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Chapter

Interplay between Primary 
Cortical Areas and Crossmodal 
Plasticity
Christian Xerri and Yoh’i Zennou-Azogui

Abstract

Perceptual representations are built through multisensory interactions underpinned 
by dense anatomical and functional neural networks that interconnect primary and 
associative cortical areas. There is compelling evidence that primary sensory cortical 
areas do not work in segregation, but play a role in early processes of multisensory 
integration. In this chapter, we firstly review previous and recent literature showing 
how multimodal interactions between primary cortices may contribute to refining 
perceptual representations. Secondly, we discuss findings providing evidence that, 
following peripheral damage to a sensory system, multimodal integration may promote 
sensory substitution in deprived cortical areas and favor compensatory plasticity in the 
spared sensory cortices.

Keywords: multisensory convergence, crossmodal processing, sensory loss, 
intersensory substitution

1. Introduction

The brain’s ability to generate a rich and unambiguous representation of the 
world requires the multimodal integration of sensory signals often co-occurring 
in time and space. A crucial issue is how the brain integrates the separate ele-
ments of an object perceived through individual sensory channels (vision, audi-
tion, touch, etc.) in order not only to improve detection and discrimination and 
evaluate crossmodal congruency, but also to form a unified percept. Over the last 
decades, a growing number of studies have challenged the traditional view of the 
sensory neocortex as a parcellation of highly specialized primary areas, each being 
exclusively dedicated to the integration and processing of a unique sensory modal-
ity. An ancillary conception is that signals conveyed through unisensory streams 
mainly converge and interact in higher-order association regions of the temporal 
and parietal cortex in which multisensory integration culminates. Accordingly, 
these cortical regions tuned to integrate increasingly complex sensory signals send 
divergent projections back to early sensory areas to exert modulatory feedback 
on their constituent neurons. However, this hierarchical model of multisensory 
integration has been reappraised in view of accumulating evidence over recent 
decades that primary sensory cortical areas are anatomically and functionally 
interconnected. There is increasing awareness that multisensory integration starts 
in lower sensory areas, presumably via thalamo-cortical and direct cortico-cortical 
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connections [1–3] (macaque; ferret) ([4, 5], for reviews). Hence, it is of primary 
interest to unravel how heteromodal inputs interplaying with the dominant modal-
ity in primary sensory areas may contribute to improving perception. In addition, a 
major issue is to determine how crossmodal plasticity subserves functional com-
pensation and behavioral recovery after the loss or impairment of a sensory organ, 
or following cortical damage. This review chapter has a double focus, firstly on the 
interplay between primary sensory cortices in normal condition, and secondly on 
crossmodal plasticity operating in primary and higher-order cortical areas follow-
ing sensory loss.

2.  Subcortical and intracortical connectivity between primary sensory 
areas

There is anatomical evidence that crossmodal inputs to primary cortical areas 
can be conveyed through thalamo-cortical or cortico-cortical projection fibers. 
There is, however, only scarce anatomical evidence for heteromodal convergence 
from auditory, visual and somatosensory thalamic nuclei to A1, V1 and S1 [6] (ger-
bil). By contrast, cortico-cortical connections underpinning plurimodal interplay 
between these cortical areas are well documented. Tract-tracing methods have 
revealed the existence of visual-somatosensory projections from V2 to areas 1/3b in 
S1, and somatosensory projections from S2 to A1 [2] (marmoset). Direct cortico-
cortical connections between A1, V1 and S1 have been identified [1, 7] (macaque; 
cat). It has been shown that V1 projects mainly to S1, but receives a moderate 
amount of projections from A1 and S1, while A1 sends more projections to V1 than 
S1, but receives sparse projections from these two areas [8, 9] (mouse). These find-
ings indicate that the connectivity network between A1, S1 and V1 is asymmetric. 
Overall, both thalamocortical and corticocortical connections may contribute to the 
occurrence of short-latency responses to heteromodal inputs reported in these area 
[10–17] (monkey; human).

In the model of hierarchical organization of cortical connectivity, it is generally 
assumed that feedforward connections convey sensory information to higher order 
areas, whereas feedback connections modulate neural activity in lower-level corti-
cal areas [18, 19] (macaque; cat). This model is somewhat challenged by retrograde 
tracing studies investigating the microcircuitry of reciprocal connections between 
primary cortical areas. These studies have shown that A1 and S1 project in a feed-
back manner to V1, while V1 to A1 projections are of feedforward type and V1 to 
S1 are mostly lateral [8, 9] (mouse). In addition, A1 and S1 are linked by recipro-
cal feedback projections [6] (gerbil). Hence, the available evidence suggests that 
connection patterns between primary sensory cortices are not at the same levels in 
the neural network. Furthermore, based on the labeling of reciprocal connections 
between V1 and S1 and the characterization of the size and laminar density of 
axonal swellings, it was concluded that S1 receives a stronger driver input fromV1 
and that S1 inputs to V1 have a predominant modulatory influence [9] (mouse). 
Regarding the projections from the auditory cortex to V1, both types of input have 
been identified with, however, a clear dominance of small caliber axons bearing 
modulator boutons [8] (mouse).

Somatosensory-auditory interactions have been found at low-level of multisen-
sory integration. Cutaneous responses were recorded in the caudo-medial audi-
tory cortex, with a feedforward laminar activation profile. The initial excitatory 
response was located in layer 4, then followed by responses in the extragranular 
laminae (layers 2, 3, 5 and 6), in contrast with feedback and lateral activation 
profiles beginning in the extragranular laminae [20] (macaque).
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The intricate connectivity between unimodal primary cortical areas favors 
crossmodal interplay in the early stage of multisensory integration, presumably 
through feedforward and feedback connections [21] (for a review). The question 
arises whether heteromodal connections between low-level sensory cortices exert 
a global modulatory influence on ongoing firing or more selectively contribute to 
shaping the neuronal response characteristics in primary sensory areas.

