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Chapter

Salivary Gland Radio-Protection, 
Regeneration and Repair: 
Innovative Strategies
Ziyad S. Haidar

Abstract

Saliva has a critical role in the maintenance of oral, dental and general health 
and well-being. Alteration(s) in the amount/quantity and/or quality of secreted 
saliva may induce the development of several oro-dental variations, thereby 
negatively-impacting overall quality of life. Diverse factors may affect the process 
of saliva production and quantity/quality of secretion, including medications, 
systemic or local pathologies and/or reversible/irreversible damage. Indeed, 
chemo- and/or radio-therapy, particularly, in cases of head and neck cancer, for 
example, are well-documented to induce serious damage and dysfunction to the 
radio-sensitive salivary gland tissue, resulting in hypo-salivation, xerostomia (dry 
mouth) as well as numerous other adverse intra−/extra-oral, medical and quality-
of-life issues. Although a single governing mechanism of radiation-induced salivary 
gland tissue damage and dysfunction has not been yet elucidated, the potential for a 
synergy in radio-protection (mainly, and possible -reparation) via a combinatorial 
approach of mechanistically distinct strategies, has been suggested and explored 
over the years. This is, undoubtfully, in parallel to the ongoing efforts in improving 
the precision, safety and efficacy of radiotherapy protocols/outcomes, as well as in 
developing new technological and pharmaceutical alternatives, topics covered in 
this chapter.

Keywords: radioprotection, salivary gland, xerostomia, head and neck cancer,  
oro-dental health

1. Introduction

It is well recognized that the incidence of cancer, the second leading cause of 
death, globally, is increasing, an ongoing major burden of disease and public health 
burden, World-wide. While there were 14.1 million cancer cases reported in 2012, 
the World Health Organization (WHO) estimated about 1 in 6 deaths is due to 
cancer, with 9.6 million such deaths reported in 2018. In the United States, today, 
cancer is the second leading, after heart disease, cause of death amongst men and 
women, with over 1 million new cases diagnosed, annually [1].

Despite a reduction in tobacco consumption and the significant modern advance-
ments in medicine, the number of new cancer cases, per year, is projected to rise 
to 22.2 million by 2030 [1]. Cancers, often squamous cell carcinomas/neoplasms, 
that involve the oral cavity, nostrils, paranasal sinuses, naso−/oro−/hypo-pharynx, 
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larynx, and the salivary glands, are commonly/collectively (despite their heteroge-
neity) termed head and neck cancers (HNC), which, together are responsible for 
nearly 200,000 deaths, a year, World-wide [2]. In the United States alone, HNC 
represent 4–5% of all cancers, and in Europe, HNC are the sixth most common 
group of cancers [3].

Besides the alarming incidence and mortality rates, HNC suffer a relatively 
poor prognosis, overall, whether due to delays in diagnosis, staging, treatment, 
particulars of the tumor site, onset, type of symptoms and/or efficacy of therapies, 
to mention a few. Such factors further contribute to permitting the progress and 
upstaging of the malignant tumor(s) which eventually result in enfeebled survival, 
despite the application of novel or advanced intensive therapeutic regimens. 
Briefly, treatment, often a multi-disciplinary case-specific approach, can employ 
chemo−/radio−/immune-therapy, surgery, or combinatorial strategies [4].

Herein, radiotherapy (RT), whether radical or prophylactic, remains a main-
stay of HNC treatment, especially in light of modern improvements in precisely 
targeting and delivering the required radiation doses to the tumor, thereby allow-
ing additional sparing of normal/healthy surrounding tissue(s), greatly reducing 
side or adverse effects of radiation, and consequently improving the quality of 
life (QoL) of patients as well as their families [5–8]. IMRT (intensity-modulated 
radiotherapy), VMAT (volumetric modulated arc therapy) and particle (ion-based) 
therapy are perhaps fine examples of modern high-precision RT [7].

RT, in general, aims to realize localized destruction and control of the target 
tumor (−cells) and halt of the reproductive potential, while minimizing toxicity 
onset. Specifically, high-energy radiation is deposited, causing DNA strands to 
break thereby damaging the cell genome either directly or indirectly (via free-
radical production) and subsequently resulting in apoptosis, mitotic cell death, and 
tissue hypoxia, through different cascades and processes [5, 7]. Depending on the 
radiation dose and tissue turnover, amongst other factors, RT can almost always 
be expected to result in a range of side effects, of which some are reversible and 
others are irreversible (Figure 1). Indeed, HNC and oral squamous cell carcinoma 
(OSCC) patients receiving RT often experience pain, taste disturbances, difficul-
ties in mastication and deglutition (swallowing) and suffer from mucositis, fungal 
infections, dental decay, alterations in speech, all of which are mainly due to or 
linked to salivary gland dysfunction which in turn results in hyposalivation and 
xerostomia [9–12].

Herein, xerostomia, a dry mouth sensation, is one of the main complications and 
complaints for HNC patients receiving RT, mainly as a sequela of the un-avoidable 
damage to the parotid and sub-mandibular glands (both produce over 80% of 
saliva) anatomically located with the radiation zone [8, 12]. Inflammation, fibrosis, 
atrophy and the reduced wound healing response, i.e. reparative and regenerative 
capacity of the glands, mainly due to lack of functional salivary gland stem/progeni-
tor cells post-irradiation, render the inevitable radiotherapy-induced salivary gland 
damage and dysfunction, whether occurring early or late, a significant impediment 
to the QoL and survival of HNC and OSCC patients [10, 13, 14].

Therefore, besides modern advancements in radiation engineering technolo-
gies, ample pharmacological and pharmaceutical solutions have been explored 
[14]. Accumulating knowledge in understanding underlying signaling pathways, 
cellular and tissue responses, spatio-temporally, fuel the continuing efforts aimed 
to explore, develop and translate novel solutions to support in the prevention (and 
treatment of) radiation-induced side-effects and damage of salivary glands, a main 
focus of this chapter, designed to provide the clinical reader with a summary of 
relevant literature and recent innovative developments in salivary gland radiopro-
tection and potential salivary gland repair, post-RT.
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2. Saliva and salivary glands: pre-, during- and post-RT

Briefly, exocrine salivary glands are classified as either major (parotid, sub-
mandibular and sub-lingual) or minor (labial and buccal gland, glosso-palatine 
gland, and palatine and lingual) glands. Anatomically, all three major glands 
are highly vascularized, innervated and are architecturally similar featuring a 
ductal structure with a secretory/excretory (saliva-producing acini surrounded 
by myo-epithelial cells, myo-fibroblasts, immune cells, stromal cells, endothelial 
cells and nerve fibers) opening into the oral cavity/mouth [15]. The glands differ 
in their type of acinar cells and as a result, in the type of produced saliva. While 
the parotid is composed of only serous acini thereby producing watery saliva, 
the sub-mandibular and sub-lingual glands contain a mix of serous and mucous 
(glycoprotein- rich) acini, thereby producing saliva of a different composition, 
a seromucous secretion. Secretion of saliva is stimulated by the sympathetic 
(proteins) and parasympathetic (serous/ions) branches of the autonomic nervous 
system [15, 16].

