring and positively 
charged nitrogen atom [52, 54, 67, 68]. Examples of P-gp substrates are anticancer 
drugs (vinca alkaloids, anthracyclines, and epipodophyllotoxins), cardiovascular drugs 
(e.g., digoxin, quinidine, talinolol, diltiazem, losartan, verapamil), anti-microbial 
agents (e.g., doxycycline, erythromycin, itraconazole, rifampin), anti-viral drugs (e.g., 
indinavir), anticonvulsants (e.g., phenytoin), acid blockers (e.g., cimetidine), immu-
nosuppressants (e.g., cyclosporine, tacrolimus), steroids (e.g., aldosterone, cortisol, 
dexamethasone), opioids (loperamide, morphine).

Substrates  

(Anti-cancer 

drugs)

Inducers  

(Anti-cancer 

drugs)

P-gp modulators

Direct inhibitors Suppressors of expression

Actinomycin D

Colchicine

Docetaxel

Doxorubicin

Daunorubicin

Epirubicin

Etoposide

Idarubicin

Imatinib

Methotrexate

Paclitaxel

Teniposide

Topotecan

Vinblastine

Vincristine

Daunorubicin

Docetaxel

Doxorubicin

Flutamide

Paclitaxel

Vinblastine

Vincristine

Small molecule 

inhibitors

First generation

Cyclosporin A

Verapamil

Second generation

VX-710 (Biricodar)

Dexverapamil

PSC833 

(Valspodar)

Third generation

GF120918 

(Elacridar)

XR9576 

(Tariquidar)

LY335979 

(Zosuquidar)

Fourth generation

Capsaisin

Curcumin

Limonin

Piperine

Quercetin

Monoclonal 

antibodies

MRK 16

MRK 17

UIC 2

Small molecule inhibitors

Curcumin

Dasatinib

Dexverapamil

Reserpine

Imatinib

Nilotinib

Sorafenib

Trifluoperazine

Toremifene

PSC833 (Valspodar)

RNA interference

MDR1 small-interfering RNA 

(siRNA)

Antisense oligonucleotides

MDR1 antisense oligonucleotides 

delivered via lysosomes

Table 1. 
Selected substrates, inducers and modulators of P-gp.
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2.2.2 Modulators

Modulators suppress P-gp activity through either (1) direct inhibition of P-gp 
function by either competitive or non-competitive inhibitors; or (2) suppression 
of P-gp expression levels by interferences with either transcription, translation/
post-translation, and degradation processes.

2.2.2.1 Direct inhibition of functionally active P-gp

The direct inhibition of active P-gp can be attributed to the interaction between 
chemicals and P-gp at either TMB or NBD [67–69]. Any compound such as tyrosine 
Kinase Inhibitors interferes with ATP binding or hydrolysis in NBD site can reduce 
P-gp transport action [70]. Chemicals identified as small molecule P-gp inhibitors 
such as amiodarone, diltiazem, verapamil bind to substrate binding sites or allosteric 
sites in TMB, resulting in interference on substrate binding and transport. It has been 
reported that certain compounds such as cyclosporine A could exert their inhibitory 
action by interfering with substrate recognition and ATP hydrolysis [8, 67–69]. It is 
not surprising that these TMB type inhibitors and substrates share many common 
molecular features such as hydrophobic planar structure. In addition, due to the diver-
sity in chemical structure of P-gp inhibitors, establishment of the structure activity 
relationship (SAR) of P-gp inhibitors is very challenging. The structure pattern of 
the inhibitors contains planar rings and basic nitrogen atom within an extended side 
chain of the aromatic ring. The presence of tertiary amino groups, in comparison 
with primary and secondary amine, increases the anti-MDR potency consider-
ably. Furthermore, the presence of nitrogen atom in non-aromatic ring apparently 
increases inhibitory action of the compounds [71]. Examples of P-gp inhibitors are 
calcium channel blockers (verapamil, diltiazem), and various phytochemicals such as 
flavonoid and steroidal compounds (e.g., quercetin, resveratrol), indole alkaloids and 
polycyclic compounds (e.g., capsaicin, piperine, rhinacanthin C) [66, 72–74].

