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Chapter

Subcutaneous Adipose Stem Cells 
in Obesity: The Impact of Bariatric 
Surgery
Veronica Mocanu, Daniel V. Timofte and Ioana Hristov

Abstract

Adipocyte expansion, which involves adipose tissue-derived mesenchymal stem 
cells (ASCs), is a critical process with implications in the pathogenesis of metabolic 
syndrome and insulin resistance associated with obesity. Impaired subcutaneous 
adipogenesis leads to dysfunctional, hypertrophic adipocytes, chronic low-grade 
inflammation, and peripheric insulin resistance. Alternatively, it has also been 
proposed that the preservation of the functionality of subcutaneous adipocyte 
precursors could contribute to some obese individuals remaining metabolically 
healthy. Very few studies evaluated the changes in the adipogenic differentia-
tion for human subcutaneous ASCs following bariatric surgery. Weight loss after 
bariatric surgery involves extensive remodeling of adipose tissue, comprising the 
hyperplasia-hypertrophy balance. Subcutaneous ASCs may be implicated in the 
variations of bariatric outcomes, through a different restoration in their prolifera-
tive and adipogenic potential. Weight loss induced by bariatric surgery correlates 
to the subcutaneous ASC functions and could explain the variability of metabolic 
improvement. Limited research data are available to the present and these data 
support the importance of diagnosis of subcutaneous ASCs functions as predictors 
of metabolic improvement after bariatric surgery.
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1. Introduction

Excess fat accumulation in adipose tissue causes obesity, which increases the 
risks of metabolic syndrome, diabetes, cardiovascular disease, and cancer. White 
adipose tissue (WAT) includes subcutaneous and visceral adipose tissue (SAT and 
VAT) with different metabolic features. SAT protects from metabolic disorders, 
while VAT promotes them [1].

SAT is the most important adipose tissue deposit and is characterized by its 
capacity to expand in reponse to surplus of energy. However, in the context of 
obesity, when the storage capacity of SAT is exceeded, fat is stored in other unde-
sirable sites such as visceral depot or non-adipose organs (liver, skeletal muscle, 
myocardium, and pancreas). Impaired adipocyte development is associated with 
insulin resistance, so hypertrophic SAT is an important link with obesity-induced 
metabolic dysfunctions [2].
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Adipocytes come from mesenchymal stem cells in the stroma of adipose tissue. 
These mesenchymal stem cells become preadipocytes when they lose their ability to 
differentiate into other mesenchymal lines and intervene in the adipocyte line. The 
second phase of adipogenesis is terminal differentiation, through which preadipo-
cytes acquire the characteristics of mature adipocytes, acquiring lipid droplets and 
the ability to respond to hormones such as insulin. Terminal differentiation consists 
of a cascade of transcriptional events [3].

The number of mature adipocytes present in adipose tissue is largely deter-
mined by the ability of the limited number of preadipocytes to undergo the process 
of differentiation and the availability of mesenchymal cells to be differentiated into 
new preadipocytes when necessary [3]. Because new adipocytes are considered 
protective against metabolic dysfunction, it is plausible that the maladaptive adi-
pogenesis could be involved in the pathogenesis of metabolic syndrome and insulin 
resistance associated with obesity [4]. In vitro studies have confirmed a decrease in 
the ability of adipogenic differentiation of ASCs in obese people.

The individual “set point” and the ability to expand the SAT depends on both the 
individual’s genetic background and lifestyle. Studies have shown that obese people, 
metabolically healthy, have preservation of the architecture and functionality of 
adipose tissue. Women can recruit new fat cells in the femural or gluteal region at 
maturity. This ability to expand lower-body fat may reduce the abdominal subcuta-
neous adipocyte hypertrophy and the accumulation of ectopic visceral fat in obese 
women. By contrast, the reduced ability to expand SAT in lower-body region is 
observed in men and this is accompanied by the accumulation of fat in subcutane-
ous abdominal and visceral adipose tissues [5].

Adipocyte expansion, which involves adipose tissue-derived mesenchymal stem 
cells (ASCs), is a critical process with implications in the pathogenesis of metabolic 
syndrome and insulin resistance associated with obesity. Impaired subcutaneous 
adipogenesis leads to dysfunctional, hypertrophic adipocytes, chronic low-grade 
inflammation, and peripheric insulin resistance. Alternatively, it has also been 
proposed that the preservation of the functionality of subcutaneous adipocyte pre-
cursors could contribute to some obese individuals remaining metabolically healthy. 
Very few studies evaluated the changes in the adipogenic differentiation for human 
subcutaneous ASCs following bariatric surgery. Weight loss after bariatric surgery 
involves extensive adipose tissue remodeling, implicating mechanisms underlying 
adipose tissue plasticity, and the adipogenic potential.