3.  Neurophysiological mechanisms of multimodal integration in 
primary sensory areas

Concurrent stimuli of sensory organs coactivate primary cortical areas and gen-
erate reciprocal influences contributing to the process of multimodal integration. 
It is noticeable that the bulk of studies on multisensory integration in early cortical 
areas have focused on the interplay between the visual and auditory cortices.

3.1 Visual-auditory interactions

Activation of A1 neurons by noise bursts was found to induce GABAergic 
inhibition of supragranular pyramidal cells in V1, via cortico-cortical connections, 
leading to a reduced synaptic and spike activity upon bimodal stimulation [10] 
(mouse). Furthermore, this acoustic stimulation decreased behavioral responses to 
a dim flash, likely through GABAergic inhibition in V1, as this effect was prevented 
by acute blockade of GABAA and GABAB receptors. The authors concluded that 
salient auditory stimuli degrade potentially distracting sensory processing in the 
visual cortex. This finding was corroborated by an in vitro electrophysiological 
study showing that layer 1 and layer 2/3 inhibitory neurons in V1 receive direct 
excitatory inputs from A1 [22] (mouse). Along the same lines, intrinsic signal imag-
ing aimed at simultaneously recording visuotopic maps in V1 and tonotopic maps 
in A1, showed that a high activation of A1 suppresses visually evoked responses in 
V1 [5] (mouse). As a result, under bimodal stimulation the global effect of auditory 
inputs to V1 was such that the neuronal firing averaged across all visual orientations 
was weaker. Nevertheless, the orientation selectivity of V1 excitatory neurons in 
layer 2/layer 3 was found to be sharpened by concurrent sound signals or opto-
genetic activation of A1 to V1 projections [22] (mouse). Indeed, auditory signals 
increased the neuronal responses at the preferred visual orientation, and decreased 
responses at the orthogonal orientation, with a stronger impact at lower visual con-
trast. Tracing data showed that axons from A1 layer 5 to V1 neurons mainly termi-
nated in superficial layers and activated layer 1 inhibitory neurons. The sharpening 
effect was very likely mediated by a combination of inhibitory and disinhibitory 
circuits, since layer 1 neurons in V1 being excited by sound, they presumably sup-
pressed layer 2/layer 3 pyramidal cell responses, but also inhibited other inhibitory 
neurons in layer 2/layer 3, thereby globally contributing to increasing the firing rate 
of the pyramidal cells at their preferred orientation tuning. A two-photon calcium 
imaging study showed that when visual and auditory stimulus features are tempo-
rally congruent, neurons in V1 exhibit a balanced pattern of response enhancement 
and suppression compared with unimodal visual stimuli. Temporally incongruent 
tones or white-noise bursts in paired audiovisual stimuli mainly produce sup-
pressive responses across the neuronal population, in particular when the visual 
stimulus contrast is high [23] (mouse). Neuronal mechanisms of visual–auditory 
integration appear to be dependent upon the behavioral context. A study investi-
gating the modulation of V1 neurons by auditory stimuli showed no difference in 
the latency or strength of visual responses in monkeys trained to a passive central 
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fixation, while a visual–auditory stimulus was presented in the periphery [24] (mon-
key). By contrast, a significant reduction in latency was observed when the animal 
was required to orient its gaze toward the visual–auditory stimulus. This finding 
suggests that projections from the auditory cortex to V1 contribute to reducing the 
response time of head orientation during a foveation movement toward a peripheral 
sound source.

There is also convincing evidence that vision impacts neuronal coding in the 
primary auditory cortex. Neurons sensitive to visual stimulation in A1 convey more 
information about stimuli in their spike trains than neurons sensitive to either 
auditory or visual stimuli presented alone [3] (ferret). An intriguing study revealed 
that adding congruent visual signals to auditory ones enhanced the weak auditory 
responses, had no effect on intermediate responses and suppressed strong responses 
[25] (macaque). In this study, measurement of the amount of information con-
tained in visual and auditory responses showed that bimodal stimuli yielded more 
information provided by firing rates and spike timing than unimodal ones, but that 
the suppressed responses carried more information than the increased responses. 
This information gain was due to a reduced variability of the suppressed responses, 
whereas the variability of the enhanced responses was increased. The authors 
proposed that enhanced, but less reliable responses may be involved in detecting 
rare or faint sensory events, while suppressed, more reliable responses may be 
used to represent detailed characteristics of sensory environment. Interestingly, a 
recent study suggests that in layers 5 and 6 of the auditory cortex, a primary locus 
of visual–auditory convergence, visual signals convey the presence and timing of 
a salient stimulus rather than specifics about that stimulus, i.e. auditory responses 
are not orientation-tuned to visual gratings unlike visual cortex responses [26] 
(mouse).

3.2 Somatosensory-auditory interactions

Besides the notion that crossmodal interactions are reflected by changes in 
firing rates, the synchronization of neural signals has been proposed as a key 
mechanism for multisensory integration in distributed networks [27]. In this 
regard, it is relevant to mention a study exploring the influence of somatosen-
sory inputs on the activity of A1 neurons using laminar current source density 
and multiunit recordings. The findings show that somatosensory inputs elicited 
by median nerve stimulation amplify the neuronal responses evoked by auditory 
inputs during a high-excitability phase of ongoing local neuronal oscillations 
and suppress those occurring during a low-excitability phase in the supra-
granular layers [28] (macaque). Further analysis indicated that this effect was 
mainly due to a somatosensory-induced phase resetting of auditory oscillations 
to an optimal excitability phase enhancing the ensemble response of temporally 
coherent auditory inputs.