Saliva is basically an oral lubricant fluid with multiple digestive functions critical 
for oro-dental health, QoL and general well-being. It is composed of a complex 
mixture of water (99%), electrolytes (sodium, potassium, calcium, magnesium, 
etc. …), mucins, proteins, white blood cells, epithelial cells, immunoglobulins, 
anti-microbials/−bacterials and enzymes (1%) [16–18]. Hence, saliva is essential for 
moistening, chewing, swallowing and chemically-digesting foods. It also facilitates 
speaking, aids the tongue in taste sensing, helps protect the oral mucosa (localized 
immunity/mucosal resistance) and plays a role in tissue re-mineralization. A healthy 
adult produces/secretes a daily average of 0.5–1.5 L, at differential rates over the day, 
and at a near neutral (buffer) pH of 6.7 [15–17, 19–22].

Therefore, alterations in quantity (↓: hypo- or ↑: hyper-salivation) or quality of 
the secreted/produced saliva are associated to a variety of conditions and diseases 

Figure 1. 
Head and neck cancers regions and irradiation intensity risk during HNC radiotherapy.
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and have been associated with some medications and therapies [23]. For instance, 
sialorrhea is a general term used for hyper-salivation (or drooling), often as a result 
of medication, systemic diseases, psychiatric disorders and/or oral pathologies, 
amongst others [14]. It is also often linked to conditions such as Parkinson’s, epi-
lepsy, amyotrophic lateral sclerosis or ALS, cerebral palsy, developmental disabili-
ties, pregnancy and/or drugs including clozapine [16, 24] Common treatments for 
sialorrhea include surgical intervention, radiation of the salivary glands (to halt and 
diminish its function) and the use of oral anti-cholinergic drugs (to inhibit saliva 
production), however with known side or adverse effects. In recent years, numer-
ous studies investigated the use of neuro-toxins, mainly botulinum neurotoxins or 
BoNTs, which basically are bacterial exotoxins that interfere and block the exocy-
totic release of vesicular neuro-transmitters cholinergic neuromuscular activity 
in the target tissue, including commercially-available RimabotulinumtoxinB 
(RimaBoNT-B, FDA approval in 2000) and IncobotulinumtoxinA (IncoBoNT-A, 
FDA approval in 2010) in patients suffering sialorrhea, with attractively promising 
results [24, 25].

On the other hand, salivary gland hypofunction (progressive loss of gland 
function) is commonly described or associated with the reduction of salivary 
flow and production, quantitatively. Frydrych [26], discussed salivary gland 
hypofunction etiology and classified causes into seven major areas, developmen-
tal, autoimmune/chronic inflammatory, endocrine, neurological/psychiatric, 
metabolic, infectious and iatrogenic [26]. In a healthy individual, un-stimulated 
“whole” salivary flow rate is averaged at 0.35 mL saliva per minute, with abnor-
malities indicated if the rate drops. For example, one of the most prevalent and 
studied diseases or disorders of the salivary gland is Sjögren’s syndrome (SS), 
a chronic auto-immune inflammatory reaction characterized by lymphocytic 
infiltration of the exocrine glands (mostly to the salivary or lacrimal glands), 
which generates a significant reduction in salivary flow rate - to below 0.1 mL 
whole saliva per minute secreted, un-stimulated [27]. It is perhaps noteworthy 
herein that whole saliva indicates the collection of saliva (secreted from all sali-
vary glands) present in the mouth. Other quantification techniques require direct 
collection from the specific gland. Moreover, often is reported in diagnosing SS 
that only un-stimulated whole saliva flow rates are used.

Hypo-salivation, therefore, is salivary flow rate reduction, quantified, clinically 
via sialometry. Xerostomia, on the other hand, is the reported perception or sensa-
tion, subjectively, of oral dryness. Hypo-salivation may or may not be accompanied 
by xerostomia, and vice versa. Dryness in the mouth can be a side-effect of medica-
tions or due to diseases such as HIV/AIDS, diabetes, hypertension and/or other 
factors including smoking, dehydration, mouth breathing, aging and/or head and 
neck irradiation [14, 16, 23, 28, 29]. Indeed, xerostomia is one of the most commonly 
reported (and expected) complications of RT (during and after RT) for HNC, and 
as mentioned earlier, mainly as a predictable consequence to the significant damage 
(and generated inflammatory immune response) caused to the salivary glands which 
are located and included within the RT-zone or field [30–32].

RT, besides impairing salivary gland function and salivary flow rate, impacts 
the quality of the secreted saliva, given the loss or atrophy of acinar and ductal 
cells and granules (and stem/stromal and progenitor cells) and the consequential 
morphological changes to salivary fluid quality (including pH and buffering capac-
ity), thereby affecting the essential protective, functional and overall physiologic 
processes (Figure 2). Such damage [32] and impact can appear as soon as one week 
after the first radiation therapy session (acute RT-induced damage is due to a distur-
bance in the involved signal transduction pathways on the cell membrane). Progressive 
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decrease in salivary gland function is evident with more RT sessions (delayed or 
late RT-induced damage is due to apoptosis-driven parenchymal cell loss, inflamma-
tion, blood vessel dilation and function loss, nerve injury and reduced parasympathetic 
nervous function, and fibrosis) rendering rescue, repair and regeneration rather 
challenging [33–35].

As a result, the QoL of a large proportion of patients receiving RT is severely 
compromised [36, 37], with thicker or more viscous saliva and xerostomia leading 
in reported complaints [38]. Indeed, RT-related biochemical and proteomic altera-
tions where several key glycoproteins, proteins and other molecules are affected 
have been identified [31, 39]. For example, Jehmlich et al. [40], discussed such 
variations post-RT, detected significant alterations in 48 proteins and highlighted 
the development of oral mucositis as a result of salivary gland dysfunction. Psycho-
social and emotional impact on QoL of HNC patients, especially the elderly [41], 
where they experience and suffer from a compromised ability to and taste, chew, 
and swallow foods extended to their forced switching of dietary preferences to 
soft and carbohydrate-rich foods, thereby resulting in serious nutritional deficien-
cies [38, 40, 41]. Hyposalivation and sequential xerostomia also affect speaking 
and communication abilities, and patients experience nocturnal oral discomfort, 
hence, causing additional stress leading to withdrawal from everyday or day-to-day 
societal and emotional interactions [42–44].