2. Subcutaneous adipose stem cells

Isolation of subcutaneous human adipose stem cells
SAT consists predominantly of adipocytes, but also contains other cell popula-

tions generally referred to as the stromal vascular fraction (SVF). Studies from the 
1970s first revealed that fibroblast-like cells from the cultures of the SVF [stromal 
vascular cultures (SVCs)] could be propagated and differentiated into mature 
adipocytes in vitro. These in vitro stromal vascular-derived adipocytes, named 
adipose stem cells (ASCs), molecularly resemble the adipocytes found in their 
depot of origin [6]. After the isolation and proliferation of these ASCs, they can be 
used for the experimental study of the molecular processes in regulating adipocyte 
differentiation [7].

SAT can be isolated by a minimally invasive liposuction procedure. Tissue 
separation studies have involved the adipose stromal and vascular compartment 
as the site of origin of adipose stem cells. The SVF is operationally defined as a 
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heterogeneous mixture of cells, isolated by enzymatic dissociation and density-
based separation, a procedure designed to remove the group of cells that were in the 
deposits around the floating adipocytes. These stromal-vascular cells represent a 
rich potential resource for examining a variety of ambiguities relevant to adipogen-
esis as well as regenerative medicine [8].

Identification of human subcutaneous adipose stem cells
Multiple cell-surface makers were demonstrated for ASC identification. The 

ASC immunophenotype should display the following typical marker profile for 
stromal cells: CD44, CD73, CD13, CD90, CD29 positive, and CD34 positive, but 
CD31, and CD45 negative [9]. Subcutaneous-ASC markers included CD10 and 
CD141 as potential cell-surface makers [10].

Compared with visceral-ASCs, subcutaneous-ASCs expressed a high level of 
CD90 and showed increases in proliferation, mitotic clonal expansion, and adipo-
genic differentiation. CD90 silencing inhibited proliferation and mitotic clonal 
expansion of subcutaneous-ASCs [1].

Adipogenic differentiation
Adipogenesis is the process of cell differentiation from stem cells to adipocytes. 

During this process, the ASCs will divide into two cells, where one cell keeps the 
stemness and the other cell can commit to the adipogenic lineage and become 
preadipocyte. The preadipocytes are fibroblast-like cells that are morphologically 
indistinguishable from the mesenchymal precursors but they lose their capacity 
to differentiate into other cell types (osteocytes, chondrocytes, myocytes, etc. The 
preadipocyte can terminal differentiate and acquire the characteristics of mature 
adipocytes, including lipid synthesis, insulin sensitivity, and the secretion of adipo-
cyte-specific proteins. The terminally-differentiated adipocytes are characterized 
by a large unilocular lipid droplet and their main function is energy storage [11].

Adipogenesis is a well-orchestrated process that requires sequential activation 
of numerous transcription factors, including the CCAAT gene family/enhancer-
binding protector (C/EBP) and peroxisomal proliferator-activated receptor-γ 
(PPAR-γ) [12]. The molecular mechanisms of adipogenesis involve stimulators and 
inhibitors. Adipogenic stimulators are represented by peroxisome proliferator-
activated γ receptor (PPAR γ), insulin-like growth factor I (IGF-1), macrophage 
colony-stimulating factor, fatty acids, prostaglandins, and glucocorticoids. The 
inhibitors are Wnt, transforming growth factor-β (TGF-β), inflammatory cyto-
kines, and growth hormone. Adipogenesis could be also influenced by age, gender, 
adipose depot, and lifestyle [13].

In vitro studies showed that mRNA expression level of CD10 of subcutaneous-
ASCs increased after adipogenic stimuli, and this increase positively correlated 
with those of adipogenic markers, PPARG and aP2. In contrast, the CD200 level 
decreased after adipogenesis was initiated and exhibited a negative correlation with 
adipogenic markers [10].