Neurons in the posterior region of A1 display cutaneous receptive fields specifi-
cally located on the head and neck, which are in spatial register with the auditory 
receptive fields [29] (macaque). This result supports the view that the posterior 
auditory cortex may be the site for spatial-movement processing, analogous to the 
“where pathway” in the parietal stream of the visual system [30, 31] (macaque). 
A fMRI study documented a supra-additive integration of touch and auditory 
stimulation in a cortical region posterior and lateral to A1 [32] (macaque). This 
integration process was more prominent for temporally coincident bimodal 
stimuli and for less effective stimuli, in conformity with the principle of “inverse 
effectiveness”.
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3.3 Visual-somatosensory interactions

It is worth reporting a fMRI study aiming to compare cortical activation in 
response to matching versus non-matching visual–haptic texture information in 
a task that did not require cognitive evaluation of roughness [33] (human). The 
results show an increased BOLD response in V1 when a dot pattern was presented 
in both visual and haptic conditions, all the more so whenever visual information 
matched haptic texture information. In addition, parametric BOLD signal varia-
tions with varying texture characteristics were recorded in both primary visual 
and somatosensory cortices. This study confirms that haptic information can 
modulate visual information processing at an early stage. A hierarchical feedback 
of top-down influences from higher sensory areas on early sensory cortices could 
account for the observed BOLD effects. However, according to the authors this is 
unlikely, as only matching visual–haptic texture information induced a parametric 
modulation of the BOLD response in the contralateral somatosensory cortex. An 
alternative, more plausible, interpretation of the crossmodal texture effects would 
be direct or indirect cortico-cortical connections between primary areas. This 
explanation is compatible with haptic texture information flowing from S1 to V1 
[34] (human).

Interestingly, a shrinkage of cutaneous receptive fields in areas 3b and 1 has 
been recorded when tactile and visual stimulations were concomitant, both during 
physical touch perception and touch observation [35] (human). This sharpening 
of coactivated receptive fields that reflects a suppressive interaction between 
tactile and visual cues, presumably occurring through a GABAergic modula-
tion of intracortical inhibition in S1, is expected to improve tactile acuity (for 
reviews, see [36, 37]). The functional relevance of this finding was highlighted 
by a study reporting that viewing the hand increased the suppression of the P50 
evoked potential due to simultaneous electrical stimulation of adjacent fingers 
and enhanced tactile acuity in a task of grating orientation discrimination [38] 
(human). Furthermore, a recent ultra-high-resolution fMRI study provided 
evidence for a spatially specific visual convergence onto S1. Neurons within the 
somatotopically organized cutaneous representation of the fingers in areas 3b and 
1 were activated by the subject observing his fingers being touched, or the fingers 
of another person receiving similar tactile stimulation [39]. The visually-driven 
map was topographically and temporally precise and was found to be in register 
with the cutaneous map. Further investigations of the neuron characteristics 
within area 3b and area 1 are required to determine whether or not this area may 
contribute to distinguishing perceived touch from observed touch.

3.4 Vestibular-somatosensory interactions

The vestibular cortex differs from other sensory cortices in that vestibular 
signals are distributed in an extensive network of cortical regions [40–42]. A whole-
brain electrophysiological investigation using galvanic vestibular stimulation and 
fMRI mapping described the cortical projections of vestibular inputs to function-
ally diverse cortical regions that included S1 [43] (rat). In addition, a more recent 
investigation revealed that the optogenetic stimulation of the medial vestibular 
nucleus neurons elicited bilateral fMRI activations in the sensorimotor cortices and 
their thalamic nuclei [44] (rat). Nevertheless, which region of S1 receives vestibular 
inputs and how the bimodal interplay occurs has not yet been investigated. In a 
recent study in rat, we reasoned that the vestibulo-somatosensory convergence 
in S1 could occur in the cortical zones of the paw representations that would be 
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congruent with the functional role of these inputs in posturo-locomotor regulation. 
Accordingly, we evaluated the immediate effects of a complete unilateral vestibular 
neurectomy on the response properties of S1 neurons in the hindpaw cutaneous 
representations [45]. We found that the acute deafferentation immediately induces 
a bilateral expansion of the cutaneous receptive fields that exclusively concerned 
those located on the plantar skin surfaces. A corrolary effect consisted of a dedif-
ferentiation of the topographic organization of the cortical maps representing 
these surfaces (Figure 1). However, this somatotopy disruption was relatively less 
pronounced for the representation of ipsilesional hindpaw, consistently with the 
contralateral predominance of vestibulo-thalamic projections [46, 47] (cat). The 
rapid deafferentation-induced expansion of cutaneous receptive field indicates that 
in intact animals, vestibular inputs exert a suppressive effect onto synaptic inputs 
driving cutaneous responses in S1.

It is well documented that cortical maps are dynamically reshaped through 
ongoing adjustments in the balance of excitatory and inhibitory influences on their 
constituent neurons. Hence, it is very likely that the receptive field enlargement 
induced by the vestibular loss results from a disinhibition process, possibly via 
thalamo-cortical inputs on S1 inhibitory interneurons or direct cortico-cortical 
connections. It has long been argued that intracortical inhibition plays a key role 
in controlling the spatial selectivity of cortical neurons through segregation of 
broad sets of converging synaptic inputs. Consistently, studies have reported a 
substantial enlargement of the cutaneous receptive field of somatosensory cortical 
neurons when GABA-mediated local inhibition was antagonized by an intracortical 
bicuculine injection [48–50] (cat; racoon), whereas injection of baclofen, a selec-
tive agonist for the GABAA receptors, induced a shrinkage of these receptive fields 
[51] (rat). A release of afferent-driven intracortical tonic inhibition results in an 
enhanced effectiveness of convergent cutaneous inputs. Therefore, this could be 
a most likely mechanism for rapid unmasking of previously subthreshold afferent 
connections reflected by the rapid expansion of cutaneous receptive field of S1 
neurons following the loss of vestibular inputs. Our results extend previous find-
ings, already mentioned in the present review, showing that auditory inputs to V1 
decrease visually induced activity (mouse), while acute hearing loss releases the 
inhibitory effects of A1 neurons on visually elicited responses in V1 and leads to a 
concomitant increase in V1 activation [52] (mouse). As also previously noted, audi-
tory stimulation sharpens the orientation selectivity of V1 neurons [22] (mouse). 
Collectively, the available evidence supports the view that, in normal conditions, 
cross modal modulation between primary cortical cortices may act to improve the 
tuning of neuronal response properties in these areas. In our study, the postlesion 
expansion of cutaneous RF was selectively located on the hindpaw plantar skin 
surfaces. Hence, we hypothesize that, in normal conditions, the vestibular influ-
ences on the S1 cortex could improve tactile acuity during perceptually guided 
posturo-locomotor adjustments.

