
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

An Intelligent Access Control
Model
Shadha Mohamed Sulaiyam ALAmri

Abstract

Cybersecurity is a critical issue as the world is moving towered IR4 era
(Industrial Revaluation 4.0) where technology is involved, and access to the
internet is an imperative need. The traditional computing systems are not able to
meet the huge computing demand and growing data (Big-Data). Therefore; new
technologies have been evolved such as cloud computing. This chapter is exploring
the need for a dynamic access control approach to enhance the Cybersecurity. The
scope in this chapter is focusing on IaaS (Infrastructure as a Service) layer of cloud
computing. The research approach aims to enhance the basic ABAC (Attribute-
Based Access Control) model by adding a context-aware feature and SoD principle.
The enhanced model called ABACsh. This proposed enhancement is implemented
through a framework based on AI (Artificial Intelligent) to meet the requirements
of dynamic systems. The framework is tested in the OpenStack testbed. The results
show better performance in the term of computation speed.

Keywords: Cybersecurity, AI, ABAC, formal logic, IaaS, cloud computing,
OpenStack

1. Introduction

Industrial revolution 4 (IR 4.0) utilizes technology in different aspects. As per
the world economic forum, three principle technology drivers in the industrial
production: connectivity, intelligence and flexible automation where big data is one
of the value drivers and IoT is one of the scale-ups enablers [1]. To summarize one
scenario of the embedded technology in the industry is the implementation of IoT
systems. Internet of Things (IoT) starts with a collection of sensors used to collect
information from the surrounded environment. For example, a temperature sensor
used to collect the atmosphere temperature during the day by taking three reads
for six months for the purpose of studying climate change. The collected data will
be sent to central storage such as cloud computing technology to get the advantage
of accessing the data anywhere and anytime. There is a need for a network con-
nective that allows distributed components to be connected. Mostly the collected
data is a type of big-date as they might collect temperature reading from a different
site in the globe and for a long time might be years. That big-data requires some
analysis where the traditional analytical system might not manage to absorb its huge
records, therefore; there is a need to utilize the features of artificial intelligence filed
in data-science. This example shows how several technologies are used in order to
be used in analyzing the big-data collected from different sites.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

2

As there are distributed systems and the internet connection is used, cyberse-
curity becomes a critical aspect, especially when there are some economic benefits.
There are many security principles which might be tackled in order to enhance the
cybersecurity of the systems, however, access control is one of the major aspects
as there will be a need to restrict the access to the system as there is a distributed
environment when it comes to IoT deployment. One of the optimal access control
models to be used in this case is attribute-based access control model (ABAC) [1, 2].

This chapter introduces intelligent attribute-based access control model tested
in the cloud computing environment. Section 2 discusses the introduced enhance-
ments to the basic ABAC model. Section 3 illustrates how inelegant is introduced in
the proposed ABAC. Finally, an empirical experiment is demonstrated in Section
4 where OpenStack (cloud environment) is used to discuss the efficiency of the
proposed approach.

2. The proposed enhancement in ABAC model

2.1 Context-aware analytical study

Context-aware system has verity of definitions based on the study scope. In
access control field, context-aware allowing a dynamic permission to access an
object based on some attributes related to the user context [3]. The context can
be extracted from the system environment by using 5W1H (who, where, what,
why, when and how) [4]. The context attributes are a finite set which reflect the
system and differs from the attributes related to the subject and the object as per the
researcher in [5]. However, other authors consider the rule enforcement through
Attribute-Based Access Control (ABAC) is based on the attributes of both the
subject and the object [6]. Therefore; this section is investigating context-aware
concept in access control.

An ubiquitous application with RBAC extension has been investigated by Kim’s
[3] where state checking matrix is used to build a context-aware agent. Two cases
are defined to deploy context-awareness. The first one is through giving privilege
up-on the user context, such as location and time. The second one is changing
resource permissions up-on the system information, such as network bandwidth
and memory usage. Another work proposed by Kim in this filed, called CIAAC
(Context Information-based Application Access Control) [4]. CIAAC designed to
separate processing logic and business from context awareness and access control
policy. CIAAC add flexibility to business application which support dynamic
access control policy. This feature allows to satisfy the demand of external security
environment. However, the potential drawbacks of CIAAC have not yet been evalu-
ated. Another technique was proposed by Li in his thesis [7] to meet the scope of
mobile cloud environment based on Attribute-Based Encryption (ABE). Li defines
context-aware terminology to cover the user context-information in addition to the
environment such as location and time.

As per the literature, encryption techniques such as ABE introduce several
limitations which effect the overall system efficiency such as the overhead caused
by bilinear pairing due to its heavy computation [8]. In addition to that ABE cannot
attain fine-grained control [9]. Another related work done by AL Kukhun [10]
considering pervasive systems where XACML language is used to build a model to
extend RBAC that can facilitate context-aware features. However, RBAC extinc-
tions approaches do not satisfy usability, situation awareness, and improving access
opportunities. It can be observed that location and time are used as context-aware
parameters in most related work on context-aware access control models. Liu and

3

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

Wang [11] present the Fine-grained Context-aware Access (FCAC) model for
Health Care and Life Sciences (HCLS) using specific communication technology
based on linked data. FCAC is based on two main components: an ontology base,
and access policy with XACML.

It is observed from the state of art that context attributes are linked to
the system environment rather than subject-attributes or object-attributes.
Venkatasubramanian et al. [12] investigate context-aware to distinguish between
the traditional authorization models and their proposed criticality-aware as they
take into consideration the context of the whole system. Their criticality-aware
(CAAC) is based on RBAC concepts. Choi [13] used access-aware in cloud comput-
ing. Choi recommends an ontology-based Access Control Model (onto-ACM).
Compared to C-RBAC (Context-aware RBAC), onto-ACM can grant the role
inheritance by administrator and user, whereas C-RBAC grants the role by adminis-
trator only.

2.2 The proposed context-aware deployment in ABACsh

As per the related work investigated in Section 2.1, we can conclude that to
deploy an efficient context-ware feature, the attributes should be related to the
system environment. Context-aware will add a flexibility to dynamic systems where
the users and privileges keep changing such as the case in IaaS. ABAC is the basic
access control type which can support the context-awareness. Therefore, we are not
recommending RBAX extensions.

The proposed ABACsh model is adding context-aware through two phases.
The first phase defines the context-attribute set. Each context-attribute consists
of an attribute name and an attribute value. The context attributes-names set is
predefined by the system administrator based on system critical information and
characteristics. Context-attributes differ from the environment attributes in that
the latter values are predefined by the administrator, whereas context-attribute
values are updated based on the system states, where an embedded sensor captures
the context information. For example, for the context-aware attribute named
memory, its value will be updated based on the system memory measurements.
The context attribute can reflect CPU clock, desk space, network zone, or data and
time. In the second phase, context-awareness will be defined as one of the configu-
ration points in the proposed ABACsh system to enforce the use of context in the
access-control decision.

2.3 Critical analysis of SoD in ABAC

In an environment that allows policy combination, a user is authorized to act
in more than one role or trigger more than one operation simultaneously. Policy
combination might lead to policy conflict, as some actions violate the overall policy
if they are committed at the same time. Therefore, constraints should be configured
to manage this possibility.

The Separation of Duty (SoD) principle is used in such scenarios to prevent
misuse of the system by limiting the user to the least privilege necessary to perform
their required tasks. The least privilege principle limits the access of the subject
during an operation on a specific task to be within the minimum resources, lowest
privileges, and specified period of time. Several security enhancements can be
gained from SoD, such as fraud prevention and error minimization [14–16].