Furthermore, with the prolonged oral clearance of sugars, the oral mucosa 
becomes painfully-dry, sticky and more susceptible to infection, the progression 
of dental caries (tooth decay), gingival and periodontal disease and trauma, 
accentuating the importance of oro-dental hygiene and care, especially in the 
elderly patients [41]. Other sequelae include erosion and ulceration of mucosal 
tissues, oral candidiasis, dysgeusia and dysphagia. Therefore, it is common 
for HNC patients to suffer from depression, feelings of anguish and anxiety 
after receipt of the RT protocol [14, 37, 45–49]. While the recovery of irradi-
ated salivary glands at the cellular and molecular has been thus far shown to be 
limited, salivary recovery post-RT, from our clinical exposure and expertise, is 
possible, yet a lengthy (> 3 years), dire and capricious process, with underlying 
mechanisms not yet fully understood.

Figure 2. 
Progression of RT-induced salivary gland damage and dysfunction in HNC patients.
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3.  Radiation-induced damage prevention and potential regeneration of 
salivary glands

Understanding the underlying mechanisms governing cellular and molecular 
control of salivary gland function is highly pertinent, during- and post-RT, to aid 
in developing suitable and effective therapies, whether preventive or reparative. 
To date, it is safe to state that available therapies continue to be symptomatic and 
no definitive solution or approach has been shown to compensate and/or recover 
the impairment of salivary glands and function. Life-style modifications, synthetic 
saliva and/or use of salivary stimulants and sialagogues, suffer shortcomings and 
are not satisfactory to our patients, as they either only provide temporary (short-
term) relief or might have other disquieting side-effects. Hence, global attention 
has been diverted to seek and develop alternative novel methods, tools and thera-
pies, to offer to HNC patients undergoing RT, that can provide superior long-term 
efficacy. Herein, tissue engineering, regenerative medicine, pharmaceutics and 
nanotechnology may contribute.

4.  Tissue engineering and reparative/regenerative medicine: current 
regimens and strategies

Several tissues and organs are highly sensitive to irradiation, such as the skin, 
esophagus and bone marrow. However, the salivary glands are intricately radiosen-
sitive, given their highly-differentiated cell content marked with a very low or slow 
proliferative rate [50]. This can help explain why the salivary glands, in specific, are 
somewhat unique in their early- and delayed-effects post-RT, when compared to 
other tissues and organs. Nonetheless, salivary gland dysfunction and/or hypofunc-
tion has been shown, in some cases, to be reversible. Such treatment intervention 
is multi-factorial and highly-dependent on original causality, for example, in cases 
of alcohol abuse and dehydration or hypothyroidism. RT-induced salivary gland 
damage and dysfunction is a far more challenging scenario. Auto-immune/chronic 
inflammatory diseases, such as SS or systemic lupus erythematosus also result in 
irreversible damage to the salivary glands [26].

Today, as mentioned earlier, only palliative and efficacy-limited regimens are 
commercially-available [47]. Tables 1–4 highlight a selection of various radio-
protection strategies, at different stages of development, pre-clinically (in vitro and 
in in vivo testing) and clinical (human clinical trials). Briefly, database search was 
performed in PubMed-indexed articles using a multi-search of the following key-
words: “Salivary Glands AND Radioprotection [Title/Abstract]”, “Salivary Glands 
AND Radioprotection [MeSH]”, “Salivary AND Glands AND Radioprotection 
[Title/Abstract]”, “Salivary Gland AND Radioprotection [Title/Abstract]”, 
“Salivary AND Gland AND Radioprotection [ALL FIELDS]”, “Salivary Glands 
AND Radioprotection [ALL FIELDS] and “Salivary Gland AND Radioprotection 
[ALL FIELDS]”. Eligibility and inclusion criteria included English articles reporting 
radio-protection data from in vitro, in vivo and/or clinical setting/trials. Articles 
dated back to 1978 up to the search end-date of December 31st of 2019 were 
analyzed. Reviews, communications or articles with preliminary results were not 
included in our analysis (Figure 3). Herein, our purpose is to screen the available 
literature and assess the level of development of new strategies, regimens and/or 
innovative solutions, to provide a usable prior-Art formatted report. Hence, not all 
included articles, which are tabulated for the reader, were aimed to be presented 
and dissected to be discussed in detail. This review attempts to provide an overview 
of the current understanding, status and prospect of salivary gland radioprotection 
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Agent Main Findings Ref

bFGF-PLGA 

microspheres

Administration of basic Fibroblast Growth Factor (bFGF) prior to 

and immediately after irradiation, partially protected (44%) the rat 

parotid gland.

[51]

pH-responsive 

nanoparticles for active 

siRNAs delivery

Introduction of siRNAs specifically targeting the Pkcδ or Bax genes 

significantly blocked the induction of these pro-apoptotic proteins 

that normally occurs post-irradiation in cultured salivary gland cells. 

Level of cell death from subsequent irradiation was significantly 

decreased.

[52]

rhHGF Treatment of irradiated hPTS with recombinant human Hepatocyte 

Growth Factor (rhHGF) restored salivary marker expression and 

secretory function of hPTS. Changes in the phosphorylation levels 

of apoptosis-related proteins through HGF-MET axis inhibited 

irradiation-induced apoptosis.

[53]

TIGAR over-expression TIGAR (a p53-inducible regulator of glycolysis and apoptosis) over-

expression could diminish the radio-sensitivity of Hs 917.T cells, and 

decrease the autophagy level induced by ionizing irradiation.

[54]

Table 1. 
Radioprotection of salivary glands, in vitro.

MICE

Agent Main Findings Ref

Keratinocyte Growth Factor-1 

(KGF-1)

Local delivery of keratinocyte growth factor-1 into 

irradiated salivary glands protected RT-induced 

salivary cell damage, suppressed p53-mediated 

apoptosis and prevented salivary hypofunction.

[55]

pH-responsive nanoparticles 

complexed with siRNAs

Knockdown of Pkcδ reduced the number of 

apoptotic cells during the acute phase of irradiation 

damage and also markedly improved salivary 

secretion at 3 months.

