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Chapter

Cerebral Damage after Stroke: The 
Role of Neuroplasticity as Key for 
Recovery
Mubarak Muhammad and Tasneem Muhammad Hassan

Abstract

Stroke remains global health care problem that constitutes world’s second-leading 
perpetrator of mortality and third most pronounced cause of all disabilities. The 
hallmark of cerebral stroke is the persistent loss of cerebral function consequence 
of abnormality of the blood supply. The ultimate goal of stroke care is to recover 
and maximize the cerebral functions lost due to the cerebral damage. Therefore, 
understanding the mechanism of cerebral damage after stroke is fundamental to 
comprehension of mechanisms of recovery following stroke, as well as key towards 
eliminating devastating human disability as a result of stroke. Therapeutic strate-
gies aim to harness and enhance neuroplasticity offers reasonable level of hope 
towards maximizing recovery from post stroke impairments. This paper therefore, 
highlighted the mechanism of cerebral damage after stroke as well as elucidates the 
concept of neuroplasticity as key for recovery following stroke.
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1. Introduction

Stroke also known as cerebrovascular accidents is the world’s second death-
perpetrating disease after cardiovascular diseases [1, 2], and it affects about 13.7 
million people annually in the globe [3]. About one third of all strokes translate into 
fatalities, and another one third constitutes stroke survivors staying with residual 
disability that accounts as foremost noticeable root of long-term neurological dis-
ability in adults [4, 5] and third most common cause of all disabilities globally [6]. 
Stroke classically depicts a syndrome with sudden onset of acute focal injury of the 
central nervous system (CNS) of vascular origin that produces focal or global neu-
rological deficit in accordance with affected area of blood supply [7]. Thus, based 
on the isolated territory of the brain involve, stroke can be cerebral stroke, brain-
stem stroke, cerebellar stroke, or thalamic stroke, while based on underline cause it 
can be ischemic stroke (thrombotic, embolic, lacunar, watershed, or cryptogenic) 
which results from brain vascular occlusion, or hemorrhagic stroke (intraparenchy-
mal or subarachnoid) which is due to blood-related aberrations [8].

Cerebral stroke results in loss of cerebral cortex related functions that manifests 
as motor impairment [9–11], sensory impairment [12–14], cognitive impair-
ment [15–17], balance impairment [18] among others. The motor function of the 
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cerebral cortex is embedded in the motor cortex (primary motor area, premotor 
cortex, supplementary motor area, cingulate motor areas) located in the frontal 
lobe anterior to central sulcus, the motor cortex is responsible for planning, initia-
tion, execution, and regulation of voluntary movement which is achieved through 
originating descending corticospinal tract and corticobulbar system to the spinal 
cord and brainstem respectively [19]. Cerebral cortex plays principal role in sen-
sory/perceptual functions by providing meaning to all sensations (except sense 
of smell) through primary somatosensory cortex in the postcentral gyrus of the 
parietal lobe, and other primary cortical sensory areas such as auditory cortex in the 
temporal lobe and visual cortex in the occipital lobe. Cognitive function involves 
multifaceted domains of cognitive processes including memory, learning, attention, 
thought, comprehension, perception, language among others [20]. Each of these 
domains of cognition requires cerebral cortex, illustration can be seen in memory 
domain where memory acquisition involves sensory cortex, memory retrieval 
involves prefrontal cortex, and memory storage is distributed throughout the cortex 
[21]. Balance and coordination of movement involve integrated functioning of 
both pyramidal and extra-pyramidal systems, and the cerebral cortex is the main 
principal origin of pyramidal system.

The mechanism of cerebral damage after stroke determines the cerebral stroke 
impairments, and the mechanism of damage is relative to whether the type of stroke 
is ischemic or hemorrhagic. Ischemic stroke consists of five distinct pathophysi-
ologic mechanism each of which has distinct time frame; these includes immediate 
(within minutes) peri-infarct depolarization and excitotoxicity, hours later by 
neuro-inflammation and oxidative stress, days later by apoptosis [8]. In addition to 
ischemia related cascade of events aforementioned, hemorrhagic stroke is associ-
ated with two additional unique pathophysiologic phases. The primary; acute phase 
which is due to physical effect of hematoma (mass effect) from the mass accumu-
lated blood, and the secondary; subacute phase termed as cytotoxicity from second-
ary metabolites of blood components [22–24].