There are two main types of SoD: static, and dynamic. Static-SoD (SSoD)
will list the conflicting roles which cannot be executed by the same user at the
same time, whereas dynamic-SoD (DSoD) enforces the control at the time of

Quality Control - Intelligent Manufacturing, Robust Design and Charts

4

access-request. In an RBAC model, roles and role relations are defined in advance
during the policy engineering process. For SSoD in RBAC, SSoD relations place con-
straints on the user-to-rule assignment function, where one user can be assigned
a specific set of roles and be excluded from another set of roles. Otherwise, two or
more users are required to be involved in accomplishing sensitive tasks, since it is
less likely that multiple parties will issue a fraud attack. In the DSoD relation, the
capabilities for one user are restricted to being activated during a specific user ses-
sion, i.e. the same user cannot perform two roles simultaneously [17, 18].

Although in RBAC, SSoD and DSoD relations offer some advancement in
control over identity-based systems, security issues remain. The most accommodat-
ing form of SoD is History based (HSoD). Although, enforcing it in a static based
access control management environment such as RBAC is di_cult, if not impossible
[19, 20]. One role of a HSoD is that it prevents an object from being accessed by the
same subject a certain number of times [21]. Therefore, we assume that the ABAC
model concept has the characteristics of supporting certain types of SoD. The fol-
lowing section will investigate efforts in the literature to involve the SoD principle
in ABAC.

A significant amount of research has been conducted regarding the principle of
Separation of Duty (SoD) in RBAC; however, SoD deployment in ABAC remains a
problem [22]. One of the earliest related works in specifying constraints in ABAC
is illustrated through ABAC configuration-points [5]. Nevertheless, their proposed
constraint settings are event-specific during attribute assignment and/or modifica-
tion of the object and subject. This method is similar to the RBAC constraints-
setting concept, where the allowed roles are activated for a specific user session
after the roles are assigned to the users.

The author of ABCL proposed an event-independent constraint language based
on conflicting relations of attribute values such as mutual exclusion and precondi-
tion [23]. ABCL language specifies restrictions either on a single set of attribute
values or on a set of values of different attributes within the same entity. The
usefulness of ABCL language has been validated through case studies. However, it
lacks a framework or a formal model that illustrates its implementation. Dynamic
Separation of Duties (DSoD) is more appropriate to cloud computing, and it
also meets the dynamic nature of ABAC. Nguyen [24] has carried out interesting
research on DSoD and proposed DSoD deployment through Provenance based
Access Control (PBAC). His work is basically proposing a means to capture and
utilize the information needed in the SoD enforcement, as previous work in the
area assumes that the information is ready without demonstrating how to prepare
it. Some of the previous work related to dynamic-based SoD is ObjDSoD, which is
based on the object, and where the enforcement is constructed on a set consisting
of conflicting-roles and a conicting-action on these roles. Therefore, the subject
will not be allowed to perform an action on an object if that action is in the set of
action role conflict. Another approach is OpsDSoD based on operations. This is a
task-aware that involves an action-role conflict set, thus it differs from ObjDSoD
by limiting the user to perform the needed actions for a particle task even though
they have more privileges. A third approach is HDSoD, which combines ObjDSoD
and OpsDSoD. Further, HDSoD is object-aware and a task aware. HDSoD is order-
aware, where order-dependency conflict is triggered if the order is essential for a
sequence of sub-tasks. Nguyen in [24] extended HDSoD by adding dependence-
path-aware and past attribute-aware in their DSoD which is used in Provenance-
based Access Control (PBAC).

Event pattern and response relations called obligations are introduced by
Ferraiolo, Atluri, and Gavrila in their policy machine research [19], which can
enforce some forms of HSoD in their access control framework. Obligations have

5

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

a set of conditions that are specified by the event pattern under which the state of
the policy is obligated to change; only if this set matches the surrounding context,
the operation on an object can be executed. There are two recognized standards
can be applied to the ABAC concept: Extensible Access Control Markup Language
(XACML), and Next Generation Access Control (NGAC) [25]. XACML does not
show any support for DSoD constraint, while NGAC does show some support to
DSoD through a Prohibitions (Denies)-relation, which includes a set of deny-
ing relations that specify privilege exceptions where a user that is allowed to run
capability (x) will be prohibited from running capability (y).

2.4 SoD design and deployment in access control system

It is most likely that the formulation of SoD requirements are prepared by the
administrator based on the business rules. An example of such a rule is, person may
not approve his or her own purchase order [26]. SoD deployment can be involved
with different layers of an access control system. It can be designed within admin-
istrative-level policies and procedures, or it can be used within logical or technical
mechanism access-control restriction points [15].

Based on recommendations regarding SoD implementation to traverse its limita-
tion in RBAC [20], several techniques have been explored, such as grouping con-
cept, membership control, activation control, history control, and labels. However,
in ABAC, the grouping concept will not be appropriate as grouping restricts an
attributes flexible nature. Membership control cannot be adopted by ABAC as it is
not role-centric. Though, the activation control concept has been adopted into SoD
specifications in ABAC by Jin [5] and Bijon [23]. Ferraiolo et al. [19] describe a rela-
tion between entities that can be used in History based SoD deployment. Whereas
Biswas et al. [27] point out that label concept can be used to enforce SoD in their
proposed label-based access control in an ABAC. There are several obstacles in
designing and implementing SoD, as it is an application-oriented policy where the
business rules indicate the critical tasks which require SoD enforcement. Another
challenge is that different applications may require various types of SoD. Lastly,
most SoD types are informally defined, which creates ambiguity regarding the
subjects or specifications [28].

2.5 The proposed SoD deployment in IaaS by ABACsh

Based on the above investigation [22–24, 29], SoD can be defined as an
enforcement constraint configured to avoid conflict between policies. This
conflict can be due to multi-access requests from different subjects to the same
resource simultaneously, or the same subject requesting access to multiple
resources at the same time. From this definition, it can be observed that SoD
may be viewed as object-operation-oriented, which can be aligned with ABAC’s
relation between appropriate to enhance SoD by implementing a form of HSoD
which will be suitable to be enforced in a dynamic access control policy environ-
ment such as ABAC. With RBAC, the centric entity involved in the SoD principle
design is the role set. In contrast, ABAC cannot consider a role in the form of an
attribute as it can lead to a chaos [30]. Therefore, the focus of this paper regard-
ing formally defining SoD within ABAC will be on attributes and attribute-rela-
tions, with no aim to define an application-oriented SoD. Thus, we aim to identify
a logical based design for SoD within the ABAC policy model. The proposed work
is based on formal logic; exception cases are not encouraged in a formal logic
as exceptions make regulations non-monotonic and introduce conflict between
proven conclusions [31].

Quality Control - Intelligent Manufacturing, Robust Design and Charts

6

Therefore, the proposed SoD is operation-object orientated that defines a rules-
set reflecting the forbidden operations on the set of objects under a specific situa-
tion of a collection of entities attributes. Entities include the object, the subject, the
environment, and the system context. Moreover, formal logic facilitates SoD rule
creation, even by non-expert security administrators. Since the proposed system
is attribute-based, it is not necessary to update different locations if a new action
restriction is added, deleted, or modified. Object-attributes and operations. We can
discern from the above that it is more appropriate to enhance SoD by implementing
a form of HSoD which will be suitable to be enforced in a dynamic access control
policy environment such as ABAC. With RBAC, the centric entity involved in the
SoD principle design is the role set. In contrast, ABAC cannot consider a role in
the form of an attribute as it can lead to a chaos [30]. Therefore, the focus of this
paper regarding formally defining SoD within ABAC will be on attributes and
attribute-relations, with no aim to define an application-oriented SoD. Thus, we
aim to identify a logical based design for SoD within the ABAC policy model. The
proposed work is based on formal logic; exception cases are not encouraged in a
formal logic as exceptions make regulations non-monotonic and introduce conflict
between proven conclusions [31]. Therefore, the proposed SoD is operation-object
orientated that defines a rules-set rejecting the forbidden operations on the set
of objects under a specific situation of a collection of entities attributes. Entities
include the object, the subject, the environment, and the system context. Moreover,
formal logic facilitates SoD rule creation, even by non-expert security administra-
tors. Since the proposed system is attribute-based, it is not necessary to update
different locations if a new action restriction is added, deleted, or modified.