[52]

Dasatinib / Imatinib Delivery of dasatinib or imatinib resulted in >75% 

protection/rescue of salivary gland function at 

60 days end-point. Continuous dosing with dasatinib 

extended protection to at least 5 months and was 

correlated with histologic evidence of regenerated 

salivary gland acinar cells.

[56]

Human Adipose tissue-derived 

Mesenchymal Stem Cells 

(AdMSCs)

Local transplantation of AdMSCs improved tissue 

remodeling following irradiation-induced damage in 

salivary gland tissue. The use of a carrier enhanced 

the effects of AdMSC-mediated cellular protection 

against irradiation via paracrine secretion.

[57]

Botulinum Toxins (BTX) Irradiated mice showed a 50% reduction in salivary 

flow after 3 days, whereas mice pre-injected 

with BTX had 25% reduction in salivary flow 

rate (ƿ < 0.05). BTX pre-treatment ameliorates 

RT-induced salivary gland dysfunction.

[58]

AdMSCs secretome Secretome modulated by hypoxic conditions to 

contain therapeutic factors contributed to salivary 

gland tissue re-modeling and demonstrated a 

potential to improve consequences of RT-induced 

salivary hypofunction.

[59]

Resveratrol (RES) Administration of RES reversed the reduction of 

saliva secretion induced by irradiation and restored 

salivary amylase and superoxide dismutase activity. 

RES can protect salivary glands against the negative 

effects of irradiation.

[60]
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MICE

Agent Main Findings Ref

Amifostine Amifostine alleviated the effects of irradiation on the 

bio-functions of cells, such as organelles, highly-

involved in the secretory process. Amifostine can 

alleviate xerostomia caused by the late or delayed 

effects of irradiation.

[61]

Serotype 5 Adenoviral (Ad5) 

vector-mediated transfer 

of basic Fibroblast Growth 

Factor (AdbFGF) or Vascular 

Endothelial Growth Factor 

(AdVEGF) complementary 

DNAs

Single local administration of a modest dose (5 × 109 

particles/gland) of a serotype 5 adenovirus (Ad5) 

vector encoding either bFGF or VEGF prior to 

irradiartion, prevents rapid micro-vessel density loss 

in salivary glands and reduces the loss in salivary flow 

rate (as measured 8 weeks post-RT).

[62]

Tempol (4-hydroxy-2,2,6,6-

tetramethylpiperidine-N-oxyl)

Tempol treatment was found to protect salivary 

glands significantly against radiation damage 

(approximately 60% improvement), with no tumor 

protection observed.

[63]

Tempol (4-hydroxy-2,2,6,6-

tetramethylpiperidine-N-oxyl)

Tempol treatment pre-irradiation significantly 

reduced RT-induced salivary hypofunction 

(approximately 50–60%). Tempol (I.V. or 

S.C.) administration also showed significant 

radio-protection. Topical use of tempol, either 

as a mouthwash or gel, was also reported to be 

radioprotective.

[64]

Isoproterenol (IPR) IPR, stimulates adenylate cyclase/cyclic AMP (AC/

cAMP) to increase the level of cAMP,25 and then 

increases cellular membrane ion permeability, ion 

active transport, and protein bio-synthesis. These 

events, together with the release of heavy metals, 

appear to reduce irradiation injury.

[65]

Tempol (4-hydroxy-2,2,6,6-

tetramethylpiperidine-N-oxyl)

Irradiation resulted in a dose-dependent reduction of 

salivary flow rate in this mouse model.

[66]

WR-2721

WR-3689

WR779 13

Tumors examined take up less WR-3689 than the 

other two protectors. In RIF-1 tumor, WR-3689 is 

taken up most avidly, but the three drugs tend to be 

equally protective.

[67]

WR-2721 There is potential for protecting dose-limiting, late-

responding normal tissue in the RT of human tumors 

with both neutrons and conventional radiotherapy.

[68]

WR-1065 Localized delivery to salivary glands markedly 

improved radioprotection at the cellular level. Also, 

mitigated the adverse side-effects associated with 

systemic administration.

[69]

Hypoxia pre-conditioned 

human Adipose tissue-derived 

Mesenchymal Stem Cells 

(hAdMSCs-HPX)

Results suggest that hAdMSCs-HPX protect salivary 

glands from RT-induced apoptosis, and preserve 

acinar structure and functions via the activation 

of FGFR-PI3K signaling by actions of hAdMSC- 

secreted factors, including FGF-10.

[70]

Entolimod At days 8 and 15, entolimod treatment led to 

noticeable mitigation of damage in salivary gland 

tissue. Treatment 1 hr. post-RT irradiation seems 

more effective than 30 min pre-RT.

[71]



9

Salivary Gland Radio-Protection, Regeneration and Repair: Innovative Strategies
DOI: http://dx.doi.org/10.5772/intechopen.94898

MICE

Agent Main Findings Ref

Statins (Simvastatin) Administration of Simvastatin could delay and 

reduce the extent of elevation/over-expression of 

TGF-β1, which in turn protects the submandibular 

glands from RT-induced injury.

[72]

RAT

Agent Main Findings Ref

Se, Zn and Mn + Lachesis muta 

venom (O-LM)

O-LM prevented permanent submandibular gland 

alterations demonstrating promising results in 

radioprotection and recovery from RT-induced 

injury.

[73]

Pilocarpine, Methacholine, 

Reserpine and Methacholine + 

Reserpine

Pre-treatment with pilocarpine or methacholine 

improved all measured glandular functions. 

Pre-treatment with a combination of reserpine and 

methacholine showed additive protective effects 

on submandibular gland function, signifying 

cooperation of muscarinic and alpha-adrenergic 

receptors.

[74]

Phenylephrine

Isoproterenol

Methacholine or Methacholine + 

Phenylephrine

Pre-treatment with phenylephrine, isoproterenol and 

methacholine combined with phenylephrine resulted 

in less irradiation damage to parotid gland functions 

as indicated by quantified lag phase and flow rate.

[75]

WR-2721 WR-2721 provided a significant degree of protection 

for all glandular functional parameters including 

gland weight.

[76]

cAMP The demonstrated substantial protective effect 

of exogenously-administered cAMP on the 

parotid gland supports the previously-suggested 

radioprotection mechanism by the beta-adrenergic 

agonist isoproterenol, which is known to elevate 

endogenous intracellular cAMP.

[77]

WR-2721

Isoproterenol

The aminothiol WR-2721 and beta-adrenergic 

agonist isoproterenol both conferred considerable 

radioprotection to the rat parotid gland. Isoproterenol 

acts on the beta-receptor, and its specific antagonist, 

propranolol, eliminated the protective effect of 

isoproterenol, thereby implicating the beta-receptor 

and cAMP in the radioprotection mechanism.