Ideally, the P-gp inhibitors should be potent and selective to P-gp function at 
target cells/tissues, with no systemic side effects. To date, there are four genera-
tions of small molecule inhibitors. The first generation inhibitors are known drug 
substrates of the ABC transporters such as verapamil, cyclosporine A, tamoxifen 
and quinidine [75]. They were not specifically designed to be P-gp inhibitors, and 
could not display good clinical outcomes in their MDR reversal activity. The clinical 
disappointment could be due to their weak inhibitory potency against the MDR 
transporters including P-gp, and their pharmacokinetic interactions with chemo-
therapeutic agents, leading to the need of high doses and intolerable adverse effects 
[1, 76]. Next, the second generation inhibitors such as valspodar (cyclosporine A 
derivative) were developed, based on structure activity relationships of the first 
generation compounds, in order to improve potency, specificity, and to reduce 
systemic toxicity. Although this group of inhibitors demonstrated their improve-
ment in inhibitory potency, their clinical outcomes were still unsatisfied due to 
their pharmacokinetic interaction with the anti-cancer drugs via inhibition of 
cytochrome P450, and their severe toxicity [75, 77]. Subsequently, the third genera-
tion P-gp inhibitors such as elacridar, tariquidar and zosuquidar were developed in 
order to address the limitations of the second generation compounds. These inhibi-
tors elicit no effect on CYP P450 metabolism, therefore they are unlikely to affect 
the plasma concentrations of anti-cancer drugs. They were also more potent and 
selective P-gp inhibitors, effectively working in nanomolar concentration range. 
However, the potent P-gp inhibitor tariquidar can be either substrate or inhibitor 
of P-gp depending on its given dose [78]. To date, the clinical efficacy for MDR 
reversal of this generation has yet completely satisfied, its effectiveness possibly 
also depends on given dosage and intrinsic tumor properties.
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Currently, phytochemicals or natural compounds with MDR reversal activity 
have been subject of interest in searching for new effective chemo-sensitizer against 
cancer. This group of inhibitors obtained from natural sources is classified as the 
fourth generation inhibitor. Numerous phytochemical researches on pharmacologi-
cal activities and pharmacokinetics have revealed that plant-based compounds elicit 
a broad spectrum of pharmacological actions such as anti-cancer, anti-oxidant, 
anti-microbial, anti-inflammation, etc. In addition, these plant-based compounds, 
depending upon its molecular structure, may interfere with P-gp and metabolizing 
enzymes, leading to the concerning issues in drug bioavailability and pharmacoki-
netic drug interactions. The advantages of the fourth generation inhibitors in part 
rely on their natural origin with long history of uses in dietary or health supplements 
and in traditional medicine. It may be able to presume that this group of inhibitors 
derived from known edible products possessed less toxicity and more tolerable than 
those of the previous generation compounds. Evidently, even vegetables (e.g., bitter 
melon), spices (e.g., black pepper, turmeric) or fruits (e.g., orange, grapefruit) 
also contain substances that could inhibit P-gp and other efflux transporters in the 
ABC superfamily [72–75, 77, 79–82]. Their competitive inhibition against the efflux 
transporters enhance cytotoxicity of anticancer drugs such as doxorubicin and 
vinblastine, leading to potential MDR reversal in various cancer cells. However, the 
inhibitory potency of these plant-based compounds against P-gp activity might be 
low. Their IC50 values obtained from the in vitro cell culture models appear to be in 
micromolar range. Thus, this group of inhibitors is unlikely a good MDR reversing 
agent through direct P-gp inhibition at MDR cancer cells in clinical setting. In addi-
tion, the interference of P-gp activity of these compounds in pharmacokinetic aspect 
may influence on P-gp-related ADME and bioavailability of chemotherapeutic drugs 
that concomitantly given. Nevertheless, the opportunities of further development 
into effective chemosensitizers cannot be excluded. Better understanding of QSAR 
may enable to facilitate chemical modification of these identified plant-based P-gp 
inhibitors to generate more potent and high selective P-gp inhibitors. Furthermore, 
several plant-based compounds (e.g, curcumin, resveratrol, quercetin) have been 
demonstrated their potential in down-regulation of P-gp and other key regulators in 
transporter-independent MDR mechanisms [75, 82–86].