3. An intelligent framework for ABACsh

The framework is designed based on knowledge-agent and it employs rule-based
expert system method. This intelligent system is not based on machine learn-
ing which will have a percentage of correct answers. This system is based on the
available rules; therefore, it is not a type of uncertain approach. The system must
guarantee an access decision.

The purpose of this ABACsh framework is to prove that AI architecture can con-
tribute in supporting a dynamic access control. In regard to guaranteeing behavior,
the followed mechanism in this chapter is based on knowledge available. If there
is a shortage in knowledge, the access decision will be denied. There are other AI
categories related to uncertain knowledge such as probabilistic reasoning, However,
uncertain reasoning is out of this research scope.

3.1 AI scope for the proposed framework

According to [32–34], artificial intelligence systems are designed to think and
act. They can be categorized into four types based on the intention of the system:
Thinking Humanly, Acting Humanly, Thinking Rationally and Acting Rationally.
The category of Thinking Rationally leads to an evolved need for the logic field in
artificial intelligence. Involving logic in an intelligent system faces two substantial
obstacles. The first one is the difficulty of presenting informal-knowledge using a
formal logical notation though the certainty level is less than 100%. The second is
that solving problems theoretically is different from solving them practically when
the machine capacity is taken into consideration.

The category of Acting Rationally initiates the development of a computer
agent. Prior to computer science, the term agent was used in different fields.

7

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

Therefore, there are various definitions of agent. However, it can be defined as an
entity that acts within an environment by sensing its surroundings to update its
knowledge and acts upon that to meet specific goals [35]. The agent function repre-
sents an abstract mathematical description, whereas the agent program represents
an agent implementation within a physical system.

Problem-solving through an intelligent agent involves four stages. Firstly, the
agent formulates its goal. Secondly, it formulates the problem based on five steps:
initial state, possible actions, transition model that describes what each action does,
goal test and path cost. Thirdly, it searches for a solution by looking for a sequence
of actions that leads to the goal. Fourthly, in the execution stage, the solution found
is implemented. However, the problem-solving agent is inflexible as each possible
state should be hard-coded. Therefore, the complexity of the search stage grows
exponentially in relation to the number of states in addition to its inability to infer
unobserved information. Therefore, there is a need for logic to reason about the
possible states instead of hard-coded all predicted states.

Knowledge-based reasoning is a step in overcoming problem-solving agent
limitations. The logic provides a natural language for describing and reasoning
about the system. The knowledge-based system is given facts about the external
world, and it is asked queries about that world. The rule-based expert system is
a popular method that is used to build knowledge-based systems. The rules are
used to represent knowledge in the format of IF-THEN. The Inference engine is the
reasoning component whereby the system concludes by linking the rules given in
the knowledge base with facts supplied from the database. The explanation facilities
allow the user to interact with the expert system to get justifications regarding the
results produced by the inference engine. Therefore; the AI scope for the proposed
intelligent-framework for ABACsh is illustrated in Figure 1. Modal logic is found to
be the most appropriate logic to be used in AI as discussed by [36].

3.2 Logical-based agent architecture

Intelligence security is a fertile approach, as most existing security paradigms
suffer from reactive and fragmented approaches [37]. In a frequently changing
infrastructure, deploying an agent-based mechanism will be an advantage [38].

Figure 1.
AI scope for the proposed framework.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

8

Modal logic is a candidate that supports a logical approach in artificial intelligence
systems [39]. The main component of a knowledge-agent is a Knowledge-Base (KB)
that consists of a set of sentences expressed using formal logic, in addition to two
generic functions that involve logical inference. The first function is known as TELL,
and adds new sentences (facts) to the KB to provide it with the required information.
The second function is known as ASK, and queries the known information from the
KB to determine the next step. The process between TELL and ASK will end as soon
as the desired action is selected. The interaction between these two generic functions
is similar to the updating and querying in databases, as illustrated in Figure 2. When
an agent program is called upon, it performs two main actions. Firstly, it will TELL
the KB what it perceives. Secondly, it ASKs the KB what action should be taken.

Therefore, agent-based architecture is suitable to represent an ABAC model. The
logical agent, furthermore, will be appropriate for the proposed modal logic scheme.
Table 1 demonstrates how knowledge-based agent architecture can represent an ABAC
system. The logical agent can be designed to represent an access-request state through
a process of inference to derive a new representation of the access-request state that
can be used to deduce required actions. The proposed access-control logic agent will be
founded on knowledge-based agents, as this type of agent is logic-based [34].

3.3 ABACsh conceptual requirement

Based on the analysis and investigations addressed an analytical study published
by this chapter author in [40], the critical requirements in designing an ABAC
model are listed below.

• Req.1 ABAC model definition requires to identify the configuration points.
Each point should be formalized via the proper languages. The configuration
point indicates the necessary configurations to be accomplished via the ABAC
model processing for computing the access decision. These points are known as
functional points. It is more convenient to minimize the number of configura-
tion points as they affect the system’s computational complexity.

• Req.2 ABAC is identity-free. Therefore, identifications such as subject-id are
not the main elements in access-decision processing.

• Req.3 Avoid the creation of lists or groups in the design, as ABAC is intended to
be flexible and able to cope with large enterprises.

• Req.4 Context-attributes reflect the current system state, whereas environment
attributes reflect the fixed system characteristics.

• Req.5 ABAC is a multi-factor decision. Therefore, it enables fine-grained access

• Req.6 There are no predefined privileges for subjects as the privileges are
computed after an access request is triggered. Policy rules set in ABAC are
specified based on attributes. As a result, the permissible operations will be
defined upon access-request.

• Req.7 The two basic functionalities in ABAC are attribute-assignment and
rules-creation.

• Req.8 Security principles such as Separation of Duty (SoD) must be enforced.

9

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

The enhanced attribute-based access control ABACsh fulfills requirement Req.1 by
employing one main configuration point that is ABAC agent. This agent takes as an
input, the access request parameters which consist of the subject, the object, and the
operation (s, o, opr). Then it returns the access decision that indicates if the subject is
allowed to operate on the object or it is denied. Compared to ABACα , which has four
configuration points, the policy configuration here is reduced to one, as the prolifera-
tion of policy configuration points can introduce difficulties in policy expression and
comprehension [5]. For Req.2, in the Policy Decision Point (PDP), the decision-
making process considers the subject attributes in addition to other attributes, instead
of depending solely on the subject identity information. In Req.3, grouping is studied
by HGABAC [41] to facilitate the addition of a hierarchy feature to ABAC.

However, grouping and listing will impede the flexible nature of ABAC [30, 42].
Therefore, permissions grouping and listing are avoided in this ABACsh. The decision
calculation is based on four sets of attributes: subject-attributes, object-attributes,
environment-attributes, and system-context attributes, all of which are taken into
consideration in the proposed design to meet requirement Req.4. System context
attributes have a special sensor to obtain an up to date system state to meet require-
ment Req.5. The privilege decision is calculated based on the attributes relation defined
in the policy-rules. Therefore; the privilege value is returned after the access-decision
is triggered, which meets the requirement Req.6. There are two core functions of
ABACsh. The first function takes place at the initial system stage, where the attri-
bute pairs (name:value) are created for the defined access control system entities

Components Agent architecture ABAC requirements

knowledge

base(KB)

Background sentences Predefined sets of entities, attributes and

policy rules

To represent action(s) The action is access-decision

inference

system

Infer (i.e arrive to a conclusion via

reasoning) hidden properties of the

world to add new sentence to KB

New sentences are added each time an

access-request is triggered which consist of

a combination of attributes with the request

operation

Infer based on the predefined

sentences and the new ones to

conclude with appropriate actions

Reasoning based on the attributes set and

the policy rule-sets to conclude with an

appropriate action (allow or deny) the

access-request

Table 1.
Mapping knowledge-based agent with ABAC requirements.