[78]

WR-2721 While non-protected glands suffered a drastic 

reduction in the amount of acinar tissue, ducts and 

blood vessels exhibited only minor morphological 

changes. Herein, WR-2721 protected the glands with 

similar signs of damage yet to a much lesser degree, 

in comparison.

[79]

WR-2721 WR-2721 protected against the acute phase of 

irradiation damage manifested during the first week 

post-RT. The drug also protected against chronic 

damage, appearing later.

[80]

Thymol Thymol at a dose of 50 mg/Kg significantly impacted 

(positively) salivary gland dysfunction caused by 

ionizing irradiation. Short- and late- side effects of 

RT on the salivary glands were considered reduced by 

Thymol in those rats.

[81]
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systems, with a look onto potential reparative and regenerative keys, where we, 
amongst other clinicians and researchers, do aspire for a superior, safe, efficacious 
and long-term innovative solution that reverses RT-induced damage to the salivary 
glands of our HNC patients. Moreover, we opted to avoid concluding our overview 
with calls for additional research or validation, given that vital tissue engineer-
ing strategies employing the design, characterization and optimization of novel 
biomaterials (and 3D printing), that can also be housing/incorporating release-con-
trolled nanoparticles or nanocapsules that also are designed to encapsulate distinct 
mesenchymal stem cells, induced pluripotent stem cells (iPSCs), growth factors or 
cytokines and/or pharmaceutical agents or drugs, currently investigated at different 
levels of development are limitless in distinctions and details.

Palliative care for RT-induced salivary gland dysfunction- current and 
commercially-available palliative options for HNC patients undergoing RT include 
chewing gum (sugar-free), saliva substitutes, oral and topical lubricants, malic and 
ascorbic acid, saliva stimulants and sialogogue such as pilocarpine (Salagen, for 

RABBIT

Agent Main Findings Ref

Lidocaine 

HydroChloride

Pre-treatment with lidocaine improved irradiation tolerance of 

both, parotid and submandibular glands. Ultra-structure was largely 

preserved.

[84]

Lidocaine

Amifostine

Pilocarpin

Only animals pre-treated with lidocaine or amifostine (alone 

or combined with pilocarpin) showed a slight non-significant 

reduction in the salivary ejection fraction. Lidocaine and amifostine 

could largely preserve the glandular ultra-structure.

[85]

mini-PIG

Agent Main Findings Ref

Orciprenaline

Carbachol

Acinar cells of both glands were significantly more numerous in 

the pre-treatment group. Also, cells seemed better preserved. Yet, 

such effects were more pronounced in the parotid gland (appearing 

almost normal) than in the submandibular gland.

[86]

Adenoviral vector 

encoding FGF2 

(AdLTR2EF1a-

FGF2)

A single pre-administration of a hybrid serotype 5 adenoviral vector 

encoding FGF2 (AdLTR2EF1a-FGF2) resulted in the protection of 

parotid microvascular endothelial cells from irradiation damage and 

significantly limited the decline of parotid salivary flow.

[87]

Table 3. 
Radioprotection of salivary glands, in vivo using non-murine models.

RAT

Agent Main Findings Ref

TLK1B After a single fraction of 16 Gy, the decline in 

salivary function at 8 weeks was less pronounced in 

TLK1B-treated animals (40%) when compared to 

saline-treated controls (67%).

[82]

TLK1B associated with rAAV9 AAV2/ 9-TLK1B groups showed no decline in salivary 

flow post-irradiation (121% increase) and salivary 

flow was not significantly different in irradiated and 

non-irradiated animals treated similarly with TLK1B.

[83]

Table 2. 
Radioprotection of salivary glands, in vivo using murine models.
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example) and cevimeline (Evoxac, for example). As mentioned above, none have 
proved to restore normal QoL and patient satisfaction, mainly due to their limited 
efficacy and effectiveness [30, 42]. On top, adverse side effects are common, and 
such options are often costly to patients, requiring multiple daily use over long 

Agent Main Findings Ref

WR-2721 Administration of WR-2721 prior to each dose of irradiation was 

feasible and without significant toxicity at 100 mg/m2. Salivary gland 

function improved over time after completion of RT, particularly in the 

parotid gland.

[88]

Botulinum Toxin 

A (BTX-A)

The SUVmean of the 225Ac-labeled PSMA radio-ligand in the injected 

parotid gland (right) showed a highly significant decrease of up to 

60% when compared with the left side in the 63 years old patient with 

advanced metastatic castration-resistant prostate cancer (suffering from 

sialorrhoea) receiving 80 units of BTX-A.

[89]

Amifostine Amifostine reduces acute xerostomia and mucositis. [90]

SMGT+IMRT Surgical submandibular gland transfer (SMGT) was combined with 

intensity-modulated radiotherapy (IMRT) in a prospective phase II 

feasibility trial, in a single institution, including 40 HNC patients. At 

12 months post-RT, the rate of absent or only mild xerostomia was 89%, 

and salivary flow rates were approximately 75% of pre-RT levels. Hence, 

patients reported decreased xerostomia and improved QoL.

[91]

Helical 

Tomotherapy 

(HT)

HT is described as an innovate, more precise and less toxic RT technique 

using a continuously rotating gantry to integrate 3D image guidance (a 

linear accelerator with computerized tomography) and deliver IMRT 

in a helical pattern. In 175 HNC patients, followed for up to 36 months, 

HT was used to deliver irradiation doses to bi-lateral parotid glands 

(PG-T), contra-lateral submandibular gland (cSMG), and accessory 

salivary glands in the oral cavity. Xerostomia was significantly decreased 

when the mean doses of PG-T, cSMG, and OC were kept below 29.12Gy, 

29.29Gy, and 31.44Gy, respectively.

[92]

Table 4. 
Radioprotection of salivary glands, clinically in human subjects.

Figure 3. 
PRISMA flow diagram for the bibliographic electronic search on PubMed central.
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periods of time. In parallel, patients, especially the elderly, institutionalized and 
frail, need to go through education and training to acquire new eating and life-style 
habits, learn to prevent or avoid impaired swallowing and potential choking, and 
improve their oral and dental hygiene practices and tools to prevent (or halt the 
progression of) dental and oral mucosal diseases, infections and tooth loss. Other 
palliative care options including acupuncture and electro-stimulation (enhance-
ment of salivary reflexes) are currently undergoing investigation [30, 93].