In addition to small molecule inhibitors, monoclonal antibodies can be another 
alternative approach in inhibiting P-gp activity. Theoretically, any agents that spe-
cifically affect lipid-protein interactions or protein structure of targeted P-gp can be 
developed into P-gp inhibitor. Typically, monoclonal antibody can be developed to 
specifically recognize and bind to its target protein, leading to inhibition of changes 
in protein conformation. Regarding this, human P-gp-specific antibodies UIC2, 
MRK-16 and 4E3 reacted specifically to the extracellular loop of both halves of P-gp, 
and disabled P-gp transport activity [87]. Consequently, treatment cancer cells 
with these antibodies resulted in increased concentrations of anticancer drugs (e.g., 
vincristine, actinomycin D, doxorubicin, paclitaxel) within the cells, and improve 
drug effectiveness [87–91]. In athymic mice model, MRK16 was demonstrated its 
ability to significantly reduce tumor mass [92]. Further clinical studies of human 
P-gp-specific antibodies are needed to conduct in terms of safety and efficacy.

2.2.2.2 Suppressor of P-gp expression

In addition to direct inhibition, reduction of P-gp activity can arise from 
decrease of protein expression at plasma membrane. Interference on transcription 
and translation of MDR1 gene, resulting in reduction of P-gp expression, can be 
another approach to overcome MDR in cancer. Several innovative tools targeting at 
MDR transcription or mRNA including small molecules, antisense oligonucleotides, 
hammerhead ribozymes and RNA interference strategies have been employed.
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2.2.2.2.1 MicroRNA and RNA interference (RNAi) technologies

Application of microRNA and RNAi technologies with either small-interfering 
RNA (siRNA) or small hairpin RNA (shRNA) to specific silence MDR1 expression 
in cancer cells with MDR phenotype has been demonstrated their effectiveness in 
down-regulation of MDR1 and P gp expression with paralleled increases drug accu-
mulation and improved sensitivity to treatment. MicroRNAs (miRNAs) are small 
non-coding RNA molecules that can inhibit ABCB1 mRNA translation processes 
[93, 94]. A number of miRNAs have been studied on their ability to down-regulate 
P-gp expression and restore cell sensitivity to P-gp drug substrates in drug resistant 
cells [34]. For example, miRNA-4539 could increase doxorubicin-mediated cell 
death in MDA-MB-231 breast cancer cells [93, 94].

The RNAi technologies involve either transient gene-silencing by siRNA or 
stable inhibition by MDR1 shRNA-transfected on plasmid DNA of MDR cancer 
cells. Treatment with siRNA against MDR1 increases drug-mediated cytotoxicity 
in various MDR cancer cells such as paclitaxel in MDR1 ovarian cancer cells and 
doxorubicin in doxorubicin-resistant breast cancer cells [95]. In addition, siRNA 
was able to significant reduced size of doxorubicin-resistant xenograft in a mouse 
model [96]. MDR1 ShRNA transfected in taxol-resistant human ovarian cancer cell 
line A2780 effectively down-regulated P-gp expression, and enhanced paclitaxel-
mediated toxicity in this cells [97].

Selective suppression of P-gp/MDR1 expression with either microRNA or RNAi 
technologies offers the novel approach to specifically combat P-gp-based MDR in 
cancer, and re-sensitize the MDR cells to chemotherapeutic agents. However, for 
their therapeutic applications, there are several challenges required especially the 
effective miR/RNAi delivery to target cancer cells, design of expression vectors for 
shRNA, systemic stability and degradation, and safety of patients.

2.2.2.2.2 Small molecules as P-gp down-regulator

Numerous small molecules particularly those in the fourth generation of P-gp 
inhibitors such as curcumin, ginsenoside, quercetin and resveratrol have been 
demonstrated their ability to reduce P-gp function in the MDR cancer cells via 
down-regulation of P-gp expression [83–85]. By targeting at the signaling path-
ways related to transcription process of MDR1, several plant-based compounds 
suppress P-gp expression in the resistance cells and improve chemo-sensitivity to 
anticancer drugs. For instance, the P-gp modulating effect of asiatic acid, ginsen-
oside, isoquinoline alkaloids (e.g. cepharantine, tetrandine) resulted from their 
blockade of MAPK/ERK1/2 or PI3K/Akt pathways in MDR cancer cells [86, 98–101]. 
Another isoquinoline alkaloid berberine inhibited P-gp expression and enhanced 
doxorubicin-mediated toxicity in MCF-7 cells through down-regulation of AMPK-
HIF1α signaling cascade [102]. Anti-MDR property of natural curcuminoids (e.g., 
curcumin, bisdemethoxycurcumin) involved with inhibition of human MDR1 
gene expression in MDR cervical carcinoma KB-V1 cells [103]. In addition, certain 
compounds such as a natural marine product Et743 inhibit MDR1 transcription via 
blocking its promoter activation [104].