Figure 2.
A generic knowledge-based agent function [34].

Quality Control - Intelligent Manufacturing, Robust Design and Charts

10

(subject, object, environment, and context). The second function is rules creation,
which represents the SoD-rules and Policy-rules in the form of capability which
indicates the access-rights. These two functions meet the ABAC requirement Req.7.
An initial SoD is introduced in this design in the type of a DSoD. The elimination of
policy-rule conflicts can be achieved by an object-operation oriented constraint. A
formal presentation of the proposed SoD enforcement sentences is defined and will
be flexible to manage the set of constraints and meet the system requirements Req.8
since the administrator can modify the set of SoD sentences. The proposed SoD will be
enforced after the access-request is triggered where an action is forbidden based on a
collection of attributes.

3.4 The proposed framework

The proposed intelligent framework for ABACsh has been published by this
chapter author in [40]. Figure 3 shows the framework components. The proposed
ABACsh model framework focuses on three functional points in Ref. to XACML
framework: PDP, PIP and PAP. The Policy Enforcement Point (PEP) enforces
the access decision. The PDP (Policy Decision Point) involves the core logical
reasoning that takes place in an inference mechanism where the access decision
is processed. The PAP (Policy Administration Point) involves rule creation by the
system administrators. The PIP (Policy Information Point) involves information
collection.

4. ABACsh implementation for IaaS cloud via OpenStack

This section demonstrates the visibility of ABACsh in IaaS cloud by introducing
an enforcement architecture based on OpenStack. That is followed by a prototype
implementation and performance evaluation that illustrates the advantages of the
proposed ABACsh extension over the existing access control model. This section
discuss the following points

• Designing enforcement architecture for ABACsh that utilizes telemeter
service deployment to be used in feeding Policy Information Point (PIP) with
attributes values.

Figure 3.
The proposed intelligent framework for ABACsh.

11

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

• A prototype implementation of an extended nova access control model with an
intelligent ABAC.

 ○ Extend the nova policy enforcement point (PEP) to communicate with an
external policy engine

 ○ The proposed external policy-engine works as policy decision point (PDP)

• The introduced PDP follows ABACsh by

 ○ Utilizing the attributes in access decision-making process.

 ○ Involving forward-chaining algorithm that works as logical reasoning for
access decision processing.

• Three experiments are studied to compare and contrast the extended ABACsh
with the default nova-OpenStack access control model.

• The Quality of Service (QoS) measurement is discussed based on response
time as a performance metric.

5. OpenStack access control model (OSAC)

A key component in building a virtualization environment is its operation
via the hypervisor. The hypervisor on its own cannot build IaaS. Therefore, a
cloudstack such as OpenStack, Cloud-Stack or OpenNebul is required. According
to the current industry, OpenStack is likely to become a dominant cloud-stack
[43]. OpenStack is an open-source cloud computing platform that offers an IaaS
layer of service. OpenStack IaaS infrastructure supports agent communication.
For example, network nodes in the OpenStack activate a DHCP agent to deploy a
DHCP service [44]. OpenStack was selected to be the experimental platform for this
research as it has a supportive and active community of both academic researchers
and commercial bodies.

OpenStack can deploy different access control models within its infrastruc-
ture [45]. For example, nova configuration files can be protected via several
implementations such as centralized logging, policy file (policy.json) and MAC
framework (Mandatory Access Control). The availability of access control models
depends on the hypervisor vendor. The supported models are Mandatory Access
Control (MAC), Discretionary Access Control (DAC), and Role-Based Access
Control (RBAC).

The Openstack access control model (OSAC) that enables both operators and
users to access resources for specific services is a type of RBAC [46]. The keystone
[47] supports the notation of roles and groups. Each user should be associated
with a group, and each group has a list of roles. For a user to be granted access to
a service, Openstack service takes into consideration his/her role, though as the
first authorization step, the OpenStack PEP (Policy Enforcement Point) takes into
consideration the policy rules associated with the resources before it checks the user
role. Therefore, the policy enforcement middleware enables fine-grained access.
Each Openstack service defines the access control policies rules for its resources in a
specific policy file called policy.json.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

12

5.1 Policy engine

Policy engine in OpenStack is a type of authorization engine that return
back a decision based on some policy rules that indicating if a specific opera-
tion is allowed or denied [14, 45, 48]. The default policy engine is maintained
via Oslo policy, and the access request is issued via API communication. Oslo
policy is completely separated from RBAC model [49]. The developer can view
Oslo policy rules that are related to nova via the command “oslopolicy-policy-
generator {namespace nova”. The list of rules verifies if the user credentials are
matching to grant access to the requested resources. The user credentials are
stored in the format of a token. The token holds information related to the token
itself in addition to the user, the project, the domain, the role, the service and
the endpoint. The policy rules are stored in JSON (JavaScript Object Notation)
file format.

In policy.json, the access policy consists of two main parts “<target>”:
“<rule>” [47] . The target is known as an action that indicates the API call for an
operation such as “start an instance”. The rules can be one of the following: allow
all, deny all, a special check, a comparison of two values, Boolean expressions based
on simpler rules. The special check gives the developers an opportunity to extend
the OpenStack policy engine. The special check can indicate, a role that is extracted
from token information, or a complex rule by defining an alias, or a target URL that
delegates the check to an external policy engine.

5.2 Nova authorisation data-flow

Each service in Openstack has its own access control configuration points
which involve PEP, PIP, PDP and PAP. The information ow between nova
access-control configuration points is demonstrated in Figure 4. In the original
Openstack architecture, Nova PEP will send a token that contains the informa-
tion of the access request to Nova PIP to retrieve the object information. Then
Nova PEP sends the information of the subject, object and request to Nova PDP
in order for Nova PDP request an access control policy from Nova PAP. Nova PDP
evaluate the access request based on the policy and return the access decision to
Nova PEP.

5.3 Forward-chaining algorithm

In the search stage of the problem-solving agent, there is a need to use a proper
searching algorithm that meets the problem scenario and the input information.
The search algorithms that are used in rule-based systems are backward chain-
ing, forward-chaining and a mixture of both of them [34, 51]. Table 2 compares
between the reasoning algorithms which are referred to as chaining in some
literature.

Many researchers avoid the Logic Theory Machine, which is based on forward-
reasoning due to the computation complexity. However, this complexity is due to
the classical mathematical logic and it is not due to the forward-reasoning concept
[52]. Classical mathematical logic such as propositional logic and First-order logic.
Therefore, the computational complexity of forward-chaining when it is used in
nonclassical logic such as deontic logic will be decidable, and it will have an accept-
able computation complexity. A simple algorithm for forward-chaining is illus-
trated in Figure 5. Forward reasoning search iteration is based on facts and rules to
find a conclusion.

13

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

5.4 ABAC implementation in OpenStack

5.4.1 Enforcement architecture

The core characteristics of ABACsh are to work as an intelligent agent that sense
the attributes (the environment, the system context, the subject and the object) in
order to search for an access decision using forward chaining (forward-reasoning).
The set of attributes represent facts whereas the set of policy rules represent the
rules.

Forward-chaining Backward-chaining

Known as Forward reasoning (Data driven) Backward reasoning (Goal driven)

Reasoning start

with

A Set of facts to reach a goal (or

hypothesis)

A hypothesis (goal) to reach the facts

behind it

When applicable If the goal is unknown If the set of goals are known

Table 2.
Comparing forward-chaining with backward-chaining.

Figure 4.
Nova authorization data- flow [50].