The only Food and Drug Administration–approved radioprotective and 
anti-xerostomia drug for clinical use (adjuvant setting) is Amifostine, an organic 
thiophosphate, cryoprotective agent and free radical scavenger administered subcu-
taneously or most often intravenously upon reconstitution with normal saline prior 
to or simultaneously with RT to then accumulate within the salivary glands, has been 
extensively-studied since its development, initially under the nuclear warfare pro-
gram [14, 94]. Today, while it continues to benefit some patients, prophylactically, via 
minimizing the effects of xerostomia and taste loss, it is often associated with severe 
side effects including a rapid decrease in blood pressure (hypotension), nausea and 
emesis or vomiting. Recent analysis of several clinical trials associated Amifostine 
to low-quality and mixed evidence in preventing dry mouth complaints in patients 
receiving RT to the head and neck region, in the short- to medium-terms (up to three 
months post-RT) and have questioned its potential in tumor cell protection, thereby 
further narrowing its clinical safety and efficacy window, especially in light of its 
high cost [94, 95]. Essentially, its use in radiation-induced xerostomia has already 
been cautioned in the year 2008 by the American Society of Clinical Oncology [96], 
and so, its controversial and debatable safety and use in all cancer cases lingers.

Preventive and interventional care for RT-induced salivary gland  
dysfunction- the main objective of any planned and/or prescribed option should 
be the relief of symptoms and complications associated with hypo-salivation and 
xerostomia in HNC patients scheduled to receive RT, in order to prevent dete-
riorations in their QoL thereby enhancing their battle with cancer, its treatment 
and consequences [97]. As discussed earlier, despite advancements in irradiation 
techniques and regimens including IMRT, only palliative and prophylactic options 
are available, all of which do suffer substantial short-comings [98, 99]. One might 
even consider IMPT or intensity modulated proton therapy, used to deliver a much-
reduced irradiation dose and subsequently less toxic than IMRT, thereby alleviating 
much of the typical side effects of RT, however, IMPT is known to be more expen-
sive and lacks accessibility and availability [43, 98, 99].

1. Surgical Intervention alternative- to prevent RT-induced hyposalivation, 
sub-mandibular gland preservation and protection from irradiation via surgi-
cal relocation to the sub-mental space, thereby away or out of irradiation zone, 
has been explored, with positive results. It is perhaps worth mentioning herein 
that sub-mandibular salivary gland supplies up to 90% of the un-stimulated 
saliva formation/secretion. However, such highly-invasive interventional pro-
cedures are peculiar and require exquisite surgical manipulation skills and set-
tings. Further, surgical transfer of salivary glands is not indicated or possible 
for cancers of the oral cavity or patients undergoing (systemic) chemotherapy. 
In addition, for the gland to either retain or restore functionality, the connec-
tion of the gland to the main duct must be maintained or restored, respectively 
[100], altogether render it a very limit-ed/−ing option.

In terms of innovative approaches, Rao et al. [101] recently described the use 
of a synthetic hydrogel (TraceIT, composed of water and iodinated cross-
linked polyethylene glycol), injected via an 18-gauge needle, to serve as a 
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 minimally-invasive “spacer” (previously demonstrated in the treatment of 
prostate cancer), and displace or relocate the sub-mandibular gland in order to 
protect it from irradiation toxicity and be able to deliver a reduced irradiation 
dose, however the experimental model used comprised of four refrigerated 
cadaveric specimens and no further in vivo or clinical studies evaluated usability, 
malleability, safety and efficacy, amongst other factors, in clinical organ spacing.

2. Tissue Engineering and Regenerative Medicine alternative- clearly, better 
approaches need to be explored and developed, driving the search elsewhere, 
into the multi-disciplinary areas of tissue engineering and regenerative medi-
cine, in order to combine with and improve current options or to innovate 
and translate new alternative solutions, for wound healing. This is especially 
true, in light of accumulating knowledge and understanding of the underlying 
mechanisms governing radiation-induced salivary gland damage and dysfunc-
tion [47]. Indeed, from inducing DNA damage (via: a. the generation of ROS/
reactive oxygen species or b. the breakage of the DNA double strand), to muta-
tions to cell death (by apoptosis or necrosis, depending on cell type, injury and 
cellular responses), to the loss of salivary progenitors, to the accruing evidence 
regarding the regenerative capacity (slow yet existent) of salivary glands fol-
lowing RT-induced injury, more evidently upon the administration of a stimuli 
(exogenous delivery of stem cells and/or growth factors, for example), alto-
gether re-emphasize the potential of such complex yet innovative approaches 
in finding a better clinical alternative solution.

In a recent clinical study, Ho et al. [102] evaluated the effects of a commer-
cially-available slowly-dissolving adhering disc/tablet formulation (OraCoat 
XyliMelts) on the oro-dental health, enamel remineralization, bio-film forma-
tion, saliva presence, pH and buffering in 5 patients diagnosed with xerostomia 
(criteria: un-stimulated whole saliva flow rate below 0.2 mL per minute and a 
stimulated saliva flow rate of less than 0.5 mL in 5 minutes). They also assessed 
patient self-reported comfort with the mint-flavored, xylitol-releasing tablets. 
Subjects were instructed to use the disc as often as needed for dry mouth symp-
toms relief. At the end, a mean of 4 + 1 discs each day and 2 discs each night, 
were used. Overall, desirable effects of the product on symptomatic alleviation 
and management of xerostomia were reported. The authors reported effective 
local palliation, reduced dental sensitivity, improved salivary production and 
buffering capacity, reduced plaque formation and alleviated xerostomia symp-
toms, without the need to use any systemic sialagogue medications throughout 
the 21 days of the study [102]. Yet, this is a pilot study, limited for involving a 
small of number of participants.

Biomaterials and Cell Therapy- one of the fundamental roles for the main-
tenance of the body of any living organism is regeneration, which enables the 
repair and restoration of lost or damaged tissue [47, 103]. Adult stem/stromal and 
progenitor cells have been identified in many tissues, and are known to have a key 
role in the regeneration and repair, initiated or activated either by the excessive loss 
of differentiated cells (pool) or via (niche) environmental cues. In the presence of 
functional biomaterials such as the previously-described injectable hydrogel spacer 
[101] and a feasible agent-delivery tablet or disc [102], would loading, encapsulat-
ing or incorporating putative salivary progenitor or stem/stromal cells, for example, a 
distinct type of stimuli, yield better results? Supplying salivary gland progenitor and 
stem/stromal cells, via a proper release-controlled dose-responsive carrier, might 
be able to re-establish the disrupted salivary stem/progenitor cell pool and niche, 



Biomechanics and Functional Tissue Engineering

14

restore glandular tissue homeostasis, reverse hypo-salivation, and perhaps control 
xerostomia, a hypothesis we are currently examining in our laboratory, employing 
natural and synthetic polymers, liposomes, solid lipid nanoparticles and core-shell 
nanocapsules, and further supplementing by other pharmaceutical agents.