3.5  Crossmodal interplay in transitory cortical regions bridging primary 
sensory areas

The main focus of the present review is on multimodal integration in primary 
cortical areas. Nonetheless, while considering low-level crossmodal interplay, it 
is relevant to mention findings related to multimodal convergence and integra-
tion in transitional zones lying between primary areas. Visual and somatosensory 
inputs converge and interact in a graded multisensory zone forming a narrow strip 
within the associative parietal cortex (APC) of rodent. Previous findings analyz-
ing current source density [53] (rat), or using calcium imaging [54] (mouse) or 
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Figure 1. 
Immediate effects of unilateral vestibular neurectomy on hindpaw cutaneous representation in S1. (A) Typical 
receptive fields (RFs) recorded in the S1 cortex and located on hindpaw glabrous skin surfaces of an intact rat 
(CTRL, left panel) and after double mapping, on ipsilesional (ipsi) and contralesional (contra) hindpaws 
one hour after unilateral vestibular neurectomy (UVN) (1H, right panel). In green: small size RFs covering 
less than 10% of the total skin surface of the paw; in purple: medium size RFs >10% and <40% of the paw 
surface; in yellow: large size RFs including more than 40% of the paw surface. (B) Distribution of plantar 
cutaneous RF recorded in CTRL and UVN rats. The height of each area of the stacked histogram represents 
the mean proportion of RFs falling into each category (green: small; purple: medium; yellow: large RFs). 
(C) Representative electrophysiological cortical maps obtained from an intact rat (CTRL: left panel) and 
from two rats in which ipsilesional and contralesional hindpaw maps were obtained starting 1 hour after 
UVN (1H, right panel). The map remodeling was accounted for by the expansion of plantar cutaneous RF 
illustrated in A-B. Note the drastic dedifferentiation of the somatotopic maps. Simple areas correspond to 
neurons with RF located on the ventral or dorsal aspect of individual fingers, or encompassing palmar pads. 
Mixed areas correspond to neurons displaying enlarged RFs extending beyond the somatotopic regions observed 
in prelesion hindlimb maps, i.e. RFs on 2 or more skin territories of the hindpaw. (D) Stacked histogram 
showing the relative mean areas of the different map regions, normalized with respect to the total hindlimb 
area. These relative areas are color-coded (green: simple area; purple: mixed area). **: P < 0.01; ***: P < 0.001 
(comparisons with control values); (Kruskal Wallis analysis and Dunnett’s post-hoc test). Vertical bars 
illustrate standard errors of the means (SEM). Hairy skin RFs and representational zones were not altered 
after acute UVN [modified from Facchini et al. (in press)].
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voltage-sensitive dye imaging (VSDI) described this region as heteromodal [55] 
(rat). In addition, a gradual merging of modalities from the borders of the primary 
cortices to the middle of the APC strip has been reported [54] (mouse). Using 
optical imaging combined with laminar electrophysiological recordings, it was 
observed that both inputs elicited similar response patterns in this cortical zone 
[53] (rat) However, current source density analysis of event-related potentials 
revealed a supra-additive interaction of subthreshold activity when the somatosen-
sory response preceded the visual response, whereas a sub-linear summation was 
induced by reversing the stimulus order. This finding suggests an asymmetry in the 
excitation-inhibition balance mediated by the underlying connectivity network, 
that may be consistent with the observation that visual responses were located 
deeper than somatosensory responses. The laminar pattern of these visual-somato-
sensory interactions and the fact that they vanished upon GABAergic silencing of 
local post-synaptic activity suggest their intracortical origin.