Figure 5.
Forward chaining algorithm.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

14

The proposed ABACsh enforcement architecture employs the Telemetry service
of OpenStack. The telemetry service in Openstack provides the facility to sense the
IaaS cloud for environment attributes and the context attributes. The Telemetry ser-
vice facilitates polling information from the computing service since the proposed
access control agent ABACsh will use the collected information for the attributes
assignment process. As an example, the nova service access control process will
be used to illustrate ABACsh extension. Section 4.3 introduces the default data
ow of nova service access control while Figure 6 illustrates nova service access
control with ABACsh extension. The proposed ABACsh enforcement architecture
focuses on three configuration points: PIP (Policy Information Point), PAP (Policy
Admission Point) and PDP (Policy Decision Point). ABACsh enforcement architec-
ture is divided into three components as follows:

1. ABACsh PIP: this is used to collect attributes information from the access
control entities, the environment, and the system context. PIP can be achieved
in Openstack through configuring the Telemetry component. The Telemetry
service is designed to support a billing system by gathering the required
information. Therefore, its structure will be beneficial in providing PIP with
required attribute information. Telemetry consists of five building blocks:
Compute Agent, Central Agent, Collector, Data Store and API Server in order
to perform five essential functions [53]. Figure 7 summarizes the Telemeter
process to collect data for further analysis. Telemeter can be configured to
collect the attributes and save them in JSON file as this file format is used to
store policy rules in OpenStack

2. ABACsh PAP: The knowledge database for ABACsh model consists of access
rules from SoD rules and Policy rules. The access rules are created by the
system administrator. Those rules will be stored in JSON file format to
facilitate its implementation in OpenStack.

3. ABACsh PDP: this is the logical component which reasons about access control
in ABACsh. ABACsh PDP will get an access-request sentence from ABACsh PEP
that consist of the attributes information with the access request. ABACsh PDP
will load the access rules from ABACsh PAP. ABACsh PDP accomplishes logical
reasoning through forward-chaining algorithm. The result of the logical
 reasoning indicates if the access is permitted or denied.

5.4.2 Prototype implementation

The first stage of ABACsh deployment in Openstack is to be implemented on
nova component. ABACsh PDP part will be implemented as a prototype.

• Scope and Assumption.

IaaS access control tenant scope can be a single tenant [5], multi-tenant
[54–56] and collaborating parties a cross-clouds [57, 58]. The implementa-
tion scope of access control in this chapter is within single tenant whereas its
hypothesis is applicable to multi-tenant and cross-clouds as the big concept
behind ABACsh is user-id free and attributes-based. The proposed ABACsh
is not replacing OpenStack RBAC in this stage. Instead, it allows fine-grained
access control and opens prospective avenues to replace RBAC in the near
feature.

15

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

• OpenStack Testbed.

OpenStack aids in deploying IaaS cloud. Figure 8 shows the deployed testbed
in this chapter. It is installed in three machines using Ubuntu 16.04 LTS as
an operating system and OpenStack Ocata the latest release (Feb2017). One
machine is configured as a controller which provides OpenStack main server
in addition to networking services (neutron), keystone, nova and glance. The
Two other machines are configured as compute nodes where virtual machines
are hosted. The machines specification is Intel Core i5–4460 CPU Processor
3.20GHz _ 4, 15.5 GiB memory, 235 GB Disk and 2 NICs cards. The testbed
networking consists of two LANs: management network and data network.
The management network traffics the Openstack service communication
where data network connects the communication of the virtual machine. This
IaaS is a private cloud where OpenStack services and the VMs are accessed by
the LAN users.

• Data flow.

Nova policy engine is embedded within its configuration files, therefore it is
considered as one of OpenStack’s limitations. However, the default policies can
be overwritten if policy.json is enabled. Policy.json can be configured to call an
external policy engine through URL. The token hold information that can be
passed from OpenStack keystone to ABACsh policy engine via RESET GET-call.
Nova PEP receives an access decision from ABACsh policy engine via RESET
POST-call. ABACsh policy engine use a forward-chaining algorithm to produce
an access control decision. The access control reasoning takes facts which are
subject and object attributes, in addition to the system and context attributes.

Figure 7.
Telemeter process.

Figure 6.
Proposed ABACsh for Openstack nova.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

16

Based on access rules defined by the administrator, the access request will be
allowed or denied. Figure 9 shows the ABACsh PDP extension to nova autho-
rization. A policy engine is designed and implemented to add an access control
enforcement based on attributes.

In access control terminology, the Openstack users are the subject, the nova
resources are the objects, the policy.json is PEP and ABACsh policy engine is the
PDP. The attributes are extracted from the following channels

• The subject attributes can be extracted from keystone token where the avail-
able information is user name, user id, user passward, role id, role name. The
Token information can be retrieved from “content-type:application/json’
‘through curl command.

• The extracted nova metrics from the OpenStack system via a command
openstack quota show are considered as the object attributes. The attributes
information is stored in JSON _le format

• The nova environment attributes are extracted via the OpenStack command
openstack hypervisor stats show. The attributes information is stored in
JSON _le format

• The context attributes are not implemented in this prototype but it is visible to
be included via Telemetry OpenStack service

ABACsh policy engine server is implemented using several programming tech-
nologies. The web server is developed using Python programming language
with web.py since OpenStack services is using python. RESETful API utilities
are used to allow the communication between ABACsh and OpenStack APIs.
The forward reasoning function is programmed using java since this program-
ming language can be smoothly integrated into web programming. To allow the
technical interaction between python and java, jpype is used [59, 60]. Data is
stored in JSON file formats such as policy data and attributes data.

5.4.3 Performance evaluation

The aim of this performance evaluation is to detect if ABACsh deployment in
Openstack introduces any significant overhead. The efficiency of deploying an access
control model depends on several factors. The quality of service (QoS) measures

Figure 8.
OpenStack testbed in physical machines.

17

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

can be calculated by performance properties and computation complexity [61, 62].
In this section, the performance metrics are evaluated. The performance metrics
consist of four elements: response time, policy repository and retrieval, policy dis-
tribution, and Integrated with authentication function [62]. Table 3 explains theses
performance metrics elements and on which access control components they can be
applied. Since the implemented prototype is the ABACsh PDP, the followed experi-
ments will measure response time. With regard to policy repository and retrieval, the
implemented ABACsh use JSON file to store access control policy which does not add
any extra hardware or software cost to OpenStack IaaS cloud as this form of policy
storage is used by OpenStack. The remaining two performance metrics elements are
not calculated in this stage as PIP is not implemented.

5.4.4 Experiment content

In this section, the performance evaluation of the implemented ABACsh pro-
totype in OpenStack is presented. Specifically, ABACsh policy engine which repre-
sents PDP of access control model is discussed. The experiments fall into three parts
where the response time is calculated. Response time indicates the time consumed
by the system in order to process the access request decision call. The response time
has been used to measure the performance in several OpenStack implementations
such as in [63, 64]. In these experiments, OpenStack cloud was installed in physical
servers running Ubuntu 16.04 LTS release. Three types of execution time can be
measured [65, 66]. The first one is real time that reflects the wall clock where the
time is calculated from the start till the end of the call including the waiting time
and time used by other processes. The second one is user-time that reflects the
actual CPU-time spent outside the kernel during the process call in user-mode with-
out considering other processes. The third one is sys-time that reflects the actual
CPU-time spent within the kernel during the process execution.

Three experimental settings have been implemented as explained below.

• Experiment 1 (Exp1): The response time for the default access control model to
process access request to nova resources. The default use RBAC and Oslo policy
engine.

• Experiment 2 (Exp2): The response time for extending the default nova policy
engine with ABACsh that utilizes 24 attributes in access control processing

• Experiment 3 (Exp3): The response time for extending the default nova policy
engine with ABACsh that use forward-chaining for access control reasoning.

Figure 9.
The prototype implementation data flow.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

18

5.4.5 Experimental results and discussion

Each experiment was run five times, and then the average value was recorded.
Five scenarios were observed by increasing the number of requests from five to
twenty-five as illustrated in Table 4. The request indicates an access control request
from a user (subject) to access nova-resources (object).