Modern medicine and biomedical research aim to control and enhance radio-
protective as well as regenerative and reparative capabilities through the utilization 
of cells (cell lineages or primary cells), growing surface control using bio-scaffolds 
and/or manipulating growth factor/cytokine concentrations [47, 104], strategies 
designed to stimulate residual cells to regenerate acini and other parenchymal 
elements (ductal ligation) and infiltrate growth factor doses to boost salivary gland 
repair post-RT [105].

Growth Factor Therapy- somatomedin C is a hormone, similar to insulin in 
molecular structure, and actually is better known as IGF-1 or insulin-like growth 
factor 1 [106]. While a statement as “increased insulin-like growth factor signaling 
induces cell proliferation, survival and cancer progression” is true, it is traditional and 
partial, to a great extent. Today we understand that the issue is much more complex. 
For instance, IGF regulates cellular senescence which is known to halt proliferation of 
aged and stressed cells and do play a key role against cancer development. Actually, 
there is accruing evidence that, over time, IGF not only regulates but also induces 
pre-mature cellular senescence (tumor suppressor protein p53-dependant, in terms 
of acetylation, stabilization and activation) [107]. Hence, despite the understandably-
alarming, at first and for some, suggestion to exogenously administer/supply cytokines 
and growth factors to sites of cancer, the recent years have indeed witnessed a note-
worthy increase in the study of growth factors as cytoprotectants including their use as 
radioprotectors for salivary glands, and to reduce RT-induced symptoms, such as oral 
mucositis. To date, various growth factors have emerged as potential radioprotectors, 
including neurotrophic factors [108, 109], epidermal growth factor (EGF), fibroblast 
growth factor (FGF) [51, 110], keratinocyte growth factor (KGF) [111, 112] and the 
afore-mentioned insulin-like growth factor-1 or IGF-1 [55, 113, 114]. Meyer et al., 
[113], for example, investigated and determined the radioprotectant and therapeutic 
effect of IGF-1, in a murine model. They found that IGF-1 is mediated by the activa-
tion and maintenance of a histone deacetylase, specifically the Sirtuin 1 (SirT-1). 
Pre-treatment with IGF-1 enabled the repair of double-stranded breaks in the DNA 
of parotid salivary gland cells within the first hours post-irradiation, thereby allow-
ing for optimal DNA repair (i.e. IGF-1 promotes DNA repair in irradiated parotid 
salivary glands via the maintenance and activation of SirT-1) to fulfill the cell cycle 
checkpoints. However, hours later and as early as 8 h, RT-induced apoptotic cells 
were detected [113]. Such observations lead to further study the signaling cross-talk 
between IGF-1 and SirT-1, thereby identifying several activators, stabilizers and 
inhibitors, including the afore-mentioned inhibition of the p53-mediated apoptosis 
and the phosphoinositide 3-kinase (PI3K) – protein kinase B (Akt) pathway [107], in-
depth study-worthy topics, beyond the scope of this concise review. To date, studies, 
collectively indicate that cytokines can be radioprotective, anti-apoptotic and suggest/
promote that the exogenous and localized (via a release-controlled delivery system, 
preferably directly injectable) utilization of growth factors do stimulate endogenous 
stem cell populations/niche and will eventually contribute to the desired and/or pur-
sued clinical solution suitable for preventing RT-induced damage, diminishing salivary 
hypofunction, as well as restoring salivary gland function in irradiated HNC cases.

Gene Transfer Therapy- the utilization of gene transfer, DNA transmission and 
cell transduction to produce high levels of transgenic protein in order to correct cel-
lular dysfunction and/or induce a new cellular function, post-RT, is a wide area of 
investigation and development. Baum et al. [115], utilized an adenoviral technique 
to transfer the Aquaporin-1 (AQP1) gene into the sub-mandibular gland, reporting 
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an increase in salivary flow when compared to control viruses into rat or mini-pig 
models [115, 116]. Yet, key shortcomings continue to exist for non-viral as well as 
viral vectors [103], rendering translation for routine clinical use difficult. Likewise, 
the therapeutic potential of genetic modification and application of small-interfer-
ing RNAs or siRNA for the purpose of target gene silencing are intensively inves-
tigated, progressing from pre-clinical testing in animal models to ongoing clinical 
trials for cancer, lung disease and liver damage in human subjects. Thus far, highly 
limited in salivary gland tissues and accompanied with significant safety concerns 
[50]. For example, AQP-1 gene transfer into the salivary glands via adeno-viral 
vectors to treat disorders such as SS, yielded strong immune responses, mainly due 
to the limited or low efficiency of intra-cellular siRNA delivery [117, 118]. Herein, 
similar to growth factors, cell therapy and pharmaceutical agent administration, the 
availability of a reproducible, scalable, safe and effective, release-controlled carrier/
vehicle suitable for therapeutic siRNA delivery, directly into the salivary gland, 
ensuring sufficient residency/retention, is a challenge.

5. Closing remarks

5.1  Wnt/β-catenin pathway: radio-protective role and effect in RT-induced 
salivary gland damage

In irradiation studies and radioprotection literature, numerous cellular signaling 
pathways and cell-cycle alteration mechanisms have been explored. Of those, the 
Wnt/β-catenin signaling pathway seems to receive the utmost attention, recently, 
towards preventing the damage caused by irradiation [119]. Briefly, this canoni-
cal Wingless–Int (Wnt) pathway leads to the accumulation and translocation of 
co-activator β-catenin, a multi-functional protein involved in cell–cell adhesion, 
gene transcription and physiologic homeostasis (adullt), into the nucleus, via a 
series of molecular events initiated through the binding of specific Wnt proteins 
to the frizzled receptors on the cell surface. The pathway plays a critical role in cell 
regulating cell migration and determining cell fate, and mutations have been linked 
to human birth defects, cancer and other disorders and diseases [120–123].