3. Doxorubicin and P-gp

Doxorubicin is one of the most effective cytotoxic anticancer drugs. This drug 
has been used for combating various types of cancers such as cancers of breast, 
ovary, prostate, stomach, thyroid; small cell cancer of lung; squamous cell cancer of 
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head and neck; multiple myeloma; Hodgkin’s disease; lymphomas; acute lympho-
blastic leukemia (ALL) and acute myeloblastic leukemia (AML). Unfortunately, the 
uses of doxorubicin can be limited because of its dose-related toxicity (e.g., nausea, 
vomiting, hair loss, leucopenia, cardiomyopathy, heart failure) and high MDR inci-
dence [105, 106]. Despite the good clinical therapeutic responses are seen in patients 
receiving doxorubicin in the earliest stage of treatment, multi-drug resistance may 
later develop and lead to treatment failure.

One of the major mechanisms responsible for doxorubicin-induced MDR is up-
regulation of MDR1/P-gp expression. Doxorubicin is an anthracycline derivative 
with a four-membered ring system containing an anthraquinone chromophore, 
and an aminoglycoside (Figure 1). This molecular structure accommodates its 
interaction with major MDR efflux transporters in the ABC superfamily proteins. 
It has been well established that doxorubicin and other anthracycline deriva-
tives are P-gp substrates with ability to up-regulate P-gp/MDR1 expression after 
repeated exposure in various cancer cells such as breast and lung cancers as well 
as in vivo and in clinical settings [66, 107, 108]. For instance, lung perfusion with 
doxorubicin resulted in an increase of MDR1 RNA in patients with sarcoma pul-
monary metastases [18]. The P-gp-overexpressed cancer cells would have intracel-
lular doxorubicin concentration below its effective threshold level. Consequently, 
cancer cells increasingly survive from doxorubicin-mediated cytotoxity. In this 
circumstance, titrating dose up to overcome MDR may not enable to achieve a 
successful outcome due to dose-limiting toxicity. Because the adverse effects of 
doxorubicin and other anti-cancer drugs are mostly concentration-dependent, 
increasing doses can produce higher degree of severity and unendurable adverse 
events, leading to patient’s intolerability and even fatal outcome. Addition of 
other cytotoxic drugs into doxorubicin-based regimens may not also enable to 
obtain a chemotherapeutic success, if those drugs are also substrates of the MDR 
transporters.

Generally, clinical efficacy of doxorubicin depends on its pharmacokinetics after 
systemic exposure influencing (1) the therapeutic concentration at target organs, 
and (2) the homogeneity of drug distribution in the cancerous tissues particularly 
solid tumor. In addition, it is very critical that doxorubicin accumulates within 
the targeted cancer cells at the level greater than its cytotoxic threshold to elicit its 
pharmacological actions.

3.1 P-gp effects on doxorubicin’s Pharmacokinetics aspect

Doxorubicin is poorly absorbed through GI with low bioavailability (approxi-
mately 5%) after orally taken, due to its instability in stomach acidic pH and 
CYP450 biotransformation in liver. In addition, doxorubicin can induce cytotoxic-
ity in normal tissue. Currently, doxorubicin is commercially available for cancer 
treatment in injection dosage form. Due to its lipophilicity, doxorubicin moves 
through plasma membrane into the cells via passive diffusion, and its extent of 
tissues/cellular permeation and cellular retention can be limit by the existence 
of efflux transporters particularly P-gp. Apparently, doxorubicin is extensively 
distributed to several organs such as liver, heart, kidney after injection. Being the 
efflux transporters, P-gp has a significant impact on doxorubicin distribution to 
certain target tissues such as brain, testes [109, 110]. Certain P-gp inhibitors such 
as PSC-833, piperine capsaicin, resveratrol, silymarin and quercetin were reported 
their influence on the pharmacokinetics and tissue distribution of doxorubicin in 
animal models [85, 110]. Capsaicin was reported to significantly increase the extent 
of doxorubicin accumulation in mice brain after iv injection probably through inhi-
bition of P-gp at blood brain barrier [110]. In addition, piperine and capsaincin, 
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through P-gp inhibition, reduced drug excretion into bile and urine, leading to 
increased drug levels in liver and kidney [110].