Based on usability engineering [67, 68] The response time value can be within
three categories: over 0.1 seconds will give the user a feeling that the system is
reacting instantaneously, over 1.0 seconds will give the user a feeling of a delay but

No. of Requests Response time Exp1 Exp2 Exp3

5 Real 8.67 8.96 8.77

User 5.56 5.52 5.55

System 0.42 0.44 0.40

10 Real 17.24 17.34 17.24

User 10.99 11.05 11.11

System 0.88 0.86 0.83

15 Real 25.52 26.08 25.87

User 16.46 16.61 16.64

System 1.25 1.31 1.22

20 Real 34.40 34.56 34.45

User 22.07 22.17 22.23

System 1.68 1.66 1.56

25 Real 43.02 43.05 43.07

User 27.64 27.63 27.82

System 2.09 2.10 1.96

Table 4.
Experimental results.

Performance metrics element Description The applicable

Access Control

Component

Response time The time required to process

access request should meet the

organization requirement

PEP, PDP, PIP,

PRP

Policy distribution If there exist a mechanism that

can be used for access control

policy distribution

PAP, PIP, PRP

Integrated with authentication function If the subject and object can

be associated with some

identifications through an

authentication function.

PIP

Key: Policy Decision Point (PDP), Policy Administration Point (PAP), Policy Enforcement Point (PEP),

Policy Information Point (PIP), Policy Retrieval Point (PRP)

Table 3.
Performance evaluation metrics.

19

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

will stay uninterrupted, over 10 seconds the user will lose his/her attention and will
search for something to work on till the computer responds.

Three time values has been recorded as illustrated in Table 4: real-time, user-time
and sys-time. In this study, real-time and sys-time have a direct reflect on the perfor-
mance analysis whereas user-time is reflecting the processing outside the kernel. The
real-time shows the access control execution time in additions to the other OpenStack
cloud processes that introduce some delay by blocking the process or introducing a
waiting time. Therefore, this measurement will indicate the effect of our extended
ABACsh nova to the overall OpenStack system.

The graph in Figure 10 compares the real-time for the three set of experiments.
The increase is 0.05 seconds when the extended ABACsh nova employ forward
reasoning in access decision processing as shown in Table 5 while the increase is
0.145 seconds when ABACsh uses twenty-four attributes in access decision processing.
Therefore, there is an increase of 0.56% when attributes are added to the policy engine
and 0.19% when the forward-chaining algorithm is added. Consequently, the increase
in response time is negligible in Ref. to the usability engineering when the nova
default access control is extended with part of the proposed ABAC enhancement.

On the other hand, sys-time gives the process execution only within the kernel
regardless of the other tasks. Therefore, the time for the 25 requests dropped from
43.02 seconds within real-time to 2.09 seconds within sys-time during Exp1 which
involve default nova access control. The sys-time comparison for the three experi-
ments is illustrated in Figure 11. The results show a slightly better performance of

Figure 10.
Real-time for access control processing in nova.

Experiment 2 - Experiment 1 Experiment 3 - Experiment 1

0.29

0.1

0.56

0.16

0.03

0.1

0

0.35

0.05

0.05

Average

0.145

Average

0.05

Percentage

0.56%

Percentage

0.19%

Table 5.
Comparing real-time values.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

20

5.5% for extending the default nova access control when forward-reasoning has
been utilized whereas an increase of 4% over the default nova when 24-attributes
are used in the policy-engine as illustrated in Table 6.

From these results, the ABACsh shows an acceptable performance compared to
the default OpenStack access control within nova service. This section demonstrates
the enhanced attribute-based access control ABACsh performance improvement
when attributes and forward reasoning algorithm are employed. It has been noticed
that the performance improvement is liner in Figure 10 when only attributes
are involved in access decision. Whereas in Figure 11 when forward reasoning
is involved, an improvement in performance has been noticed. This indicates an
opportunity of enhancing the IaaS-cloud security when logical reasoning and
AI mechanism are involved in access control system.

5.4.6 Experiments limitations

The main aim of the experiments in this chapter is to study the performance
improvement when attribute-based access control model is introduced into IaaS
cloud. The experiment scale is limited to a private cloud in a LAN set-up. Therefore,
the network performance metrics has not been studied such as the latency and
throughput. The implementation in this chapter does not involve the PIP compo-
nent of the access control, therefore only a simple forward reasoning algorithm
has been deployed without knowledge update component. The used database
for knowledge is written manually whereas the system should use an automated
information collection method if PIP is implemented. One subject is involved in

Figure 11.
Sys-time for access control processing in nova.

Experiment 2 - Experiment 1 Experiment 3 - Experiment 1

0.02

−0.02

0.06

−0.02

0.01

−0.02

−0.05

−0.03

−0.12

−0.13

Average

0.05

Average

−0.07

Percentage

4%

Percentage

−5.5%

Table 6.
Comparing sys-time values.

21

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

Author details

Shadha Mohamed Sulaiyam ALAmri
University of Technology and Applied Sciences, Muscat, Oman

*Address all correspondence to: shadha-alamri@hct.edu.om

each experiment, therefore multi-access has not been investigated in this chapter.
Multi-tenant study is a critical future work.

6. Conclusions

This Chapter is focusing on the problem of deploying access control in a
dynamic environment. Access control is one of the information security principles
where the system user access is controlled through an access policy. In the cyber-
security world where systems and devices are distributed in different locations,
there is a need to have an access control model that is able to cope with a dynamic
environment where new users with different privileges are joining and leaving the
system.

This chapter is proposing to deploy an enhanced version of attribute-based
access-control named ABACsh. This model is deploying knowledge base category
of AI. A proof of concept is implemented in the cloud computing environment to
measure the performance and the visibility of such a deployment.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

22

Quality Control - Intelligent Manufacturing, Robust Design and Charts

[1] W. E. Forum, “Fourth Industrial
Revolution Beacons of Technology and
Innovation in Manufacturing,” Geneva,
2019. [Online]. Available: http://www3.
weforum.org/docs/WEF_4IR_Beacons_
of_Technology_and_Innovation_in_
Manufacturing_report_2019.pdf.

[2] J. Qiu, Z. Tian, C. Du, Q . Zuo, … S.
S.-I. I. of T., and U. 2020, “A survey on
access control in the age of internet of
things,” ieeexplore.ieee.org, vol. 7, no.
6, pp. 4682-4696, 2020, doi: 10.1109/
JIOT.2020.2969326.

[3] Y.-G. Kim, C.-J. Mon, D. Jeong,
J.-O. Lee, C.-Y. Song, and D.-K.
Baik, “Context-Aware Access
Control Mechanism for Ubiquitous
Applications,” Springer Berlin
Heidelberg, 2005, pp. 236-242.

[4] Y.-G. Kim and Y. Lee, “Context
Information-based Application Access
Control Model,” in Proceedings of
the 10th International Conference on
Ubiquitous Information Management and
Communication - IMCOM ‘16, 2016, pp.
1-5, doi: 10.1145/2857546.2857623.

[5] X. Jin, “Attribute-based access
control models and implementation
in cloud infrastructure as a service,”
THE UNIVERSITY OF TEXAS AT SAN
ANTONIO, 2014.

[6] A. Cavoukian, M. Chibba, G.
Williamson, and A. Ferguson, “The
Importance of ABAC: Attribute-Based
Access Control to Big Data: Privacy and
Context,” Priv. Big Data Institute, Ryerson
Univ. Toronto, Canada, 2015, Accessed:
May 17, 2016. [Online]. Available: http://
www.ryerson.ca/content/dam/pbdi/
Resources/The Importance of ABAC to
Big Data 05-2015.pdf.

[7] F. Li, “Context-Aware Attribute-
Based Techniques for Data Security
and Access Control in Mobile Cloud
Environment.” Apr. 01, 2015.

[8] K. Nahrstedt and R. Campbell,
“Security for Cloud Computing,” 2012.
Accessed: Oct. 08, 2015. [Online].
Available: https://illinois.edu/blog/
files/695/66281/2737.pdf.