Recovery to some extent from post stroke impairments observed among stroke 
survivors was one of the early evidences that led to move away from outdated 
dogma widely misconceived previously that; there was no possibility for repair or 
change within the CNS after it had suffered a lesion; and that once there is damage 
such as stroke that leads to neuronal demise inadvertently, the brain structures 
and functions are lost forever [25, 26]. It is now well-established fact that CNS 
repair or change itself but it just that it relatively does not do well enough, and that 
functional recovery after damage relies on neuroplasticity [27, 28]. Neuroplasticity 
is life-long natural capability of the CNS to rearrange itself in both molecular form 
and function in response to new experience or stimulus. Brain plasticity is pivotal 
to functional recovery after cerebral stroke, and this spontaneous, endogenous 
and intrinsic capacity of the brain is what restorative rehabilitation approaches 
for stroke explore, promote and remodel in the right direction to achieve optimal 
functional recovery after stroke [29, 30].

There is exploding surge among scientists to pay more attention in searching 
for various therapeutic strategies that can enhance neuroplasticity to augment 
functional recovery with rehabilitation after stroke [31–34]. Although this strat-
egy is still in developmental stage but the reasons for this shift in attention are not 
far-fetched. Firstly, the thrombolytic/thrombectomy clinical treatment available 
for acute stroke has a very restrictive time window of administration of 4–5 hours 
of lesion onset [35]. This is in contrast to restorative/rehabilitative interventions 
that has unlimited therapeutic window of lifelong applicability [36]. Secondly, 
rehabilitation interventions are still far from sufficiency for optimal and ideal 
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recovery from impairments after stroke [37], as about 50% of stroke survivors still 
leaves with residual disability and remain functionally dependent despite rehabili-
tative management [38]. Understanding the mechanisms of cerebral damage and 
their recovery after cerebral stroke is essential towards development of strategies 
that harness and enhance neuroplasticity in combination with rehabilitation 
processes [39]. This paper therefore discusses the mechanism of cerebral damage 
after stroke as well as elucidates the concept of neuroplasticity as key for recovery 
following stroke.

2. Mechanism of cerebral damage after stroke

In ischemic stroke, irreversible cascade of damage to the brain tissue ensue 
once the cerebral blood flow (CBF) reduces to less than 12 ml/100 g/min of the 
normal range of 50–60 ml/100 g/min. Within seconds of this abrupt ischemic 
insult, neuronal cells in the center of ischemic region termed as ischemic pre-
numbra undergoes anoxic depolarization due to loss of ATP-dependent ionic 
pump homeostasis, and they never repolarize [40]. This necrotic core of ischemic 
prenumbra is enclosed by a zone of relatively lesser impacted tissue termed as 
ischemic penumbra, which is abridged functionally silent by the reduced blood 
flow but maintains metabolically active and therefore can repolarize at the 
expense of further energy consumption [41]. This repetitive depolarization and 
repolarization of ischemic penumbra are termed peri-infarct depolarization and 
the important period of time during which this volume of brain tissue is salvage-
able is referred to as the window of opportunity. The energy failure in the func-
tioning of ATP dependent sodium potassium pump in the ischemic prenumbra 
results in massive uncontrolled anoxic depolarization that results in opening of 
voltage-gated calcium channels, mitochondrial dysfunction which further deplete 
energy required to maintain ion gradient, and abnormally extracellular buildup of 
excitatory amino acids [42, 43].

Consequently, excitatory glutamate and other excitatory amino acids such as 
aspartate becomes excessively released, and glutamate hyperexcitation of glutamate 
N-methyl-D-aspartate (NMDA) receptor, which is arguably the most calcium-
influx allowing ionotropic glutamate receptor; results in massive influx of calcium 
ion (Ca++) into hypoxic neuron. Calcium ion triggers series of cascading events 
that ultimately lead to neuronal demise through activation of proteolytic enzymes, 
stimulation of pathogenic genes, lipid peroxidation and free radical generation 
[44]. For this; glutamate and other excitatory amino acids are cumulatively termed 
excitotoxins, and their accompanying neuronal damage termed excitotoxicity 
[45]. Calcium activates key number of disparaging intracellular enzymes such as 
proteases, kinases, lipases, and endonuclease that not only wildly permits release 
of cytokines and other mediators that result in the loss of cellular integrity but 
also orchestrated triggering of intrinsic apoptotic pathway of neuronal death. 
Specifically, calcium through mobilizing phospholipases hydrolyses membrane 
bound glycerophospholipids to yield free fatty acids, which enable free radical per-
oxidation of other membrane bound lipids. Calcium through mobilizing proteases 
lyses integral structural proteins and activates nitric oxide synthase enzyme that 
triggers free radical machinery [46].