3.2 P-gp effects on doxorubicin’s Pharmacodynamic aspects

Critically, overexpression of P-gp on the plasma membrane of cancer cells is a 
major determinant in preventing intracellular doxorubicin accumulation up to its 
cytotoxic level. Doxorubicin resistant cancer cells clearly display significant lower 
intracellular doxorubicin retention with more tolerable to doxorubicin exposure 
than their parental sensitive cells [65, 66]. Thus, P-gp can be a potential therapeutic 
target for either MDR reversal or bio-enhancing effect in cancer therapy. The pres-
ence of P-gp modulators clearly demonstrates their abilities to restore doxorubicin-
mediated killing effect in various cancer cells by increasing intracellular level of 
doxorubicin [66, 111]. Several plant-based compounds such as limonin, quercetin, 
resveratrol, curcumin and rhinacanthin-C at their non-cytotoxic concentration 
have been reported to significantly enhance doxorubicin-mediated cytotoxicity 
in various cancer resistance cells through modulation of P-gp function [66, 112]. 
These phytochemical P-gp modulators may suppress P-gp function either by direct 
inhibition of activity or down-regulation of protein expression.

Moreover, the influence of P-gp on clinical resistance to doxorubicin-based 
treatment has been reported in cancer patients [113–116]. In order to improve drug 
efficacy and patient tolerability, several approaches targeting at the P-gp function 
and expression have been introduced to increase cellular doxorubicin drug level 
and restore drug sensitivity without the need of higher concentration or additional 
chemotherapeutic drugs in the therapeutic regimen.

4.  Strategic approaches to overcome P-gp mediated resistance to 
doxorubicin

Taken that doxorubicin is a known substrate of P-gp, the drug efflux trans-
porters in the ATP binding cassette (ABC) family. Hence, any approaches target at 
the function of these transporters can be presumed to increase therapeutic success 
for doxorubicin-based chemotherapeutic regimens. Regarding this, the strategies 
are as follows:

• Increases in dose of doxorubicin or number of cytotoxic drugs to achieve 
therapeutic success. This has not been a satisfactory approach due to drug 
toxicity and patients’ intolerability.

• Utilization of P-gp modulators to inhibit either function or expression.

• Development of better drug delivery platforms to bypass P-gp activity, leading 
to increase intracellular retention of doxorubicin within target cells.

The current MDR reversal strategy has been exploited P-gp modulators that 
either directly inhibit P-gp activity or down-regulate P-gp expression in order 
to restore cell chemo-sensitivity to doxorubicin [107]. With the encapsulation 
technology, P-gp modulators can be co-administered with doxorubicin in the same 
drug delivery platform, and enhance intracellular doxorubicin accumulation. This 
approach can be accomplished if the potent, non-cytotoxic P-gp modulators that 
specifically target at cancer cells are implemented. In addition, the P-gp modulators 
that also target at non-transporter based resistance such as activation of cellular 
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survival pathways can exert potentially synergistic impact on MDR reversal effect 
and better response to doxorubicin treatment. Collectively, the combined doxorubi-
cin and P-gp modulators with multiple-hit targets is a promising strategy to achieve 
chemotherapeutic efficacy without the need of high dose or additional cytotoxic 
drugs in the therapeutic regimen.

4.1 Synergy with P-gp modulators

This approach aims to suppress P-gp activity at plasma membrane of target cancer 
cells. Several P-gp modulators in combination with anti-cancer drugs have been 
evaluated for safety and efficacy in clinical trials. The clinical outcomes from the 
first three generations of ABC inhibitors such as quinine, verapamil, cyclosporine-A, 
tariquitor, PSC 833, LY335979, and GF120918 were quite disappointed, partly because 
of their dose-limiting adverse events. Most of the P-gp inhibitors required high doses 
for their clinical MDR reversal effects. In addition, their interference on the P-gp or 
other ABC transporters at non-target tissues such as brain and kidney could adversely 
increase accumulation of cytotoxic drugs in these tissues.