Microenvironment of ASCs
Stem cells are found in a specialized environment, a niche, which controls many 

aspects of cell behavior - activity, proliferation, and differentiation The micro-
environment of the subcutaneous stem cell (niche) refers to a specific location în 
which the adult subcutaneous cells reside and interact with ASCs and other cells or 
substrates. The surrounding microenvironment of ASCs provides signals that keep 
ASCs quiescent or promote either proliferation or differentiation. However, the 
niche function is to prevent ASC proliferation or differentiation. Several important 
factors regulate ASCs’ characteristics within the niche, including cell–cell and 
cell-extracellular matrix (ECM) relationships, growth factors, oxygen tension, and 
cytokine signals [11].
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3. Subcutaneous ASCs differentiation in obesity

In obese patients, adipose tissue expands by differentiating preadipocytes into 
adipocytes (adipogenesis) and/or hypertrophy of existing adipocytes. Adipocytes 
hyperplasia is the alternative optimal process for sustaining the high demand 
for lipid storage, through the activation of multipotent stem cells, leading to the 
generation of new mature adipose cells, but it has a limited and individualized 
capacity [14, 15].

The low adipogenic capacity of subcutaneous ASCs may result in a dysfunctional 
tissue, because it leads to adipocyte hypertrophy, causing the accumulation of 
inflammatory macrophages; insulin resistance; and also the accumulation of ectopic 
fats in the liver, muscles, kidneys, and pancreas [16–21].

The subcutaneous ASC functions are altered in obese patients. The literature 
review on the relationship between obesity and adipogenic differentiation capacity 
of mesenchymal stem cells originating in subcutaneous adipose tissue obtained 
from pre-surgical obese patients are shown in Table 1.

Several studies found that lipid accumulation in hypertrophic subcutaneous 
adipocytes evaluates the expansion capacity of the pre-adipogenic mesenchymal 
cell line and lipid overloaded adipocytes are associated with a poor metabolic 
profile for obese patients [28–30]. The subcutaneous adipose tissue represents 90% 
of total fat mass, it has the potential to greatly affect systemic insulin resistance via 
adipokine secretion in obese persons [31].

The obese population is known to be at high risk for cardio-metabolic diseases. 
Insulin resistance evaluation by HOMA-IR is considered as a good cardiovascular 

Study (authors, 

year)

Results regarding adipogenesis Particularities (group/study)

De Girolamo  

et al., 2013 [22]

Reduced ASCs proliferation and 

slightly reduced differentiation 

in obese vs. non-obese patients;

Human subcutaneous ASCs from bariatric obese 

patients (BMI > 35 kg/m2, N = 8) vs. non-obese 

(BMI < 30 kg/m2, N = 7);

Frazier et al.,  

2013 [23]

Reduced ASCs proliferation in 

overweight patients, without 

significant effect on adipogenic 

differentiation;

Human lipo-aspirate isolated ASCs overweight 

patients (BMI > 25 kg/m2, N = 6) vs. normal 

weight patients (BMI < 25 kg/m2, N = 8);

Hristov et al.,  

2019 [24]

Reduced adipogenic potential. 

Negative correlations with 

HOMA-IR and leptin/

adiponectin ratio.

Human subcutaneous ASCs from bariatric  

obese women (N = 20; BMI = 45 ± 10 kg/m2)  

and normal weight women  

(N = 7; BMI = 24.5 ± 2.5 kg/m2);

Muir et al.,  

2016 [25]

No difference in preadipocyte 

frequency between DM and 

NDM subjects was observed 

in SAT.

Human subcutaneous ASCs from bariatric obese 

patients: diabetic, DM (BMI =47 kg/m2; N = 34) 

and non-diabetic, NDM (BMI =47 kg/m2; N = 48)

Oliva-Olivera  

et al., 2017 [26]

Reduced adipogenic gene 

expression in overweight 

patients;

Human subcutaneous ASCs; overweight patients 

(BMI > 25 kg/m2, N = 20) vs. normal weight 

patients (BMI < 25 kg/m2, N = 40);

Pachón-Peña  

et al., 2016 [27]

Reduced proliferation and 

migration capacity, and reduced 

adipogenic differentiation 

potential independent of oxygen 

tension;

Human lipo-aspirate isolated ASCs from obese 

patients (N = 8; BMI: 35 ± kg/m2) and normal 

weight patients (N = 8; BMI = 23 ± 1 kg/m2);

Table 1. 
Relationship between subcutaneous ASCs and obesity in pre-surgical patients.
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risk predictor [32], is also demonstrated as a valuable criterion for identifying obese 
individuals with a higher mortality risk by Hinnouho et al. [33].