Prior excitotoxicity activates microglia and astrocytes which are the brain 
resident innate immunity to reacts and release cytokines, chemokines (che-
motaxis cytokines), and matrix metalloproteases (MMPs). This constitutes 
neuro-inflammation, and microglia activation institutes the initial vital 
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neuro-inflammatory response in acute stroke, which together with blood-borne 
innate immune cells and later adaptive immune cells support the course. This 
neuro-inflammatory response supposedly aims to reduce injury processes but this 
response under stroke pathology develops improperly more reactive and aggres-
sive to yield numerous inflammatory mediators that trigger apoptosis and orches-
trate lethal neuronal injury [47, 48]. Activated microglia becomes phagocytes 
that can release plethora of substances, some of which are neuroprotective such 
as neurotropic factors; nerve growth factor (NGF), brain-derived neurotrophic 
factor (BDNF), insulin-like growth factor I (IGF-I), and growth associated 
protein (GAP-43/B-50), while some are neurotoxic such as tumor necrosis alpha 
(TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Blood–brain barrier 
(BBB) which confers brain with protection against systemic toxins is disrupted 
by matrix metalloproteinases (MMPs) with MMP-2 (gelatinase A) and MMP-9 
(gelatinase B) being the leading concerns in cerebral ischemia [49]. MMP-2 that 
is normally expressed at low levels becomes increased during cerebral ischemia 
to galvanizes MMP-9, which abolishes components of the basement membrane in 
the vascular wall leading to BBB distraction, thus allowing further infiltration of 
inflammatory mediators and other potential toxins [50].

Oxidative stress signifies disparity in the high-level oxidants (free radicals) 
with respect to corresponding nonconforming low level of antioxidants. Long term 
cerebral hypo-perfusion produces abnormal proportions of reactive oxygen species 
(ROS) and/or reactive nitrogen species (RNS) oxidants through several mecha-
nisms of injury, such as mitochondrial inhibition, calcium ions overload, ischemia–
reperfusion injury, and neuroinflammation [51]. During cerebral ischemia, there is 
mitochondrial inhibition of oxidative phosphorylation due to the lack of sufficient 
oxygen, and the oxygen depleted cell shift to glycolytic pathway of ATP generation 
that results in lactate and hydrogen ion (H+) build-up in the mitochondria and 
the consequent reversal of the H+ uniporter on the mitochondrial membrane that 
results in superfluous cytosolic H+ buildup and acidosis [52]. Acidosis partly lead to 
oxidative stress by supplying excessive H+ for the successive progression in the gen-
eration of hydrogen peroxide (H2O2) and the final hydroxyl radicals (∙OH) either in 
the turnout of transition metal ions (Fenton reaction) or in the presence of super-
oxide radical (Haber-Weiss reaction), with this effect more pronounced in neurons 
due to inherently low anti-oxidant defense. In addition, the compelling protein and 
lipid oxidant peroxynitrite (OONO_) of RNS is favorably generated in the oxygen 
depleted cell by the reaction of nitric oxide (NO) and superoxide (O2∙−), thereby 
also contributing to oxidative stress.

Calcium overloads, as a result of glutamate mediated NMDA receptor excito-
toxicity, also contributes in neuronal oxidative stress at cytosolic and mitochon-
drial level. At cytosolic level, excessive calcium ion activation of key intracellular 
enzymes such as neuronal nitric oxide synthase (nNOS) via Ca2+ binds calmodulin 
to induce subsequent downstream effect, as nNOS catalysis results in generation of 
nitric oxide (NO) free radical from L-arginine [53, 54]. At the mitochondrial level, 
excessive calcium ion influx into mitochondrial matrix leads to the inner mitochon-
drial accumulation of momentous level of Ca2+ via mitochondrial calcium uniporter 
(MCU) which proliferates disturbance of usual bio-energetic, mitochondrial ROS, 
and membrane permeability [55].