In a recent study, we investigated the neural processing of visual and somato-
sensory motion cues in individual neurons of the APC [56] (rat). The animals 
were exposed to moving visual gratings presented in different directions, with 
various motion speeds, and to air puffs deflecting bilaterally all the whiskers in 
the antero-posterior (backward) or postero-anterior (forward) directions. When 
delivered simultaneously, visual and tactile stimuli could be either in the same or 
opposite direction (congruent or incongruent). We used both voltage-sensitive dye 
imaging to identify the cortical zone of convergence of tactile and visual afferents, 
and single-unit recordings to investigate the uni- and bimodal processing of these 
inputs. We showed the convergence of visual and tactile information, both in 
layer 2/3 as revealed by VSDI, and in layer 4, as demonstrated by the single-unit 
recordings. Both whisker deflections and visual moving gratings evoked neural 
responses in the APC, with similar magnitudes, reflecting the convergence of 
equally weighted visual and somatosensory information (Figure 2). The majority 
of recorded cells were bimodal with about 50% exhibiting a directional congruence 
for the stimulus orientations tested, which strongly points to a potential role of the 
APC in heteromodal sensory integration. A machine learning approach revealed 
that the integration of the visual-tactile motion stimuli relies predominantly on 
the bimodal population, as performing decoding on the unimodal neurons did not 
yield accuracies above chance. In addition, we found that visual neurons in APC 
selectively respond to the direction (about 50%) and speed (about 30%) of visual 
grating motion, while somatosensory neurons display a direction selectivity for 
whisker stimulation (about 60%). Like in the study mentioned above [53], a tem-
poral dissociation was observed between somatosensory and visual responses, both 
in the supragranular and granular layers, as the somatosensory stimulations evoked 
earlier responses than did the visual stimulations. This finding underscores the 
importance of timing in multimodal integration, and is consistent with the view 
that whiskers information predominantly relates to fast changing contacts with 
objects or congeners, while vision mainly provides information about the physical 
and social environment that likely facilitates the interpretation of somatosensory 
information. It is plausible that APC is designed as a hub in which multisensory 
motion information is integrated to contribute to elaborating in higher-order areas 
a supramodal percept guiding purposeful behavior. Interestingly, these animal 
studies are consistent with human investigations showing the existence of a multi-
sensory homunculus posterior to S1, along the postcentral sulcus, that overlaps the 
most anterior retinotopic map with a topographic alignment of tactile and visual 
representations [57, 58]. The authors proposed that these multisensory topographi-
cally organized maps may play a pivotal role in perception and cognition related to 
peripersonal space.
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Figure 2. 
Convergence of visual and somatosensory inputs in the associative parietal cortex (APC). (A) Example of 
cortical activation dynamics evoked by somatosensory (upper row) or visual (lower row) stimulation revealed 
by voltage-sensitive-dye imaging. The latency to the somatosensory stimulation (60 – 90 ms) is shorter than to 
the visual stimulation (150 – 350 ms). The value in ms indicate the time after stimulation onset. (B) Example 
of mean DF/F over time. Time course of responses to the unimodal stimuli, in V1, S1 and APC with a 3D 
representation of selectivity indices. For each pixel of the acquisition window the colormap depicts the level 
of selectivity. The low selectivity belt (yellow) is characterized by comparable levels of activation (“ROI in 
low selectivity belt (APC)” plot), while high selectivity indices (blue) are observed in S1 and V1. (C) Spatial 
distribution of the recorded neurons corresponding to the visual, somatosensory and bimodal conditions for 
a representative animal. The heights of the histograms represent the proportions of neurons recorded at the 
corresponding cortical sites. The proportion of direction selective cells in the neuronal populations is indicated 
(backward, green; forward, yellow; not selective, gray). Examples of a recorded unit significantly responding 
only to the backward visual stimulus (pink line), a unit responding to both air puff directions, with a larger 
spiking probability to the forward direction and a bimodal neuron that responds to all 4 conditions. The inset 
presents the unit’s waveform. The spiking probabilities to each condition are represented as a function of time 
from stimulus onset. Note the latency shift existing in neuronal response to visual and somatosensory conditions 
in the neurons recorded in APC. (D) Proportions of visual (pink), somatosensory (yellow), bimodal (blue) 
and non-responsive (gray) neurons recorded in the APC (N = 914) (modified from Caron-Guyon et al. [56]).
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The set of studies reviewed highlights the broad panoply of connectivity pat-
terns and functional interactions between primary areas that underpin a flexible 
cooperation at an early stage of sensory processing. Tentatively, we propose that 
early crossmodal interactions in primary areas contribute to refining and sharpen-
ing neural response tuning adapted to improving “immediate” perception and 
eliminating perceptual ambiguity. This perceptual optimization could occur 
through rapid neurophysiological mechanisms operating in the corticocorti-
cal circuitry (e. g., local suppressive inhibition, sub-additive or supra-additive 
integration, oscillatory entrainment of neuronal networks) and serve automated 
behavioral responses. According to this view, cognitive influences exerted onto 
higher-order cortical integration areas, operating through relatively slower mecha-
nisms, would adaptively modulate the early multimodal integration to fulfill a 
more complex integration processing influenced by attention and motivation so as 
to adjust perception to a continuously changing behavioral context.

4. Crossmodal plasticity

As sensory organs are highly specialized, the cooperative interplay of sensory 
systems improves perception through multimodal integration enhancing reli-
ability of the information conveyed by each sensory channel, all the more so when 
individuals are engaged in a perceptually complex behavioral context. Hence, it has 
been assumed for decades that multimodal integration favors crossmodal plasticity 
and promotes functional compensation following partial or total deprivation of 
a sensory modality. Accordingly, a cortical area deprived of its dominant sensory 
input exhibits an increased responsiveness to stimulation of other modalities, 
thereby changing its functional tuning. There are a wealth of electrophysiologi-
cal, neuroimaging and behavioral studies carried out in deaf and blind subjects 
that have provided convincing evidence for intersensory substitution in deprived 
cortical areas and experience-dependent reorganization in the areas taking over 
the defective sensory modality [59–63]. The plasticity mechanisms mediating these 
changes have also been extensively investigated, with a focus on the ingrowth of 
novel heteromodal projections or the unmasking of already existing heteromodal 
inputs. In this chapter, we focus the discussion on crossmodal plasticity occurring 
within primary areas.