Insulin resistance and its cardio-metabolic consequences are closely associated 
with disturbances of fat metabolism, as it was demonstrated that exceeding the sub-
cutaneous adipose tissues storage capacity results in fatty acid infiltration of insulin 
target tissues like the skeletal muscle and the liver [34], a phenomenon known as 
lipotoxicity that is intimately related to the development of insulin resistance.

The estimated prevalence of obese patients without metabolic syndrome criteria 
in a recent meta-analysis is 35% of the obese patients [35], so it becomes important 
to better understand the particularities of adiposity expansion in these obese 
patients that do not develop insulin-resistance or associated metabolic disturbances.

Effects of hyperglycemia and oxidative stress on subcutaneous ASC adipogenesis
Diabetes impairs the angiogenic potential of adipose-derived stem cells by selec-

tively depleting cellular subpopulations. Studying adipogenic potential of adipose 
tissue-derived from diabetic type 1 or type 2 mice, Rennert et al. [36] observed 
depletion of putative ASCs (CD45-/CD31-/CD34+ cells) within the diabetic SVF, 
which was consistent with the signaling dysfunction seen in this environment.

Recent studies have shown the widespread downregulation of mesenchymal 
stem cell markers in the SAT of diabetic rats. ASCs derived from obese mice [37] 
and Zucker diabetic fatty rats [38] exhibited a reduced capability for adipogenic 
differentiation associated with a decreased expression of related genes insulin 
receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), and adipocyte fatty 
acid-binding protein (aP2 or FABP4) compared with mouse control ASCs.

The oxidative stress generated by hyperglycemia has deleterious effects on 
proliferation, survival, homing, and angiogenic capacity of ASCs derived from the 
stromal vascular fraction [11, 39, 40]. Hyperglycemia up-regulates reactive oxygen 
species (ROS) production, suppresses the nitric oxide (NO) synthesis pathway, 
thereby may impair the regenerative function of ASCs. Impaired adipogenesis and 
IR were associated with increased 4-HNE, increased 8-hydroxy-2-deoxyguanosine 
(8-OHdG), increased cholesterol oxidation-derived oxysterols [41]. Also, it was 
demonstrated that the heme oxygenase-1 inhibited proliferation and differentia-
tion of preadipocytes at the onset of obesity via reactive oxygen species-dependent 
activation of Akt/PKB (protein kinase B) in obese mouse models [42].

The mechanism of decreased number of stem cells in murine diabetic adipose 
tissue may involve the activation of hyaluronan synthases in intracellular membrane 
compartments [43]. The study by Han et al. [44] showed that extended extracellular 
hyaluronan matrices were found around adipocytes in obese mice. The matrix was 
infiltrated with macrophages, which would otherwise accumulate because adipo-
cytes would continue to synthesize and extrude hyaluronan indefinitely in response 
to sustained hyperglycemia. The stem cells that divide into hyperglycemia (> 2.5 
times normal) are heading for pathological adipogenesis in response to glucose 
stress and that subsequent cell divisions along this pathway could contribute to the 
expanded population of fat cells in adipose tissue in diabetes.

Effects of pro-inflammatory signals on subcutaneous ASC adipogenesis
Obesity is characterized by the accumulation of diverse immune cells in both the 

subcutaneous and visceral expanding fat depots, even though macrophage infiltra-
tion appears to be more prominent in the latter [45]. The presence of macrophages 
in the human SAT is causally related to impaired ASCs differentiation, which in turn 
is associated with systemic IR. A negative correlation between SAT adipogenesis, 
but not VAT, and systemic IR was observed [46]. Moreover, lipid-laden adipocytes 
produce increased levels of cytokines such as Interleukin 6 (IL-6), IL-1β, IL-8, 
TNF-α, and monocyte chemoattractant protein-1 (MCP-1), which can inhibit 
preadipocyte differentiation [41].
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To investigate the inflammatory state in diabetes, the levels of IL1β, IL-6, and 
TNFα were measured. Numerous studies have shown these cytokines reduce adipo-
genesis. In patients with diabetes, IL-1β has been shown to induce insulin resistance 
(IR) in adipocytes by reducing IRS-1 regulation. Also, decreased IRS-1 expression 
has been reported to inhibit adipogenesis by decreasing CEBPα and PPARγ. Finally, 
the expression of SIRT1 is downregulated compared to that of healthy cells, this 
finding is consistent with other studies showing that inhibition of this enzyme 
increases senescence and reduces the proliferation of MSCs, losing their adipogenic 
potential [21].