[9] X. Yao, X. Han, and X. Du, “A
lightweight access control mechanism
for mobile cloud computing,” in
2014 IEEE Conference on Computer
Communications Workshops (INFOCOM
WKSHPS), Apr. 2014, pp. 380-385, doi:
10.1109/INFCOMW.2014.6849262.

[10] D. Al Kukhun, “Steps towards
adaptive situation and context-aware
access: a contribution to the extension
of access control mechanisms within
pervasive information systems,”
Research Institute in Computer Science
of Toulouse, 2012.

[11] Z. Liu and J. Wang, “A fine-grained
context-aware access control model for
health care and life science linked data,”
Multimed. Tools Appl., vol. 75, no. 22,
pp. 14263-14280, Jan. 2016, doi: 10.1007/
s11042-016-3269-6.

[12] K. K. Venkatasubramanian, T.
Mukherjee, and S. K. S. Gupta, “CAAC
-- An Adaptive and Proactive Access
Control Approach for Emergencies in
Smart Infrastructures,” ACM Trans.
Auton. Adapt. Syst., vol. 8, no. 4, pp.
1-18, Jan. 2014, doi: 10.1145/2555614.

[13] C. Choi, J. Choi, and P. Kim,
“Ontology-based access control model
for security policy reasoning in cloud
computing,” J. Supercomput., vol. 67,
no. 3, pp. 711-722, 2014, doi: 10.1007/
S11227-013-0980-1.

[14] S. Bhatt, F. Patwa, and R.
Sandhu, “An Attribute-Based Access
Control Extension for OpenStack
and Its Enforcement Utilizing the
Policy Machine,” in 2016 IEEE 2nd
International Conference on Collaboration
and Internet Computing (CIC),

References

23

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

Nov. 2016, pp. 37-45, doi: 10.1109/
CIC.2016.019.

[15] R. L. Krutz and R. D. Vines, Cloud
security: a comprehensive guide to secure
cloud computing. Wiley Pub, 2010.

[16] W. Li, H. Wan, X. Ren, and S. Li,
“A Refined RBAC Model for Cloud
Computing,” in 2012 IEEE/ACIS 11th
International Conference on Computer
and Information Science, May 2012, pp.
43-48, doi: 10.1109/ICIS.2012.13.

[17] D. F. D. Ferraiolo, R. Sandhu,
S. Gavrila, D. R. Kuhn, and R.
Chandramouli, “Proposed NIST
standard for role-based access control,”
ACM Trans. Inf. Syst. Secur., vol. 4,
no. 3, pp. 224-274, Aug. 2001, doi:
10.1145/501978.501980.

[18] D. Nguyen, J. Park, and R.
Sandhu, “A provenance-based access
control model,” in 2012 Tenth Annual
International Conference on Privacy,
Security and Trust, Jul. 2012, pp. 137-
144, doi: 10.1109/PST.2012.6297930.

[19] D. Ferraiolo, V. Atluri, and S.
Gavrila, “The Policy Machine: A
novel architecture and framework for
access control policy specification and
enforcement,” J. Syst. Archit., vol. 57,
no. 4, pp. 412-424, 2011, doi: 10.1016/j.
sysarc.2010.04.005.

[20] R. T. Simon and M. E. Zurko,
“Separation of duty in role-based
environments,” in Proceedings 10th
Computer Security Foundations
Workshop, 1997, pp. 183-194, doi:
10.1109/CSFW.1997.596811.

[21] C. T. Hu, D. F. Ferraiolo, and D.
R. Kuhn, Assessment of Access Control
Systems. US Department of Commerce,
National Institute of Standards and
Technology, 2006.

[22] D. Servos and S. L. Osborn,
“Current Research and Open Problems
in Attribute-Based Access Control,”

ACM Comput. Surv., vol. 49, no. 4, pp.
1-45, Jan. 2017, doi: 10.1145/3007204.

[23] K. Z. Bijon, “Constraints for
attribute based access control with
application in cloud IaaS,” THE
UNIVERSITY OF TEXAS AT SAN
ANTONIO, 2015.

[24] D. Nguyen, “Provenance-based
access control models,” The University
of Texas at San Antonio, 2014.

[25] D. Ferraiolo, R. Chandramouli,
R. Kuhn, and V. Hu, “Extensible
Access Control Markup Language
(XACML) and Next Generation Access
Control (NGAC),” in Proceedings of
the 2016 ACM International Workshop
on Attribute Based Access Control
- ABAC ‘16, 2016, pp. 13-24, doi:
10.1145/2875491.2875496.

[26] R. A. Botha and J. H. P. Eloff,
“Separation of duties for access
control enforcement in workflow
environments,” IBM Syst. J., vol. 40,
no. 3, pp. 666-682, 2001, doi: 10.1147/
sj.403.0666.

[27] P. Biswas, R. Sandhu, and R.
Krishnan, “Label-Based Access
Control,” in Proceedings of the 2016
ACM International Workshop on
Attribute Based Access Control -
ABAC ‘16, Mar. 2016, pp. 1-12, doi:
10.1145/2875491.2875498.

[28] V. D. Gligor, S. I. Gavrila, and D.
Ferraiolo, “On the formal definition of
separation-of-duty policies and their
composition,” in Proceedings. 1998 IEEE
Symposium on Security and Privacy (Cat.
No.98CB36186), 1998, pp. 172-183, doi:
10.1109/SECPRI.1998.674833.

[29] S. Jha, S. Sural, V. Atluri, and J.
Vaidya, “Enforcing Separation of Duty
in Attribute Based Access Control
Systems,” in Information Systems
Security, Springer, Cham, 2015, pp.
61-78.

Quality Control - Intelligent Manufacturing, Robust Design and Charts

24

[30] E. Coyne and T. R. Weil, “ABAC and
RBAC: Scalable, Flexible, and Auditable
Access Management,” IT Prof., vol. 15,
no. 3, pp. 14-16, May 2013, doi: 10.1109/
MITP.2013.37.

[31] N. Dinesh, A. Joshi, I. Lee, and O.
Sokolsky, “Permission to speak: A logic
for access control and conformance,”
J. Log. Algebr. Program., vol. 80,
no. 1, pp. 50-74, 2011, doi: 10.1016/j.
jlap.2009.12.002.

[32] R. Fagin, J. Y. Halpern, Y. Moses,
and M. Y. Vardi, Reasoning about
knowledge. MIT Press, 2003.

[33] M. Negnevitsky, Artificial
intelligence: a guide to intelligent systems,
3rd ed. Addison Wesley/Pearson, 2011.

[34] S. J. (Stuart J. Russell, P. Norvig, and
E. Davis, Artificial intelligence: a modern
approach. Prentice Hall, 2010.

[35] A. J. Soroka, “Agent-based System
for Knowledge Acquisition and
Management Within a Networked
Enterprise,” in Artificial Intelligence
Techniques for Networked Manufacturing
Enterprises Management, Springer
London, 2010, pp. 43-86.

[36] R. Mastop, “Modal Logic for
Artificial Intelligence,” 2012, Accessed:
Mar. 11, 2017. [Online]. Available:
http://www.phil.uu.nl/~rumberg/
infolai/Modal_Logic.pdf.

[37] R. Knights and E. Morris, “Move
to intelligence-driven security,”
Netw. Secur., vol. 2015, no. 8, pp.
15-18, Aug. 2015, doi: 10.1016/
S1353-4858(15)30071-4.

[38] F. Doelitzscher, C. Reich, M. Knahl,
A. Passfall, and N. Clarke, “An agent
based business aware incident detection
system for cloud environments,” J.
Cloud Comput. Adv. Syst. Appl.,
vol. 1, no. 1, p. 9, Jul. 2012, doi:
10.1186/2192-113X-1-9.