4.1 Heteromodal recruitment of deprived visual cortex

4.1.1 Visual to somatosensory substitution

Capacity for tactile perception to substitute, at least partly, for the loss of vision 
has long been established [64]. Neuroimaging studies have provided evidence that 
the occipital visual cortex can be recruited by tactile tasks in blind subjects. For 
example, a PET study revealed that blind subjects display activation of primary and 
secondary visual cortical areas during tactile discrimination tasks, in contrast to 
sighted subjects who exhibited deactivation (i.e., decreased regional cerebral blood 
flow) in these areas [65]. In addition, this study showed that tactile recruitment of 
the visual cortex may be task-specific, since a non-discrimination tactile task did 
not activate V1 in either the blind or sighted subjects. This finding was corroborated 
in a fMRI study which also showed that electrical stimulation of the hand reading 
Braille dots did not evoke activation in the visual cortex, suggesting that the tactile 
recruitment in the visual cortex may result from high-order supramodal process-
ing [66]. Interestingly, transcranial magnetic stimulation (TMS) of the occipital 
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visual cortex overlying Brodmann areas 17, 18 and 19 in early-onset blind subjects, 
while they were identifying Braille or embossed Roman letters, was found to distort 
tactile perception [67]. By contrast, no such impairment of tactile performance 
was observed in sighted subjects. Furthermore, V1 was not only strongly activated 
during Braille reading, but also during Braille writing from memory in the most 
foveal part of V1 [68]. However, activation of occipital areas during Braille reading 
was not found in late-onset blind subjects, and their stimulation by TMS did not 
disrupt braille reading [69]. This report is at variance with other studies showing 
V1 activation in late onset blind subjects during braille reading [70, 71]. Individuals 
who lost sight as adults, and subsequently learned Braille, still exhibit activity in V1, 
although the spatial extent of the activation in the visual cortex is greater for those 
who became blind early in life [71]. Moreover, the early-onset blind subjects were 
found to display stronger activation in the occipital cortex contralateral to the hand 
used for reading Braille.

In late-blind patients with retinitis pigmentosa, vision deprivation leads to an 
elevated activation of the visual cortex in response to tactile stimuli during a dis-
criminative task, with higher activation as the degree of vision loss was greater [72]. 
It is worth mentioning that even in normally sighted adults, five days of complete 
visual deprivation combined with intensive tactile training result in increased 
BOLD signal within the occipital cortex in response to tactile stimulation, hence 
reflecting visual areas engagement in the processing of non-visual information [73]. 
This crossmodal activation was reversed within 24 hours of removing the blindfold. 
Surprisingly, even after a short period of blindfolding (40-60 min), V1 activation 
was observed while the subjects performed a fine spatial tactile discrimination 
task [74]. Along the same lines, a one-week visual deprivation in juvenile mice was 
found to improve whisker function. This short period deprivation was sufficient to 
sharpen the tuning of layer 2/3 neurons in the barrel field of S1 [75].

Considering both the improvement in Braille character tactile discrimination 
after the five-day blindfolding period [73] and the impairment of Braille character 
recognition after disruption of the occipital cortex by TMS [67], it is reasonable to 
infer that crossmodal changes taking place in the visually deprived occipital cortex 
are behaviorally adaptive. A further argument stems from an interesting study 
showing that, when systematically stimulating the occipital cortex with single pulse 
TMS, early- and late -onset blind subjects have reported tactile sensations in the 
Braille-reading fingers, that were somatotopically mapped onto the visual cortex, 
whereas blindfolded sighted controls reported only phosphenes [76]. Further 
evidence for the adaptive function of tactile information processing in the visual 
cortex of early blind subjects comes from a study reporting the case of a proficient 
Braille reader blind from birth who was no longer able to read Braille (Braille alexia) 
after bilateral ischemic stroke to the occipital cortex, while somatosensory percep-
tion was otherwise unchanged [77]. The core evidence reported herein supports 
the view that the recruitment of V1 by somatosensory inputs in the context of 
compensatory behavioral strategy (Braille reading) accounts, at least in part, for the 
superior tactile perceptual abilities of blind people [67].

4.1.2 Visual to auditory substitution

Numerous studies have documented the fact that occipital cortical areas can 
be activated by auditory inputs in blind subjects (for reviews, see [60, 78]). For 
example, in the early-blind macaque, the occipital visual cortical areas were shown 
to respond to auditory stimulation [79]; Likewise, auditory responses in the visual 
cortex of neonatally enucleated rats have been recorded in a third of the V1 neurons 
recorded [80]. Contrary to a prevailing view, recent studies in late blind subjects 
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have demonstrated that crossmodal plastic changes also occur in the adult. Sound 
change detection was found to recruit occipital cortical areas in individuals with 
both early- and late-onset blindness [81]. Further evidence was provided by a posi-
tron emission tomography (PET) study showing that visual cortical areas, including 
V1, were activated during auditory word processing in the congenitally blind and in 
subjects who had become blind after puberty [70].

There has been longstanding controversy about whether auditory signal pro-
cessing can compensate for impaired accuracy of spatial representation in blind 
subjects. For example, fMRI studies have shown that, in early-blind people, V1 is 
activated during auditory detection and recognition [82] as well as during auditory 
localization tasks [83]. Early blind subjects are found to localize sound sources with 
a better accuracy than sighted subjects, in particular in monaural condition [84]. 
In this study, it was reported that subjects displaying a residual peripheral vision 
localized sound less precisely than sighted or totally blind subjects. Moreover, in 
blind individuals, experts at perceiving space through sound echoes using clicks 
(echolocators), evidence was found for a retinotopic-like mapping of sounds in V1 
[85]. This finding indicates that the early visual area can be adapted to precisely 
remap spatial locations after visual loss. It is worth mentioning that the degree 
of retinotopic-like mapping of sound echoes was positively associated with echo 
localization ability [85]. Overall, the findings reported above strongly suggest that 
crossmodal substitution leading to a functional remapping of sensory and cognitive 
functions in the deprived cortex depends upon the extent of sensory loss and the 
nature of the task to be compensated for. It turns out that the crossmodal substitu-
tion is limited by the degree of functional overlap or cooperativity between sensory 
systems. It is worth mentioning a fMRI investigation using auditory discrimination 
in the congenitally blind with a focus on the effective connectivity between dif-
ferent cortical and thalamic regions via dynamic causal modeling [86]. The data 
showed a clear enhancement of BOLD responses in bilateral V1 during the audi-
tory task, hence corroborating a previous study [87], and provided evidence for 
stronger corticocortical effective connectivity from A1 to V1 in blind than in sighted 
subjects. Furthermore, a combination of dynamic causal modeling with Bayesian 
selection has demonstrated that auditory-driven activity in the occipital cortex of 
the congenitally blind is best explained by direct feed-forward connections from A1 
to V1, whereas it relies more on indirect feedback inputs from parietal regions in the 
late-onset blind subjects [88]. This study suggests that visual deprivation during an 
early critical period induces a crossmodal plasticity under the form of a transfer of 
spatial processing competency to a non-visual modality in the deprived cortex.