Recent studies revealed that IL-6 may be a good marker of subcutaneous adipose 
tissue inflammation and it is inversely related to adipogenic capacity. Subcutaneous 
ASCs derived from insulin-resistance obese individuals exhibited a lower pro-
adipogenic and higher anti-adipogenic gene expression profile This diminished 
adipogenic potential of ASCs may be a consequence of a preponderance of large 
adipocytes, prone to forming inflammatory foci. Markers of oxidative stress were 
also elevated in the IR state. Thus the related scenario of inflammation and oxida-
tive stress is a likely mediator of increased IL-6 secretion in this depot [47].

4. Bariatric surgery impact on subcutaneous ASCs differentiation

Bariatric surgery is widely acknowledged as the most effective treatment for 
obesity (Frikke-Schmidt, O’Rourke et al. 2016). The most obvious effect of bariatric 
surgery is a loss of up to half of the total adipose tissue mass within the first year 
after surgery along with improvements in systemic metabolism.

Weight loss after bariatric surgery involves extensive remodeling of adipose 
tissue, comprising the hyperplasia-hypertrophy balance. The bariatric interven-
tion has variable results, with up to 35% of patients achieving suboptimal weight 
loss [48]. ASC adipogenic potential correlates of metabolic disease and therapeutic 
responses are poorly defined. Very few published data that correlate changes in 
weight loss induced by bariatric surgery and preadipocyte functions (Table 2).

In obesity, subcutaneous ASCs have abnormal functions in terms of angiogenic 
differentiation, proliferation, migration, viability, and an altered and inflammatory 
transcriptome [51, 52]. Weight loss partially rescues some of the aforementioned 
features.

An important improvement in glycemia is seen in obese patients with diabetes 
who undergo bariatric surgery, even before clinically significant weight loss occurs. 
A decrease of 50% in HOMA-IR is seen within 1 week following surgery [53]. 
Partial or total remission rates in type 2 diabetes as high as 80–90% have been 
observed to occur following bariatric surgery [54, 55].

Few studies have successfully measured local inflammation within subcutaneous 
adipose tissues after surgery in human studies. However, these limited findings do 
indicate that adipose tissue infiltration decreases [56]. A shift in the distribution of 
the remaining macrophages was also observed, including two features: 1) disap-
pearance of CLS, and 2) macrophages located near blood vessels [56]. The studies 
that investigated the impact of bariatric surgery on mRNA expression of total mac-
rophage cell marker CD68 in abdominal subcutaneous AT and showed a significant 
CD68 mRNA expression levels were significantly decreased 12 and 24 months after 
bariatric surgery but not after 6 months [57–60].

Studies in rodents suggest that although subcutaneous ASCs derived from mice 
with partial weight loss present an improved proliferative ability, lipid accumula-
tion was lower than in control differentiated ASCs. The inefficient lipid storage 
could indicate that after weight loss, ASCs do not recover the ability to differentiate 
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to the adipocyte lineage. These studies indicate that reduced energy intake might 
create a protective environment [37].

Mitterberger et al. [49] provided evidence suggesting that long-term caloric 
restriction-induced by diet and bariatric surgery reduced DNA-damage, improved 
viability, extended replicative lifespan, and reduced adipogenic differentiation 
potential of subcutaneous ASCs in formerly obese women.

Muir et al. [48] observed a relationship between pre-surgical subcutaneous 
ASCs frequency and surgery-induced weight loss only in women, suggesting 
different sex-specific mechanisms of tissue remodeling associated with bariatric 
surgery weight loss responses. [48]. These findings indicate that the diagnosis of 
ASCs functions pre-bariatric surgery could predict the level of metabolic changes 
following bariatric surgery. This data would allow specialists to establish some 
criteria for the selection of obese patients with metabolic comorbidities for whom 
bariatric surgery would have the greatest benefit.

5.  Diagnosis of abdominal subcutaneous ASC differentiation as a 
predictor of weight loss and metabolic outcome in bariatric patients

Large evidence indicates that enlargement of adipocytes in obesity is associated with 
low-grade chronic inflammation which further leads to abnormal adipokine release and 
impaired glucose metabolism [61]. In obese patients with associated diabetes mellitus, 
VAT contains larger adipocytes and fewer preadipocytes as compared to SAT [62]. 
However, studies that examined the relationship between generalized and regional adi-
posity and insulin sensitivity in type 2 diabetic patients concluded that upper-body SAT 
(abdominal) plays a major role in obesity-related insulin resistance in comparison to 
visceral or retroperitoneal fat. These results suggest that upper-body SAT had a stronger 
correlation with insulin sensitivity than VAT among type 2 diabetic men [16].