Apoptosis is a physiological mechanism of cell death through programmed cellu-
lar machinery of either extrinsic or intrinsic pathways [56]. Under stroke pathology, 
neuronal demise by necrosis preponderance in the ischemic prenumbra is marked 
by excitotoxicity, while additional process of neuronal demise by apoptosis which is 
more delayed and predominant in the ischemic penumbra occur in a fashion where 
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apoptosis becomes dysregulated [57]. Thus, while the neurons within the core 
infarct die by immediate necrosis due to insufficient ATP, the penumbra die by ATP 
requiring process of apoptosis, supporting the established evidence that cellular 
demise after cerebral ischemia transpires through both necrosis and apoptosis [58]. 
Multiple pre-existing pathophysiologic mechanisms that can induce apoptosis after 
cerebral ischemia includes pro- calcium influx, pro-inflammatory cytokines and 
oxidative stress [59]. Apoptosis can be caspase-dependent or caspase-independent, 
and the most common is caspase-dependent which is initiated and triggered 
through distinctively intrinsic (or mitochondrial) pathway or extrinsic (or death 
receptor) pathway. Both intrinsic and extrinsic pathways share similar terminal 
phase termed execution phase where caspase 3 leads to the destruction of cellular 
components and cell death [60].

In hemorrhagic stroke, the mechanism of damage begins with additional process 
of mass effect from the mass accumulated blood, and cytotoxicity from the second-
ary metabolites of blood components, in addition to shared common damaging 
caused by ischemia such as excitotoxicity, neuroinflammation, oxidative/nitrosative 
stress, and apoptosis. The initial bleed from the cerebral hemorrhage causes imme-
diate physical disruption of the cellular cytoarchitecture of the brain and increases 
local pressure which can cause compressions, hypothetically disrupting blood flow 
and principally causing brain herniation [61]. The subsequent expansion of hema-
toma causes mass effect of hematoma growth leading to further rise in intracranial 
pressure, brain herniation, and impacted blood flow that is correlated with neu-
rologic deterioration and degraded clinical outcomes. Depending on the dynamic 
of hematoma expansion (growth), the primary damage ensues within minutes to 
hours subsequent to the onset of bleeding and is basically due to mechanical dam-
age associated with the mass effect [62].

Secondary injury after cerebral hemorrhage termed as cytotoxicity occurs due 
to series of events initiated by the prior primary injury mechanism (mass effect), 
that is specifically due to body response to the hematoma for instance inflamma-
tory response, and from the multiple blood components released from hematoma 
[61]. The extravasated blood components released from hematoma being impli-
cated to cumulatively imposed cellular toxicity includes; majorly the erythrocytes 
and plasma proteins, and the damage-associated molecular patterns (DAMPs) 
which are nucleic acids, extracellular matrix components, proteins, lipid media-
tors, ATP and uric acid released from necrotic tissues [63]. At the early stage 
of cytotoxicity, the toxicity of extravasated blood plasma components such as 
coagulation factors, complement components, and immunoglobulins are known 
to be the main contributing factor of cellular damage. Subsequently, erythrocytes 
lysis leads to release of its major intracellular component hemoglobin (Hb), 
which when metabolize via hemoglobin metabolic pathway release degradation 
products; heme and iron (Fe). Both Hb and its degradation products are potent 
cytotoxic chemicals capable of causing death to many brain cells through mecha-
nism of free radical generation with substantial increase oxidative stress and 
subsequent damage to DNA [62].

3. Concept of recovery after post stroke cerebral damage

The ultimate goal of stroke management is to promote optimal recovery of 
lost functions and reduce further injury. This recovery depends majorly on brain 
plasticity; a spontaneous regeneration process that encompasses neural plastic 
changes in the lesioned hemisphere to reestablish its structural and functional 
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reorganization. Brain plasticity under pathological condition completely differs 
from plasticity under properly functioning brain. For instance, plasticity in nor-
mally functioning brain is a prerequisite basis of learning and memory that involves 
plastic adaptation such as long-term potentiation (LTP). This is opposed to plastic 
changes observed using MRI in cerebral stroke pathology, that involves modifica-
tion in intracortical myelin, augmented neurogenesis, improved spine density in 
neuronal dendrites and alterations in astrocyte volume [64].

Stroke recovery to certain extent also depends on severity extent of the initial 
injury deficit as the severity of the damage is inversely related to the prognosis 
for recovery [65]. But it was also observed that recovery differs even among 
post stroke patients with similar clinically assessed severity. This apparently 
stress the recovery role of other brain endogenous survival mechanism such as 
extent to which collateral circulation bypass to supply blood to the perilesional 
neurons, angiogenesis, inhibitory neurotransmitters that counteract excitotox-
icity, and multiple representations of the same function in different cortical 
areas [66]. Appropriate rehabilitation and drug treatment that target underline 
cause of stroke are also critical to recovery after post stroke cerebral damage. 
Rehabilitation aims to maximize optimum recovery of lost functions as a result 
of impairments deficit after stroke but overall, brain plasticity underlies recovery 
promoted by rehabilitation [67–69].