4.2 Heteromodal recruitment of deprived auditory cortex

In this section, we will not distinguish data related to the recruitment of the 
deprived auditory cortex by somatosensory or visual modalities. As found in blind 
subjects, animal and human studies have provided ample evidence of crossmodal 
plasticity after hearing loss. Recruitment of the deprived auditory cortical areas 
during somatosensory and visual stimulation in deaf individuals was repeatedly 
observed in higher-order auditory cortex (for review: [60, 89]). By contrast, it 
remains controversial whether the deafferented primary auditory cortex may be 
activated by spared sensory modalities. An electrophysiological investigation in 
congenitally deaf cats failed to detect crossmodal responses to visual or somato-
sensory stimuli in A1 [90]. Moreover, inactivation of A1 by cooling had no obvious 
effect on behaviorally-tested visual functions in the congenitally deaf cats [91]. Yet, 
after early destruction of cochlear receptors, photic stimulation was found to elicit 
neural activation in A1 of mature cats [92]. However, this crossmodal modification 
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was observed after early-onset deprivation (one week), a period in which primary 
cortical areas are not yet well defined, but not after late-onset (2 month-old cats) 
auditory deprivation. Nevertheless, there is evidence in deaf cats for alteration in 
the pattern of heteromodal thalamocortical and corticocortical projections from 
somatosensory and visual areas to A1 [93]. Somatosensory projections were more 
prominent in early- and late-onset deaf animals, whereas projections originating 
from the visual areas were less apparent in the late-onset than early-onset deaf ani-
mals. These findings suggest that crossmodal anatomical plasticity in the deprived 
auditory cortex differs depending on the age of deafness onset and sensory modal-
ity. Furthermore, in early-deaf cats, increased projections from neighboring visual 
and somatosensory areas to the core auditory cortex including A1 and the surround-
ing anterior auditory field (AAF) have been described [94]. Interestingly, a study 
combining electrophysiological recording with cortical myelo-architecture descrip-
tion in congenitally deaf mice showed that the visual and somatosensory spatial 
domains had taken over auditory domains within A1 and AAF [95]. This finding 
demonstrates extensive re-specification of cortical fields following auditory loss. In 
addition, in early deafened ferrets, recordings from single-units in the core auditory 
cortex showed that 72% were activated by somatosensory stimulation, compared 
to 1% in hearing controls [96]. In adult-deafened ferrets, extensive crossmodal 
reorganization of core auditory cortex was also described, which was characterized 
by a consistent somatosensory conversion in neuron responsiveness within 16 days 
after deafening [97], thus demonstrating that crossmodal plasticity can also occur 
after the period of sensory system maturation. These data suggest that subthreshold 
tactile inputs found in hearing animals can transform into suprathreshold responses 
in adult deafened animals. In this regard, it is worth mentioning that somatosensory 
inputs to the core auditory cortex represent the majority of non-auditory effects in 
hearing ferrets [96]. This specificity may be due to the greater functional similari-
ties between somatosensory and auditory modalities regarding temporal precision 
underlying frequency percept (e.g. vibrotactile stimulations), compared to that 
between audition and vision.

The recruitment of A1 for the processing of visual stimuli was also revealed 
by fMRI investigations in congenitally or early deaf subjects [98–100]. Moreover, 
in adult-onset single-sided deafness (SSD), seeded functional connectivity of 
visual cortices revealed enhancement in visual areas and reduction in auditory 
regions, suggesting adaptive functional modifications of the visual network [101]. 
Furthermore, V1 seeds demonstrated increased connectivity in multiple regions, 
including those dedicated to speech (inferior parietal lobule) or somatosensory 
processing (postcentral gyrus). It is also noticeable that activation of A1 was 
observed in deaf subjects with total hearing loss during sign language tasks, but not 
in subjects with residual hearing ability [102], suggesting that this crossmodal plas-
ticity depends on the extent of hearing loss. Additional evidence of compensatory 
functional changes comes from the observation that congenitally deaf cats, com-
pared with hearing cats, have superior localization abilities in the peripheral visual 
field and lower visual movement detection thresholds [91]. In this study, reversible 
deactivation of posterior auditory cortex was found to selectively eliminate superior 
visual localization abilities, whereas deactivation of the dorsal auditory cortex 
eliminated superior visual motion detection. It is of interest that measuring the 
fMRI signal changes in response to spatially co-registered visual, somatosensory 
and bimodal stimuli, the visual responses which were stronger in congenitally deaf 
than hearing adults, appeared to be weaker than those elicited by somatosensory 
stimulation [103]. This is consistent with the above-mentioned finding on the 
prevalence of somatosensory over visual inputs in the core auditory cortex [96]. 
Congenital deafness was also found to enhance the accuracy of suprathreshold 
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tactile change detection, while tactile frequency discrimination thresholds tended 
to be reduced [104]. Beyond noticeable interspecies differences in the potential of 
crossmodal reorganization [61], the aforementioned studies highlight that deprived 
auditory sensory cortical areas become re-engaged in the processing of remaining 
sensory modalities.