[39] M. Huth and M. Ryan, Logic in
computer science: modelling and reasoning
about systems. Cambridge University
Press, 2004.

[40] S. M. Sulaiyam Al Amri, “IaaS-
cloud security enhancement: An
intelligent attribute-based access control
framework,” in 2018 Majan International
Conference (MIC), Mar. 2018, pp. 1-9,
doi: 10.1109/MINTC.2018.8363159.

[41] D. Servos and S. L. Osborn,
“HGABAC: Towards a Formal Model
of Hierarchical Attribute-Based Access
Control,” in Foundations and Practice
of Security, Springer, Cham, 2015, pp.
187-204.

[42] V. C. Hu et al., “Guide to Attribute
Based Access Control (ABAC)
Definition and Considerations,” 2013.
Accessed: May 14, 2016. [Online].
Available: http://www.itbusinessedge.
com/itdownloads/security/guide-to-
attribute-based-access-control-abac-
definition-and-considerations.html.

[43] W. Huang, A. Ganjali, B. H. Kim,
S. Oh, and D. Lie, “The State of Public
Infrastructure-as-a-Service Cloud
Security,” ACM Comput. Surv., vol.
47, no. 4, pp. 1-31, Jun. 2015, doi:
10.1145/2767181.

[44] OpenStack, “OpenStack Docs:
Configure neutron agents,” 2017.
https://docs.openstack.org/admin-
guide/networking-config-agents.html
(accessed Apr. 02, 2017).

[45] OpenStack, “OpenStack Docs:
OpenStack Security Guide,” 2017.
https://docs.openstack.org/security-
guide/ (accessed Jul. 28, 2017).

[46] X. Wen, G. Gu, Q . Li, Y. Gao,
and X. Zhang, “Comparison of open-
source cloud management platforms:
OpenStack and OpenNebula,” in
2012 9th International Conference on
Fuzzy Systems and Knowledge Discovery

25

An Intelligent Access Control Model
DOI: http://dx.doi.org/10.5772/intechopen.95459

(FSKD), May 2012, pp. 2457-2461, doi:
10.1109/FSKD.2012.6234218.

[47] OpenStack.org, “OpenStack Docs:
The policy.json file,” 2017. https://docs.
openstack.org/ocata/config-reference/
policy-json-file.html (accessed Aug. 06,
2017).

[48] A. Young, “Dynamic Policy for
Access Control,” OpenStack Summit
May 2015 Vancouver, 2015. https://
openstacksummitmay2015vancouver.
sched.com/event/2qcK/dynamic-policy-
for-access-control (accessed Jul. 29,
2017).

[49] OpenStack.org, “OpenStack
Docs: oslo.policy,” 2017. https://docs.
openstack.org/oslo.policy/latest/
(accessed Aug. 06, 2017).

[50] X. Jin, R. Krishnan, and R.
Sandhu, “Role and Attribute Based
Collaborative Administration of Intra-
Tenant Cloud IaaS,” in Proceedings of the
10th IEEE International Conference on
Collaborative Computing: Networking,
Applications and Worksharing,
2014, pp. 261-274, doi: 10.4108/icst.
collaboratecom.2014.257591.

[51] R. Haemmerlé and Rémy, “On
Combining Backward and Forward
Chaining in Constraint Logic
Programming,” in Proceedings of
the 16th International Symposium on
Principles and Practice of Declarative
Programming - PPDP ‘14, 2014, pp. 213-
224, doi: 10.1145/2643135.2643144.

[52] J. Cheng, S. Nara, and Y. Goto,
“FreeEnCal: A Forward Reasoning
Engine with General-Purpose,” in
Knowledge-Based Intelligent Information
and Engineering Systems, Berlin,
Heidelberg: Springer Berlin Heidelberg,
2007, pp. 444-452.

[53] OpenStack.org, “OpenStack Docs:
Telemetry service overview,” OpenStack.
org, 2017. https://docs.openstack.org/
mitaka/install-guide-rdo/common/

get_started_telemetry.html (accessed
Aug. 16, 2017).

[54] C. Ngo, Y. Demchenko, and C. de
Laat, “Multi-tenant attribute-based
access control for cloud infrastructure
services,” J. Inf. Secur. Appl., vol. 27,
pp. 65-84, Dec. 2015, doi: 10.1016/j.
jisa.2015.11.005.

[55] D. J. Buehrer and C.-Y. Wang,
“CA-ABAC: Class Algebra Attribute-
Based Access Control,” in 2012 IEEE/
WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent
Technology, Dec. 2012, pp. 220-225, doi:
10.1109/WI-IAT.2012.268.

[56] N. Pustchi and R. Sandhu,
“MT-ABAC: A Multi-Tenant Attribute-
Based Access Control Model with
Tenant Trust,” in International
Conference on Network and System
Security, 2015, pp. 206--220,
Accessed: May 24, 2016. [Online].
Available: http://link.springer.com/
chapter/10.1007/978-3-319-25645-0_14.

[57] D. Lin, P. Rao, E. Bertino, N. Li,
and J. Lobo, “Policy decomposition
for collaborative access control,” in
Proceedings of the 13th ACM symposium
on Access control models and technologies -
SACMAT ‘08, Jun. 2008, p. 103, doi:
10.1145/1377836.1377853.

[58] P. Rao, D. Lin, E. Bertino, N. Li, and
J. Lobo, “An algebra for fine-grained
integration of XACML policies,” in
Proceedings of the 14th ACM symposium
on Access control models and technologies
- SACMAT ‘09, Jun. 2009, p. 63, doi:
10.1145/1542207.1542218.

[59] S. Menard and L. Nell, “JPype
documentation — JPype 0.6.2
documentation,” 2014. https://jpype.
readthedocs.io/en/latest/ (accessed Aug.
05, 2017).

[60] Nullege, “jpype - Nullege Python
Samples.” http://nullege.com/codes/
search/jpype (accessed Aug. 05, 2017).

Quality Control - Intelligent Manufacturing, Robust Design and Charts

26

[61] Y. A. Younis, K. Kifayat, and M.
Merabti, “A novel evaluation criteria
to cloud based access control models,”
in 2015 11th International Conference on
Innovations in Information Technology
(IIT), Nov. 2015, pp. 68-73, doi: 10.1109/
INNOVATIONS.2015.7381517.

[62] V. Hu and K. Kent, Guidelines for
access control system evaluation metrics.
2012.

[63] A. Corradi, M. Fanelli, and L.
Foschini, “VM consolidation: A real
case based on OpenStack Cloud,”
Futur. Gener. Comput. Syst., vol. 32,
pp. 118-127, Mar. 2014, doi: 10.1016/j.
future.2012.05.012.

[64] B. Tang and R. Sandhu, “Extending
openstack access control with domain
trust,” Netw. Syst. Secur., 2014,
Accessed: Mar. 17, 2016. [Online].
Available: http://link.springer.com/
chapter/10.1007/978-3-319-11698-3_5.

[65] D. MacKenzie, “Ubuntu Manpage:
time - run programs and summarize
system resource usage,” ubuntu.com,
2010. http://manpages.ubuntu.com/
manpages/xenial/man1/time.1.html
(accessed Aug. 10, 2017).

[66] askubuntu.com, “command line -
How can I measure the execution time
of a terminal process? - Ask Ubuntu,”
askubuntu.com, 2011. https://askubuntu.
com/questions/53444/how-can-i-
measure-the-execution-time-of-a-
terminal-process (accessed Aug. 10,
2017).

[67] J. Nielsen, Usability engineering.
Academic Press, 1993.

[68] B. Taylor, A. K. Dey, D. Siewiorek,
and A. Smailagic, “Using Crowd
Sourcing to Measure the Effects of
System Response Delays on User
Engagement,” in Proceedings of the
2016 CHI Conference on Human
Factors in Computing Systems - CHI
‘16, 2016, pp. 4413-4422, doi:
10.1145/2858036.2858572.