Study (authors, year) Results regarding adipogenesis Particularities (lot/study)

Mitterberger  

et al., 2014 [49]

Higher adipogenic differentiation 

rates for ASCs from former obese 

patients after significant lifestyle 

intervention weight loss;

Human subcutaneous ASCs from obese, 

OD (N = 4, BMI ≥ 30 kg/m2), long-term 

calorically restricted initially obese, CRD 

(N = 4, former BMI ≥ 30 kg/m2, current 

BMI ≤ 30) and normal weight, NWD 

(N = 4, BMI 19–25 kg/m2).

Muir et al.,  

2017 [48]

A direct correlation between 

pre-bariatric subcutaneous 

ASC frequency and weight loss 

(12 month-%TWL);

Human subcutaneous ASCs from 

bariatric obese patients: diabetic, DM 

(BMI =46 kg/m2; N = 37); prediabetic 

PRE (BMI =48 kg/m2; N = 26), and non-

diabetic, NDM (BMI =46 kg/m2; N = 32)

Silva et al.,  

2015 [50]

The ASCs from post-bariatric 

surgery ex-obese patients 

showed the highest levels of lipid 

accumulation whereas those from 

the obese women had the lowest 

levels. ASC behavior is altered 

in the subcutaneous adipose 

tissue of morbidly obese women; 

these changes are not completely 

restored after bariatric surgery-

induced weight loss.

Human subcutaneous ASCs from 

bariatric obese women (N = 12, 

BMI = 46.2 ± 5.1 kg/m2) and post  

bariatric surgery ex-obese women  

(N = 7, initial BMI = 47.8 ± 1.3 kg/m2)  

and normal-weight women (N = 6, 

BMI = 27.5 ± 0.5 kg/m2; final 

BMI = 28.1 ± 1.1 kg/m2)

Table 2. 
Relationship between subcutaneous ASCs and weight loss induced by surgical interventions.
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Studying the response to overfeeding in upper- and lower-body SAT, 
Tchoukalova et al. [63] reported the hypertrophy of upper-body (abdominal) 
adipocyte and hyperplasia of lower-body (gluteofemoral) adipocyte to over-
feeding in healthy men. In morbidly obese women with normal plasma glucose 
concentrations, mean adipocyte volume was larger in VAT than that in SAT, but 
these two depots did not differ in the proportion of small adipocytes. The ability 
of metabolically healthy obese to expand lower-body fat is a protective mechanism 
involving a hyperplastic response to energy overload. High rates of adipogenesis 
were associated with a smaller size of abdominal subcutaneous adipocytes, lower 
waist-to-hip ratio, and more favorable metabolic profile [63].

In bariatric patients, the adipocyte size and the preadipocyte content were 
assessed in SAT (abdominal) and VAT (greater omentum) by Muir et al. [25]. 
They observed modest correlations between adipocyte size and weight loss only in 
VAT. Independently of adipocyte size, the surgery-induced weight loss (12 month-
%TWL) was direct correlated with pre-surgical preadipocyte frequency only in 
female subjects and this correlation was more robust in SAT than VAT.

Recently, CT-derived radiodensity measurement has been validated against 
ex-vivo adipose tissue samples for the assessment of tissue lipid. In morbidly obese 
patients, lower CT-derived adipose tissue radiodensity (corresponding to higher 
lipid content) in abdominal fat depots was associated with metabolic disorders 
[64, 65]. The post-surgery increase in abdominal SAT and VAT radiodensities 
reflecting decreased lipid content, increased tissue blood flow rate, and diminish-
ing adipose inflammation was associated with a favorable metabolic state.

There is a growing body of evidence to suggest that studying the abdominal 
subcutaneous ASCs differentiation using biopsies or adipose CT radiodensity is 
important to understand the tissue responses to weight loss. The diagnosis of the 
adipogenic potential of abdominal subcutaneous ASC could predict the weight-loss 
and metabolic outcome in obese patients following bariatric surgery.

6. Conclusions

Subcutaneous ASCs may be implicated in the variations of bariatric outcomes, 
through a different restoration in their proliferative and adipogenic potential. 
Weight loss induced by bariatric surgery correlates to the subcutaneous ASC func-
tions and could explain the variability of metabolic improvement. Limited research 
data are available to the present and these data support the importance of diagnosis 
of subcutaneous ASCs functions as predictors of metabolic improvement after 
bariatric surgery.
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