Recovery from stroke has also been attributed to be dependent on resolution of 
early local processes in the brain that includes resolve of perilesional edema, re-
emergence of circulation within the ischemic penumbra, resolution of remote func-
tional depression of neurological function induced by process of diaschisis [70]. As 
previously stated stroke recovery majorly depends on brain reorganization process 
of plasticity which in turn dictates recovery promoted by rehabilitation. Mechanism 
through which rehabilitation mediates brain plasticity to promote recovery has been 
studied and explained. Rehabilitation such as physical therapists stroke interven-
tions modifies neurotrophic factor expression in the CNS especially brain derived 
neurotrophic factor (BDNF), which in turn upon binding with its tyrosine kinase 
B (TrkB) cognate receptor recruits a cascade of signaling pathways that ultimately 
mediates activity-associated plasticity of neurons [71, 72]. Activity-associated 
plasticity signifies a means of functional and structural neuroplasticity that is 
tailored by the depolarizing behavior of neurons, and the mechanisms governing 
activity-associated plasticity includes LTP and activity-associated development 
of corticospinal circuitry among others [72]. Therefore, through brain plasticity 
after cerebral stroke, reorganization by recruiting cortical or subcortical structures 
to adopt the function of the injured tissue, reinforcement of remaining synaptic 
pathways and then creating new connections, recruitment of other pathways that 
are functionally alike the damaged tissue but anatomically distinct, strengthening 
of existing but weaker and functionally silent connections, can all be achieved to 
recover lost cerebral functions [73].

4. Neuroplasticity and its basic physiology

Neuroplasticity is a general term that covers all available processes of neuronal 
reorganization possible [66], such as neurogenesis, synaptogenesis, dendritic arbo-
rization, axonal sprouting, LTP, recruitment of other pathways, reinforcement of 
functionally silent synapses. Neurogenesis is the process of generating of neurons 
of neural cell types from precursors neural stem cells and/or neural progenitor cells 
(NPCs) [74]. Synaptogenesis is a broad term that encompasses the complex process 
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of synaptic contacts formation, maturation and maintenance which form the basis 
for establishing neural circuits [75]. Dendritic arborization describes a process 
of neuronal dendrites tree-like branching out to make new synaptic connection 
through mechanisms of dendrite morphogenesis [76]. Sprouting is a form of plastic 
changes in the synapses in which there is axonal synaptic reorganization to modify 
the efficacy of synapses [77]. LTP is the fundamental form of synaptic plasticity 
where synapses become strengthened and this forms the cellular basis of learning 
and memory [78].

Neuroplasticity is regulated by the corresponding cascade of intracellular 
events that translates into plastic changes. However, the plastic changes may 
either be adaptive, where it is related with an upsurge in function or maladap-
tive where it is linked with adverse consequences such as loss of function or 
augmented damage [79, 80]. This brings about the concept that not all plasticity 
effect positively on clinical status, that maladaptive plastic changes from dys-
regulated neuroplasticity result in an aberrant neural organization [79]. Typical 
example of situation where neuroplasticity becomes maladaptive can be seen 
in new onset of seizures after long period of cerebral trauma, where aberrant 
progressive plastic changes in the brain in the form of inappropriate synapto-
genesis and axonal sprouting accounts for this late development. Neuroplasticity 
can also be seen as structural where the plastic changes involves the organization 
and number of synapses such as synaptogenesis, axonal sprouting and dendritic 
arborization, or functional where the plastic changes involves the efficacy and 
strength of synaptic connections such as LTP.

The basis of plastic changes that allows for neuroplasticity to become realistic 
depend upon factors such as neuronal excitability, which define the ability of a 
nerve to produce an action potential and in turn depends on the permeability, 
electrical and chemical state of the neuron [81]. This is then followed by adaptive 
changes termed plasticity, in which there are stable functional transformations 
that occur in specific neuronal systems as a result of specific stimuli or the 
combination of stimuli [82]. Furthermore, it has been revealed that effective and 
repeated action potentials are required from the presynaptic neuron to stimulate 
the postsynaptic to cause a change in the strength of an interneuron connection 
[83]. Cumulatively, the aforementioned process leads to biochemical changes, 
and anatomical adaptations which reinforce the connections between neighbor-
ing neurons, thus accounting for molecular, cellular, systems, and behavioral 
perspectives of explaining neuroplasticity [84].