The fourth generation of P-gp modulators which are mostly natural products 
have gained a great interest as potential chemosensitizers in MDR cancer treatment. 
The advantages of being natural products with long history of use are inclined 
to the known safety profiles in human and potential hit multiple targets that can 
restore cell sensitivity to doxorubicin. In addition to direct inhibition of P-gp activ-
ity, a number of the natural compounds at non-cytotoxic concentration elicit their 
chemo sensitizing effects through down-regulation of MDR1 and signaling proteins 
in cell adaptive survival mechanisms. The higher degree of synergism between 
doxorubicin and a P-gp modulator can be anticipated with potential therapeutic 
success. Synergistic outcomes between doxorubicin and natural compounds such as 
resveratrol, quercetin, silymarin, gallic acid, curcumin, epigallocatechin-3-gallate 
have been demonstrated in various cancer cell models [82, 83, 103, 111, 117–120]. 
In addition to P-gp modulatory activity (inhibiting both P-gp function and expres-
sion), these natural compounds have a broad spectrum of pharmacological activi-
ties such as antioxidant, anticancer, anti-inflammation, possible through multiple 
signaling pathways. For example, the biological effects of curcumin have been 
related to multiple signaling pathways including NF-kB, Akt, MAPK, Nrf2, AMPK, 
JAK/STAT that involve in MDR1 expression, cell inflammation, and apoptosis [121]. 
Co-administration of doxorubicin and curcumin significantly improved doxoru-
bicin-mediated cytotoxicity in vitro cell models and in vivo hepatic xenograft mice 
model, compared with doxorubicin alone [121–125].

In addition to chemical-based modulators, the uses of specific antibody against 
P-gp or RNA interference (RNAi) technology to silence P-gp expression may 
be effective approach to suppress P-gp activity and restore chemo-sensitivity to 
doxorubicin treatment. Clinical studies on these MDR reversing methods should be 
extensively conducted to support their uses and benefits in cancer patients.

4.2 Drug delivery system and formulation

This approach aims to develop targeted delivery platforms for improving the 
permeation of doxorubicin/P-gp modulators/ chemo-sensitizers (e.g., antibodies 
against ABCB1, siRNA) into target cancer cells, leading to an increased intracellular 
doxorubicin concentration [3, 89, 96, 126–128]. Various nano-drug delivery plat-
forms such as polymeric and solid lipid nanoparticle (SLNs), liposomes, micelles, 
mesoporous silica nanoparticles, nanostructured lipid carriers, dendrimers have 
been constructed to better targeting drug delivery to site of action. This approach 



Advances in Precision Medicine Oncology

12

in couple with utilization of P-gp modulators can overcome MDR and enhance 
therapeutic efficacy of doxorubicin. Furthermore, with cancer-targeting ability, 
this target specific delivery would limit the adverse effect to normal tissues. With 
the encapsulation technology, nanoparticles (NPs) loaded with doxorubicin and 
P-gp modulators or other molecules (e.g., siRNAs) has been reported their effec-
tiveness in target delivery into the cells. For examples, aerosol OT (AOT)-alginate 
NPs enhanced cellular delivery of doxorubicin in MCF-7 cells [129]. Lipid-modified 
dextran-based NPs loaded with doxorubicin and MDR1 siRNA significantly 
increased intracellular doxorubicin and reduced P-gp expression levels in osteo-
sarcoma cell line, as compared to doxorubicin alone [130]. Doxorubicin-curcumin 
composite NPs (e.g., NanoDoxCurc, pegylated-DOX-CUR NPs) could enhance 
effects of doxorubicin both in vitro and in vivo models of DOX-resistant cancers 
(e.g., multiple myeloma, acute leukemia, prostate and ovarian cancers). In addition, 
doxorubicin-curcumin NPs did not cause cardiac toxicity and bone marrow sup-
pression in mice model [131].

5. Conclusion

Doxorubicin is an effective anti-cancer drug that has high MDR incidence. High 
expression of an efflux transporter P-gp is one established mechanism responsible 
for the loss of drug effectiveness and MDR development. This can be due to the P-gp 
function in preventing intracellular accumulation of doxorubicin up to its effective 
level. Several approaches have been introduced in order to increase the efficacy of 
doxorubicin-based chemotherapy and overcome MDR. The combination of doxo-
rubicin and non-cytotoxic P-gp modulators, particularly when given to the specific 
target cancer can be a promising approach to increase cancer sensitivity to doxoru-
bicin through suppression of P-gp function. With the novel encapsulation technolo-
gies, it is very possible to develop the drug delivery platforms with specific targeted 
cancer cells as well as improvement of doxorubicin delivery into the cells. By these 
means, enhancement of doxorubicin-mediated cytotoxicity can be achieved with 
minimal dosing of the anti-cancer drugs. After clinically approval, it will provide a 
great benefit to patients receiving doxorubicin-based chemotherapy.
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