Activating the canonical Wnt/β-catenin signaling pathway is complex. It depends 
on a family of glyco-proteins involved in cell-to-cell communication. To simplify, 
the interaction of ß-catenin with the cell adhesion molecule, e-cadherin, is involved 
in phenotypes: adhesion, mobility and proliferation [121, 122]. In absence of a Wnt 
ligand, β-catenin is degraded by the “destruction complex”. Several proteins are 
involved within this complex whereby Axin acts as a scaffold protein facilitating 
the interaction of Glycogen Synthase Kinase 3β (GSK-3β), Adenomatous Polyposis 
Coli (APC) and Casein Kinase 1α (CK1α), for β-catenin phosphorylation [123, 124]. 
Then, phosphorylated β-catenin is recognized by the β-transducin-repeat-containing 
protein (β-TrCP) and goes through the ubiquitin-proteasome degradation pathway. 
When the Wnt ligand activates Wnt signaling through the plasmatic membrane 
receptor frizzled with other lipoprotein receptors, the cytoplasmic protein dishev-
eled (Dvl) is recruited and thereby activated. Herein, the activation of Dvl disrupts 
the “destruction complex” by dissociation of the GSK-3β from the Axin and inhibits 
the GSK-3β. As a result, β-catenin phosphorylation is also inhibited, allowing stabili-
zation and translocation of β-catenin into the nucleus. Nuclear β-catenin then binds 
to a transcription factor-T cell factor and a lymphoid-enhancing factor (Tcf/Lef) and 
finally activates a response, i.e. changes in gene expression [120, 125, 126].

The Wnt signaling pathway cross-talks with other signaling pathways, and can 
be modulated by several activators and inhibitors. For example, the utilization of 
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growth factors, to activate or inhibit, has been extensively studied, further adding 
to the complexity given the wide range of involved genes [119]. Cross-talk between 
signaling pathways is possible via the common regulatory protein GSK-3β. For 
example, when the epidermal growth factor (EGF) is recognized by its native recep-
tor (EGF-R), this complex activates the afore-mentioned phosphoinositide 3-kinase 
(PI3K) which facilitates the activation of AKT kinase regulator. Herein, the activa-
tion of AKT results in the inhibition of GSK-3β by phosphorylation [127–129] and 
ultimately leads to the translocation of β-catenin into the nucleus. On the other hand, 
the fibroblast growth factor (FGF) is also able to cross-talk with GSK-3β (common 
pathway with EGF) and the activation of its native receptor (FGF-R) is followed by 
PI3K which then results in the inhibition of GSK-3β via AKT activation [125, 130]. 
Herein, FGF-R activation also involves MapK activation which inhibits GSK-3β 
through the p90 ribosomal protein s6 kinase (p90rsk) in an AKT-independent man-
ner [131–133]. Therefore, activating the Wnt signaling pathway (Figure 4) through 
the utilization of cytoplasmic regulatory proteins (from other signaling pathways) 
is potentially able to promote β-catenin stabilization, its translocation to the nucleus 
and the activation of survival genes [134]. Such understanding and revelations can 
lead to produce a plausible and innovative alternative strategy for the activation of 
native repair systems that may allow and promote the survival of the cells during and 
after RT. Possibly, can be even extended to explore plausibility for prevention.

To the best of knowledge, Hakim et al. [135] conducted one of the first/earliest 
clinical studies connecting signaling pathways (Wnt/β-catenin and TGF-β) with 
salivary gland irradiation damage. They reported an alteration in the expression 
pattern of Wnt1 in viable irradiated acinar cells of xerostomic patients, suggesting 
a possible therapeutic effect of the Wnt pathway in controlling RT-induced salivary 
gland damage and dysfunction [135], in accordance with previous in vitro studies 
[120]. Following this line of research, Hai et al. [136] carried out a study analyz-
ing the transient activation of the Wnt/β-catenin signaling pathway to prevent 

Figure 4. 
EGF and FGF pathway(s) interaction with ß-catenin and canonical Wnt signaling pathway.
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irradiation damage to the salivary glands. They reported, using a murine model, 
that activating the Wnt/β-catenin pathway through the transient activation of Wnt1 
in the basal epithelium helped to prevent chronic salivary dysfunction generated by 
local irradiation, specifically via suppressing apoptosis and preserving or rescuing 
the life of salivary stem/progenitor cells. Salivation in experimental mice when 
compared to controls (animals receiving only RT) was increased/higher [120, 136]. 
However, the radioprotective effect of Wnt/β-catenin activation seems, thus far, to 
only occur within a limited time lapse. Activating the signaling path 3 days before 
or 3 days after irradiation yielded dissimilar effects on the tissues [136].

Indeed, in another approach, the activation and modulation of cell signaling 
pathway(s) using a cocktail (more than one) of activators has been suggested, with 
the Wnt signaling pathway (and its components) as therapeutic target(s). Thula 
et al. [51] evaluated the effect of EGF and bFGF (basic FGF) in salivary gland 
explants, reporting promising results regarding gland radioprotection [51]. Overall, 
taking the studied findings into account, it can be proposed that a Wnt/β-catenin 
signaling pathway activator might be a good candidate to be developed as a poten-
tial preventive and therapeutic strategy against the RT-induced salivary gland dam-
age. Herein, as was and is the present scenario with cells, proteins, genes, growth 
factors and drugs, a suitable delivery vehicle is once more, deemed vital.

Technology Promise in Translational Tissue Engineering and NanoMedicine- 
the interplay between tissue engineering, regenerative medicine, biomaterials, bio-
nanotechnology and nanomedicine continues to be the hallmark of current scientific 
research World-wide, promising to change every aspect of human life via creating 
revolutionary materials of biological origin for use in the diagnosis and treatment 
of devastating human diseases, a multi-disciplinary approach to innovative and 
translational solutions, suitable for scale-up, safe, efficacious and cost-effective 
routine clinical use [137–139]. Whether conventional small-molecule agents or 
emerging protein and/or peptide-based macromolecular biopharmaceutics, thera-
peutic effect is of vital significance. Controlled or at least predictable delivery is also 
substantially necessary. An intense effort is invested into engineering such complex 
bio-systems capable to achieve optimum cell-material interactions, while keeping 
intact the materials bulk properties. One of the core interests of nanobiotechnology, 
for example, this decade has been drug/gene/cell bio-functional delivery, driving the 
design and development of bio-inspired, intelligent or “smart” nano-systems [137, 
138, 140]. It can be stated that a competitive and superiorly successful delivery sys-
tem should offer: therapeutic outcome enhancement, patient compliance improve-
ment and overall cost reduction of therapy. For HNC cases suffering RT-induced 
salivary gland damage and dysfunction, an attractive delivery system, for clinical 
ease-of-use, can perhaps entail a directly injectable formulation, sterilizable, capable 
to efficiently-hold a dose-responsive bio-load, maintain its bio-activity over time, 
and “predictably” control its pharmaco-kinetic release profile.
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