The strength of the excitation impulse must exceed the threshold value to 
increase the synaptic efficacy and the stability of the connections between neu-
rons. Nevertheless, when neurons are stimulated only with subthreshold stimuli, 
the overall activity of the synapse may decrease [85]. Studies conducted on unilat-
eral lesion of the hippocampus results in the formation of new synapses (synapto-
genesis) by the axons from the remaining contra-lateral hippocampal system [86]. 
Thus, the postsynaptic portion of a synapse continues to function properly despite 
the degeneration of the presynaptic region, and the surviving axons form new 
synapses. The fibers that form the (new) synapses are homologous to the damaged 
synapses, which may significantly facilitate the restoration of normal function.

5. Strategies that enhances neuroplasticity

Table 1 summarized various strategies that were found to enhance neuroplasticity 
and the mechanism through which modulate neuroplasticity.
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Strategy Proposed mechanism reported to modulate  

and promote neuroplasticity

References

Transcranial direct current 

stimulation (noninvasive)

Modification of neuronal membrane potentials, 

consequently persuading neuronal excitability 

which form part of the basis of neuroplasticity.

[87, 88]

Deep brain stimulation 

(invasive)

This by stimulating neuronal network connected 

to the stimulated region, the pathological neuronal 

network becomes altered by changes in the 

neurochemical components thereby inducing 

morphological changes in both the dendrites 

(dendritic arborization) and axons (axonal 

sprouting).

[89]

Functional Electrical 

Stimulation (FES 

noninvasive)

Hypothesized to modulate neuroplasticity through 

repeated generation of neurons synaptic activity 

that might facilitate synaptic remodeling, leading 

to neural reorganization.

[90]

Aerobic Exercise Aerobic exercise is linked with surge in 

neurogenesis and angiogenesis, together with 

rise in neurotrophic molecules especially BDNF 

and other growth factors implicated in neurite 

outgrowth and synaptic plasticity

[91, 92]

Brain-derived neurotropic 

factor (BDNF) therapy

By binding of BDNF to its TrkB cognate receptor, 

two distinctive intracellular signaling pathways 

namely phosphatidylinositol 3-kinase (PI3K)/

Akt and mitogen-activated protein kinase/

extracellular-signal-regulated kinase (MAPK/

ERK) becomes initiated, thereby regulating 

transcriptional gene activity of neurite outgrowth 

and neurogenesis.

[93, 94]

Statins Proposed mechanism by which statins modulates 

neuroplasticity involves indirect effect through 

statin-mediated increase in proteins such as 

endothelial nitric oxide synthase (eNOS), 

vascular endothelial growth factor (VEGF), tissue 

plasminogen activator (tPA), and brain-derived 

neurotropic factor (BDNF) among others.

[95]

Erythropoietin (EPO) 

therapy

EPO and EPO receptor (EPOR) that both becomes 

upregulated in response to cerebral ischemia, 

when supplemented act to indirectly augment 

neurogenesis through EPO-mediated increase in 

the expression vascular endothelial growth factor 

(VEGF) and brain-derived neurotropic factor 

(BDNF).

[96]

Phosphodiesterase type 

5 inhibitors (PDE-5 

inhibitors)

PDE-5 inhibitors competitively inhibit 

phosphodiesterase enzymes responsible for 

converting cyclic guanylyl monophosphate 

(cGMP) back to GMP, thus fostering cGMP 

accumulation which has diverse cellular effect in 

the brain including angiogenesis, and neurogenesis 

which are requirements of neuroplasticity

[97]

Vascular endothelial 

growth factor (VEGF) 

therapy.

Proposed mechanism through which VEGF 

modulates neuroplasticity involves mediating 

the PI3K–AKT–nuclear factor kappa B signaling 

pathway; an intracellular pathway that regulate 

transcriptional factors involves in neurogenesis

[98, 99]

Table 1. 
Various strategies that were found to enhance neuroplasticity.
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6. Conclusion

Advancement in the understanding of mechanism of cerebral damage after 
stroke and brain neuroplasticity have continue to be a cutting-edge landmark infor-
mation towards reducing human disability as a result of stroke. Strategies aimed at 
harnessing and augmenting neuroplasticity in complement with neurorehabilita-
tion offers reasonable level of hope to maximize stroke recovery and diminish 
cerebral stroke induced neurological impairments. Although these strategies are 
rapidly evolving towards achieving clinical viability and success, more is needed to 
be done especially pertaining to outcome measures of neuroplasticity that rely on 
biomarkers of neuroplasticity rather than functional or behavioral outcome.
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