5. Compensatory plasticity in the remaining sensory cortices

The crossmodal plasticity concept has been extended by studies demonstrating 
that the loss of one sense induces substantial alteration in remaining sensory corti-
cal areas leading to experience-dependent refinement of neuronal responses. The 
so-called compensatory plasticity is conceived as underlying higher than normal 
perceptual abilities. However, it is notable that the available experimental evidence 
of compensatory plasticity is scarce compared to that documenting crossmodal 
plasticity. Nonetheless, changes involving processing of visual signals have been 
described following somatosensory and auditory deprivation. In adult mice, partial 
somatosensory deprivation (bilateral removal of macro-whiskers) lasting 12 days 
induced a massive increase of V1 responses elicited by weak visual stimuli, which 
was accompanied by a marked improvement of spatial frequency and contrast 
tuning (40%) of V1 neurons, as revealed by intrinsic signal imaging [105]. It is 
noteworthy that visual acuity and contrast sensitivity determined in behavioral 
tasks in individual animals improved by 40% and 60%, respectively, i.e., similarly 
to what was observed in V1. In addition, auditory deprivation in adult mice induces 
salient changes in visually evoked responses in V1, with improvement of spatial fre-
quency and contrast tuning [106]. Conversely, visual deprivation (one week of dark 
exposure) in adult mice leads to improved frequency selectivity as well as increased 
frequency tuning and intensity discrimination performance of A1 neurons [107]. 
Collectively, these studies show that compensatory plasticity can develop after 
short-term deprivation in adult sensory cortices and highlight the fact that depriva-
tion of one sense rapidly refines sensory processing in remaining cortical areas, 
while improving sensory guided behavior.

6. Putative mechanisms mediating crossmodal plasticity

A review of the literature indicates that a plethora of neuronal mechanisms such 
as stabilization of transient connections, unmasking of silent synapses, reinforce-
ment/reweighing of subthreshold connections, structural changes such as axonal 
sprouting and dendritic arborization remodeling, are all putative mechanisms of 
crossmodal plasticity [59, 61, 108, 109]. Despite the wealth of data, these cellular 
and molecular mechanisms remain poorly understood. All these neural mechanisms 
may operate in subcortical, thalamocortical, as well as primary and associative 
cortical areas.

To offer some insight into the neural mechanisms underpinning crossmodal 
plasticity, we will mention a limited sample of studies. For example, concern-
ing changes within the primary sensory areas, cross-modal synaptic plasticity 
is thought to involve LTP/LTD mechanisms [108]. Furthermore, the improved 
frequency selectivity and intensity discrimination of A1 neurons following visual 
deprivation in adult mice was attributed to a strengthening of thalamocortical 
synapses in A1, but not in V1 [107]. In addition, this deprivation was found to 
potentiate layer 4 to layer 2/3 synapses in A1 [110]. Such a selective effect suggests 
that the adult brain retains the capability for crossmodal changes, whereas this 
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capability is absent or very limited within a sensory modality. This view seems to 
be corroborated by the observation that visual deprivation via lid suture that allows 
residual visual activity is sufficient to trigger a scaling-up of excitatory synapses in 
the S1 barrel fields. By contrast, this mild deprivation fails to trigger such a scaling 
up in V1 which requires a complete loss of visual activity [111]. Furthermore, dark 
rearing for 1 week in young rats (4-week-old) produces changes in synaptic func-
tion in S1 and A1. It was then hypothesized that the scaling-up of V1 synapses might 
allow recruitment of V1 for processing previously subthreshold inputs carrying 
tactile or auditory information, while scaling-down of S1 and A1 synapses may 
sharpen neuronal properties for enhanced perception thus constituting a basis for 
a sensory compensation [108, 111]. In these somatosensory and auditory cortical 
areas, decreased amplitudes of AMPA receptor-mediated excitatory transmission in 
layer 2/3 pyramidal neurons were observed, whereas opposite effects were recorded 
in the deprived visual cortex [112]. These changes were rapidly reversed after 
2 days of light exposure. This study raises the question of whether the crossmodal 
plasticity induced in somatosensory cortex is due to the altered cortical process-
ing of tactile inputs engaging cortico-cortical pathways or to differences in tactile 
experience involving thalamocortical projections. In addition to these alterations 
in the strength of intracortical synapses, visual deprivation (dark exposure for 
6–8 days) was found to produce a refinement of intra- and inter-laminar functional 
circuitry in A1, in the adult mouse. Using in vitro whole-cell patch recordings in 
thalamocortical slices from auditory cortex, it was shown that this period of dark 
exposure can refine ascending and intralaminar excitatory and inhibitory circuits 
to layer 2/3 neurons [113], as well as interlaminar excitatory and inhibitory connec-
tions from layer 2/3 to layer 4 neurons [114]. Mathematical modeling of the data 
shows that the observed refinements increase the firing reliability of sound-evoked 
responses [113]. Visual deprivation in the rat was found to produce an increase in 
extracellular serotonin levels facilitating synaptic strengthening at layer 4 to layer 
2/3 synapses in the barrel cortex [75]. Beyond this local effect, crossmodal plastic-
ity may also engage large-scale modulatory mechanisms mediated, for instance, 
by the serotoninergic system to orchestrate cortical reorganization in relation with 
arousal and attention shift from the deprived to the intact sense [115, 116]. It is 
also worth mentioning that a positive correlation was depicted between behavioral 
performances in auditory and tactile tasks, and both the myelination of intracorti-
cal neurons and gray matter concentration measured in the occipital cortical areas 
of early-blind adults [117].

Even though crossmodal plasticity was demonstrated in early and late deprived 
subjects, the age of sensory loss onset seems to play a crucial role in the mechanisms 
involved [118]. In the case of congenitally or early sensory loss, primary cortical 
areas may retune their functional specificity based on the maintenance, during the 
developmental period, of intermodal projecting axons that would have otherwise 
been pruned. By contrast, in the case of late deprivation, crossmodal plasticity may 
rely on the remodeling and strengthening of pre-existing inputs in the deprived or 
spared cortical areas. Species-specificity also accounts for crossmodal plasticity, as 
primary-to primary areas connectivity changes have been show to occur in rodent, 
but less consistently in higher order species [61].

7. Conclusion

Collectively, the reported studies on crossmodal interplay and plasticity in 
primary cortical areas after sensory loss challenge the view that multisensory inte-
gration and plasticity only exists in high-order cortical areas. Future studies should 
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